
东华理工大学理学院物理系

第 1 章 哈密顿力学初步
v. 1.0.0

陈童
tongchen@ecut.edu.cn

June 28, 2021



1

目录

能量与力
势能与力
哈密顿正则方程
势能曲线

无磨损摩擦的一个物理模型

微分形式和外微分
微分形式
外微分与斯托克斯公式
保守力的特性

ct |理论力学新讲第 1章



2

能量与力
势能与力

▶ 什么是力？力是相互作用能量随着粒子空间位置变化的剧烈程度。
▶ 什么是能量？能量有多种可以相互转化的形式，但对于一个独立
系统，能量的总量守恒。更多关于能量的讨论留到以后。

▶ 什么是势能？势能是一种相互作用能量，只与粒子空间位置有关，
与速度无关。常常记为 V (x)。

▶ 势能举例：重力势能，V (x) = mgz;万有引力势能，
V (x) = −G m1m2

r ；两个点电荷之间的库伦相互作用势能，
V (x) = e1e2

4πϵ0r。
▶ 势能如何确定？由实验归纳，或者由相互作用场论的研究给出。
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能量与力
势能与力

▶ 力 F的定义：

F · dx = −dV (x) (1)

式子中额外的负号是为了使得牛顿运动定律的形式或者机械能的
表达式与通常的约定一致而引入的。

▶ 或者等价地：

F = −∂V
∂x = −∇V = −(

∂V
∂x

,
∂V
∂y

,
∂V
∂z

). (2)

▶ 显然势能可以相差一个常数，因为在非相对论物理中，我们只能
测量能量的差值。
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能量与力
哈密顿正则方程

威廉·罗文·哈密顿爵士
(1805年 8月 3日- 1865年 9月
2日)，爱尔兰数学家，都柏林三
一学院天文学安德鲁教授，爱尔
兰皇家天文学家。他研究纯数学
和物理数学。他对光学、经典力
学和代数都有重要贡献。虽然汉
密尔顿不是物理学家-他认为自己
是一个纯粹的数学家-但他的工作
对物理学非常重要，特别是他对
牛顿力学的重新表述，现在被称
为哈密顿力学。这项工作已经被
证明是现代经典场论研究（如电
磁学）的中心，并且对量子力学
的发展也极其重要。在纯数学领
域，哈密顿以发明四元数而闻名。
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能量与力
哈密顿正则方程

▶ 利用力的定义，可将牛顿定律重写成
dp
dt

= F = −∂V
∂x . (3)

其中 p为粒子的动量，其定义为
dx
dt

=
p
m
, (4)

▶ 定义如下物理量 H(x,p),并将 x和 p看成是两个相互独立的变量,

H(x,p) = p2

2m
+ V (x). (5)

称作哈密顿量。
▶ 则关于牛顿运动定律的两个方程 (3)、(4)可以重写成一种非常对
称、非常漂亮的等价形式

dp
dt

= −∂H
∂x ,

dx
dt

=
∂H
∂p . (6)

称作哈密顿正则方程。
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能量与力
哈密顿正则方程

▶ 由哈密顿正则方程，有

dH
dt

=
∂H
∂x · dx

dt
+

∂H
∂p · dp

dt
=

∂H
∂x · ∂H

∂p − ∂H
∂p · ∂H

∂x = 0. (7)

也即是说，H 是一个守恒量。
▶ H 就是粒子的总能量， p2

2m 是动能，V (x)是势能，H 是动能势能
的总和。以上只不过是证明了能量守恒定律。
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能量与力
哈密顿正则方程

▶ 推广到多粒子情形，这时相互作用势能依赖于每一个粒子的位置
坐标，表示为 V (x1, x2, ..., xN)。比方说，两粒子间的万有引力势
能为 V (x1, x2) = −G m1m2

|x1−x2|。

▶ 这时哈密顿量同样代表总能量，是每个粒子的动能与系统的相互
作用势能之和，写成

H =
∑

i

p2
i

2mi
+ V (x1, x2, ..., xN). (8)

可见，这时候哈密顿量以每一个粒子的坐标和动量为独立变量。
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能量与力
哈密顿正则方程

▶ 相应的，多粒子体系的哈密顿正则方程为

dpi

dt
= −∂H

∂xi
,

dxi

dt
=

∂H
∂pi

. (9)

▶ 多粒子哈密顿正则方程只不过是单粒子方程多加一个指标 i !
▶ 为了验证方程 (9)等价于多粒子体系的牛顿运动定律，我们只需注
意现在第 i 个粒子的受力 Fi 由下式定义∑

i

Fi · dxi = −dV ⇔ Fi = −∂V
∂xi

. (10)

▶ 完全类似于单粒子情形，也可以证明多粒子体系的能量守恒定律。
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能量与力
哈密顿正则方程

哈密顿系统的基本研究方法
以上关于多粒子哈密顿正则方程的讨论演示了现代物理研究一个物理
系统的基本方法：即首先找到系统的基本力学变量，这在多粒子系统
中就是所有的 xi ,pi，在场论系统中就是场位形和场的正则动量;其次，
利用这些基本力学变量写出系统的哈密顿量，也就是写出系统总能量
的表达式;最后，写出形如 (9)式的哈密顿正则方程。

能用哈密顿正则方程描述的力学系统称作哈密顿系统
所以，在现代物理中，力不是最基本的，哈密顿量才是，相应的，牛顿
运动定律也不是最基本的，哈密顿正则方程才是。当然，对于单粒子
和多粒子系统，哈密顿正则方程和牛顿运动定律 F = ma完全等价。
但哈密顿正则方程的好处是给力学设定了一个一般性的框架，使得我
们的力学体系不仅可以研究粒子，还可以研究自旋系统，研究场等等。
能用哈密顿正则方程描述的力学系统就称作哈密顿系统。
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能量与力
势能曲线

作为例子，我们来分析一下单粒子的一维运动。粒子的势能可以表示
成一个单变量函数 V (x),我们可以以 x 为横坐标，以 V 为纵坐标，画
出势能函数 V (x)的曲线，如图 (1)所示，这一曲线就是所谓的势能曲
线。图中水平虚线表示给定能量 E。

Figure:势能曲线ct |理论力学新讲第 1章
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能量与力
势能曲线

▶ 由于两边都是势垒，粒子在 [xb, xc ]区间上作周期性来回运动。
▶ 但是由于 −∞处没有势垒使得粒子掉头，所以，粒子在 (−∞, xa]
区间上的运动并没有周期性来回运动。类似的，由于右边没有足
够高的势垒挡住粒子，[xd ,+∞)区间上的运动也不是周期性来回
运动。

▶ 称 (−∞, xa]区间和 [xd ,+∞)区间上的运动为散射，它描述无穷远
处的入射粒子被势垒散射回去的过程。相反，称 [xb, xc ]区间上的
运动为束缚运动，相应的运动轨道为束缚轨道。
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能量与力
势能曲线

▶ 根据哈密顿正则方程的精神，我们将 x ,p 看成两个独立变量，以
x 为横坐标，p 为纵坐标所构成的两维空间，就称为粒子的相空
间，粒子在相空间中按照哈密顿正则方程演化。粒子在相空间中
的运动轨迹就称为相空间轨道。

▶ 在我们这个例子中，相空间轨道显然由能量守恒方程给出，即满足

E =
p2

2m
+ V (x). (11)

ct |理论力学新讲第 1章



13

能量与力
势能曲线

我们可以示意性地画出 (−∞, xa]、[xb, xc ]、[xd ,+∞)这三个运动区间
的相空间轨道，如图 (2)所示。

Figure:给定能量 E 的相空间轨道。
ct |理论力学新讲第 1章
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能量与力
势能曲线

在现在的例子中，相空间轨道主要由守恒能量 E 刻画，不同的能量对
应不同的相空间轨道，我们可以示意性地画出不同 E 值的相空间轨道，
如图 (3)所示。

Figure:不同能量的相空间轨道。
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能量与力
势能曲线

我们很容易得出 [xb, xc ]区间周期运动的周期公式，记周期为 T，显然
它依赖于守恒能量 E ,可以写作 T (E),利用哈密顿正则方程
dx
dt = ∂H

∂p = p
m ,容易积分得出

T (E) =

∮
E

dt =
∮

E

m
p

dx , (12)

式中的积分沿着能量为 E 的闭合相空间轨道进行。或者我们也可以代
入相空间轨道的方程 (11),即代入 p =

√
2m(E − V (x))，进而将这个

周期公式写成

T (E) =

∮
E

m√
2m(E − V (x))

dx . (13)
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能量与力
势能曲线

另外，也可以计算闭合相空间轨道所包围的相空间面积，记作 2πI(E)，

2πI(E) =

∮
E

pdx =

∮
E

√
2m(E − V (x))dx . (14)

很显然 I(E)只依赖于守恒能量 E。从 (14)出发，再利用周期公式
(13),我们很容易得到

∂I(E)

∂E
=

1

2π

∮
E

∂

∂E

√
2m(E − V (x))dx =

T (E)

2π
. (15)

反过来，将系统能量 E 看成是相轨道包围“面积”I 的函数，然后利用
周期运动的角频率 ω = 2π/T ,进而可以将上面的公式改写成

∂E
∂I

= ω(I). (16)

这里只是对一维运动推导出这个结果，后面我们会把它推广到更一般
的所谓可积系统的情形。
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能量与力
势能曲线

(16)式在量子物理的建立过程中起过重要作用。根据玻尔的原子理论，
粒子从第 n能级往下跃迁到第 n − 1能级，会放出一个角频率为 ω 的
光子，根据爱因斯坦的光量子学说，这个光子的能量将为 h̄ω,由能量
守恒，将有 En − En−1 = h̄ω，当量子数 n很大时，可以将这个方程近
似写成

∂En

∂n
= h̄ω. (17)

与前面的 (16)式比较，我们可以知道，当 n很大时，应该有

I = nh̄. (18)

这就是玻尔-索末菲量子化条件。
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能量与力
势能曲线

特别的，我们可以考察所谓的一维线性谐振子，也就是一个弹簧，它
的弹性势能当然是 V (x) = 1

2kx2。引入参数 ω =
√

k/m(ω 的含义马上
会看到)，进而将弹性势能写成

V (x) =
1

2
mω2x2. (19)

从而相空间轨道是一个椭圆，满足方程

p2

2m
+

1

2
mω2x2 = E ⇔ x2

( 2E
mω2 )

+
p2

2mE
= 1. (20)

利用椭圆的面积公式，我们容易得到相空间轨道包围的面积为 2πE/ω，
进而有

2πI = 2πE/ω ⇔ E = Iω. (21)

与前面的 (16)式比较就可以知道，ω 正是这个弹簧振子的角频率。
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能量与力
势能曲线

如果我们将玻尔-索末菲量子化条件代入 (21)式，就可以得到一维线性
谐振子的量子化能级

E = nh̄ω. (22)

谐振子的这一量子化能级最早是普朗克在推导其黑体辐射的普朗克公
式时假设的，就是著名的能量量子化假设，正是这个假设引入了量子
的概念。谐振子能级的第一个完全量子力学的正确推导由海森堡给出，
当时是作为他的矩阵力学的第一个应用。
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无磨损摩擦的一个物理模型

前面说过，能被哈密顿正则方程描述的力学系统称之为哈密顿系统，
它包括几乎所有的基本物理系统。但是，有一些力不属于自然界中的
基本力，这时候相应的力学系统可能就不能用哈密顿正则方程来描述，
比方说，摩擦力就不是基本力，如果我们关心摩擦力的表现，那相应
的方程就不是哈密顿正则方程。

摩擦力不是一种基本力，它只是一种宏观表现，是有其微观机制的。
对于理解摩擦力的微观机制而言，哈密顿系统的势能和势能曲线概念
可能又会很重要。当然，实际中的摩擦力很复杂，机制也很复杂，这里
我们主要讨论无磨损摩擦的一个简化物理模型，即独立振子模型。
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无磨损摩擦的一个物理模型

先简单讨论一下稳定平衡和不稳定平衡的概念。
▶ 首先，粒子在平衡位置受力为零，而力又是势能对空间位置的偏
导，受力为零就意味着这个偏导等于零，这对应于势能函数的极
值位置，所以平衡位置就是势能函数的极值位置。

▶ 稳定平衡位置就是势能函数的极小值位置，这时候你将粒子从平
衡位置偏离一点，它的势能就会升高，所以达成这种偏离需要一
定量的能量输入，无限小的扰动不能使粒子偏离平衡位置，所以
是稳定平衡。

▶ 不稳定平衡则与之相反，是势能函数的极大值位置，因此任意小
的偏离都能使粒子的势能降低，使粒子偏离平衡位置不需要能量
输入，即是说，任意扰动都能使得粒子偏离得越来越远，因此是
不稳定平衡。
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无磨损摩擦的一个物理模型

摩擦力是一种耗散力，它会将机械能耗散为热能，要解释摩擦力的机
制关键就是要解释能量是怎么耗散掉的。
不妨考察 A, B 两块固体，它们沿着一个平整的接触面相对滑动，我们
称这个接触面为界面。所谓的独立振子模型，就是一个关于界面两边
的固体原子结构的模型，如图 (4)所示。

Figure:独立振子模型
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无磨损摩擦的一个物理模型

Figure:独立振子模型

我们假定 B 固体在界面附近是一些独立的原子，它们通过相互独立的
弹簧振子 (可以理解为化学键)连接到 B 的其余部分。而 A固体在界面
附近则是一些固定在固体上的规则排布的原子。现在，假定 B 固体固
定，我们很缓慢地往右边，也就是 x 方向，推动 A固体，使得两者相
对滑动。
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无磨损摩擦的一个物理模型

为了理解这个相对滑动过程，我们将注意力集中在 B 界面上的某个特
定原子 B0，如图 (6)所示。

Figure:独立振子模型
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无磨损摩擦的一个物理模型

▶ B0 受到弹簧的弹力，因此有一个弹性势能 (作为其水平位置 x 的
函数)，我们记为 VBB = 1

2kBBx2。
▶ 但是，B0 和 A界面上规则排布的原子之间有排斥相互作用，相应
的势能我们记为 VAB。显然 VAB 在界面上每一个 A原子位置都有
一个峰值，如图 (6)(a)图中的曲线 VAB 所示。

▶ B0 原子的总势能为这两者的叠加，记为 VS = VBB + VAB，其势能
曲线如图 (6)(a)所示。

▶ 随着固体 A往右边滑动，势能曲线 VS 的形状会连续地变化，如
下图 (7)所示。
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无磨损摩擦的一个物理模型

Figure:独立振子模型

ct |理论力学新讲第 1章



27

无磨损摩擦的一个物理模型

▶ 我们注意到图 (7)(b),(c),(d)中势能曲线 VS 有两个局部极小，B0

原子最初待在右边的那个极小位置。
▶ 但是，从 (b)到 (d),右边这个极小的势能从比左边的极小更小，变
成了比左边的极小更大。即是说，从 (b)到 (d)，VS 的整体最小位
置从右边那个极小处切换到了左边。

▶ 在图 (b)中原子待在整体最小位置，因此它是“稳定”的，但在图
(d)中整体最小切换到了左边，这样待在右边极小位置的原子就没
有那么稳定了。

▶ 这时候，只要稍微再推动一下固体 A(即图中从 (d)到 (e)的过程),
就能使得右边这个极小变平，从而待在右边的 B0 就会自发地掉落
到左边的整体最小中，释放出来的势能将会转化为动能，使得连
接 B0 的弹簧振动起来，这个振动将传向 B 固体的其余部分，最终
变成热能耗散掉。

▶ 以上就是摩擦力耗散能量的一个最简单机制。
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微分形式和外微分
微分形式

微分形式是人们在研究多变量微积分的时候引入的，不妨让我们从两
变量微积分开始。假设有一个二元函数 f (x , y)，我们要研究它的二重
积分

A =

∫ ∫
D

f (x , y)dxdy , (23)

则坐标变换以后积分 A就变成

A =

∫ ∫
f (x , y)| ∂(x , y)

∂(x ′, y ′)
|dx ′dy ′, (24)

式中 | ∂(x,y)
∂(x ′,y ′) | =

∂x
∂x ′

∂y
∂y ′ − ∂x

∂y ′
∂y
∂x ′ 为坐标变换的雅可比行列式。即是说，

坐标变换以后被积函数要多乘上一个雅可比行列式。这一结果的证明
可以参看任何一本多变量微积分的教材。
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微分形式和外微分
微分形式

现在我们引入一种巧妙代数来快速导出以上结果。我们将积分微元
dxdy 重写为 dx ∧ dy，当这样写时我们实际上给 dx , dy 规定了一种巧
妙的代数乘法，乘号写作 ∧，通常称之为外积，称相应的代数为外代
数，这种代数乘法满足

dx ∧ dy = −dy ∧ dx . (25)

即是说，外积不满足乘法交换律，交换以后会多出一个负号，称之为
反交换。由于反交换，我们显然有

dx ∧ dx = −dx ∧ dx = 0, dy ∧ dy = −dy ∧ dy = 0. (26)
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微分形式和外微分
微分形式

有了以上外代数以后，前面二元函数积分的积分微元在坐标变换下就
会有

dx ∧ dy = (
∂x
∂x ′ dx ′ +

∂x
∂y ′ dy ′) ∧ (

∂y
∂x ′ dx ′ +

∂y
∂y ′ dy ′)

=
∂x
∂x ′

∂y
∂y ′ dx ′ ∧ dy ′ +

∂x
∂y ′

∂y
∂x ′ dy ′ ∧ dx ′

= (
∂x
∂x ′

∂y
∂y ′ −

∂x
∂y ′

∂y
∂x ′ )dx ′ ∧ dy ′

= | ∂(x , y)
∂(x ′, y ′)

|dx ′ ∧ dy ′. (27)

很显然，二元函数积分坐标变换多出来的雅可比行列式自动出现了。
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微分形式和外微分
微分形式

以上结果很容易推广到 n元函数积分，这时候同样只要将 n重积分微
元 dx1dx2...dxn 理解为外代数 dx1 ∧ dx2 ∧ ... ∧ dxn,它们满足

dx i ∧ dx j = −dx j ∧ dx i , (28)

则坐标变换下多出来的雅可比行列式就会自动出现。

我们将被积函数 f (x1, x2, ..., xn)和 dx1 ∧ dx2 ∧ ... ∧ dxn 乘在一起称为
一个 n重微分形式，简称 n形式，记为 ω,

ω = f (x1, x2, ..., xn)dx1 ∧ dx2 ∧ ... ∧ dxn. (29)

则 n元函数的 n重积分实际上就是对 n形式 ω 的积分，记为

A =

∫
ω. (30)
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微分形式和外微分
微分形式

对于 n个变量的情形，可以推广 n形式的概念，定义 k -形式 α，即 k
重微分形式 α，0 ≤ k ≤ n,其定义是

α =
1

k !
αi1 i2...ik dx i1 ∧ dx i2 ∧ ... ∧ dx ik . (31)

这里每一个指标的取值都是从 1到 n，而且我们既使用了上指标又使
用了下指标，这里就有一个所谓的求和约定，即默认对一个表达式中
同时作为上指标和下指标出现的那些指标进行求和，从 1求到 n，而
省略掉求和号。

称 (31)式中的 αi1 i2...ik 为 k 形式 α的一个分量。由于外代数的反交换
性质，很显然 (31)式中的 k 个指标 i1, i2, ..., ik 取值必须两两不同，否
则对 α的贡献将为零。特别的，这意味着，n-形式是最高重的非零形
式，任何 k > n的 k 形式都必定为零，因为这时候它的 k 个指标取值
必定会出现重复，不可能两两不同。
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微分形式和外微分
微分形式

以 2-形式为例。这时候 α的表达式是 α = 1
2αijdx i ∧ dx j。如果 αij 的两

个指标对称，即 αij = αji，则我们就有

αijdx i ∧ dx j = αjidx i ∧ dx j = −αjidx j ∧ dx i = −αijdx i ∧ dx j . (32)

即是说，这时候有 α = −α，从而 α = 0。由此可见，对于任何 αij，其
关于 i , j 对称的部分对于 2形式 α的贡献都为零，有贡献的是 i , j 指标
反对称的部分。所以，我们可以自然地要求 αij 关于指标 i , j 反对称，
即满足 αji = −αij。

推广到任意的 k 形式则有，我们可以自然地要求 k 形式的分量 αi1 i2...ik
关于 k 个下指标两两反对称，称之为全反对称。
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微分形式和外微分
微分形式

对于 3维空间这种只有 3个变量的情形。仅有 0,1,2,3四种非零的微分
形式。0形式就是一个 3元的标量函数 f (x , y , z)。由于反对称性，3-形
式只有一个独立的非零分量，即 f (x , y , z)dx ∧ dy ∧ dz，所以，去掉微
元 dx ∧ dy ∧ dz，3-形式其实和 0-形式标量函数是等价的。

3维空间的 1-形式可以写成 a1dx + a2dy + a3dz，其三个分量
(a1,a2,a3)刚好构成一个 3维空间的矢量场，也可以记作 a(x)，所以
3维空间的 1-形式又可以写作

a1dx + a2dy + a3dz = a(x) · dx. (33)

ct |理论力学新讲第 1章



35

微分形式和外微分
微分形式

3维空间的 2-形式可以写成

a =
1

2
aij(x)dx i ∧ dx j = a12dx ∧ dy + a23dy ∧ dz + a31dz ∧ dx . (34)

很显然，它也只有 3个独立的非零分量，假设记 a12 = b3, a23 = b1,
a31 = b2,并定义映射 dx ∧ dy → dz, dy ∧ dz → dx , dz ∧ dx → dy (注
意指标 1, 2, 3以及微分 dx ,dy ,dz 各自的轮换)，则有

a12dx ∧ dy + a23dy ∧ dz + a31dz ∧ dx → b1dx + b2dy + b3dz. (35)

可见，3维空间 2形式和 1形式之间能够建立 1-1对映。

显然，(dy ∧ dz,dz ∧ dx ,dx ∧ dy)完全类似于一个 3维空间的矢量微
元，通常将之定义为面积元矢量 dS, dS = (dy ∧ dz,dz ∧ dx ,dx ∧ dy).
利用面积元矢量，我们就可以将三维空间的 2-形式写成

a =
1

2
aij(x)dx i ∧ dx j = b · dS. (36)
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微分形式和外微分
外微分与斯托克斯公式

对于微分形式，可以定义一种很巧妙的微分运算，称作外微分。以 2
维空间 (以 x , y 为坐标)中的 1形式 a = axdx + ay dy 为例，我们定义
a的外微分 da为

da = dax ∧ dx + day ∧ dy , (37)

很显然这样定义的外微分是微分运算和外代数运算的结合体。

我们来看一下 da等于什么

da = dax ∧ dx + day ∧ dy
= (∂xaxdx + ∂y axdy) ∧ dx + (∂xay dx + ∂y ay dy) ∧ dy
= ∂y axdy ∧ dx + ∂xay dx ∧ dy
= (∂xay − ∂y ax)dx ∧ dy , (38)

式中 ∂i =
∂
∂x i。显然，da只有一个分量，即 (∂xay − ∂y ax)，它刚好是

两维矢量 a的旋度。
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微分形式和外微分
外微分与斯托克斯公式

另一方面，我们知道 2维空间有所谓的格林公式，即∮
∂D

(axdx + ay dy) =
∫

D
(∂xay − ∂y ax)dxdy , (39)

这里 ∂D 前面的 ∂ 符号不是表示偏导，而是表示取 D 的边界。

利用刚才讲的外微分运算，显然可以将格林公式用微分形式重写成∫
∂D

a =

∫
D

da. (40)
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微分形式和外微分
外微分与斯托克斯公式

下面来考察 3维空间 1形式 a = a · dx = axdx + ay dy + azdz 的外微
分 da，其定义同样是

da = dax ∧ dx + day ∧ dy + daz ∧ dz. (41)

经过与两维情形完全类似的计算，我们可以得到

da = (∂xay − ∂y ax)dx ∧ dy + (∂y az − ∂zay )dy ∧ dz + (∂zax − ∂xaz)dz ∧ dx .

这当然是一个 3维空间中的 2形式，而且这个计算结果清楚地告诉我
们，da的 3个独立分量刚好够成矢量 a的旋度 ∇× a。从而我们就能
把刚才对 da的计算结果重写成

da = (∇× a) · dS. (42)

我们看到，外微分自动给出了 3维空间的旋度运算。
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微分形式和外微分
外微分与斯托克斯公式

另一方面，我们知道，3维空间有斯托克斯公式，∮
∂D

a · dx =

∫
D
(∇× a) · dS (43)

式中 ∂D 表示 3维空间的一条闭合回路，D 是以这条回路为边界的一
张曲面。现在，利用刚才从外微分运算中得到的结果，我们就能将这
个公式用微分形式写成 ∫

∂D
a =

∫
D

da. (44)

看，形式上这个式子和 2维格林公式的微分形式完全一样！
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微分形式和外微分
外微分与斯托克斯公式

下面考察 3维空间中 2形式 a = a12dx ∧ dy + a23dy ∧ dz + a31dz ∧ dx
的外微分 da，其定义同样是，

da = da12 ∧ dx ∧ dy + da23 ∧ dy ∧ dz + da31 ∧ dz ∧ dx . (45)

完全类似前面的计算，可以得到

da = (∂3a12 + ∂1a23 + ∂2a31)dx ∧ dy ∧ dz. (46)

利用上一小节的定义 (a23,a31,a12) = (b1,b2,b3) = b,我们可以把这个
结果重写成

da = (∂1b1 + ∂2b2 + ∂3b3)dx ∧ dy ∧ dz = (∇ · b)dx ∧ dy ∧ dz. (47)

很显然这是一个 3-形式。从这里我们也看到，外微分也能给出 3维矢
量的散度。
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微分形式和外微分
外微分与斯托克斯公式

另一方面，我们知道 3维空间有所谓的高斯定理，它告诉我们∮
∂V

b · dS =

∫
V
(∇ · b)dV , (48)

式中 3维体积元 dV = dxdydz，∂V 为 3维空间中的一个闭合曲面，V
为其包围的 3维区域。很明显，利用上面关于 2形式的外微分，以及
上一小节的 (36)式，我们可以用 2-形式 a将高斯定理重写为∫

∂V
a =

∫
V

da. (49)

又一次，我们得到了与 (44)式形式完全类似的公式。
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微分形式和外微分
外微分与斯托克斯公式

实际上，我们完全可以将 (44)式和 (49)式综合写成∫
∂D

α =

∫
D

dα, (50)

式中 α表示 3维空间中的一个 k − 1形式，D 表示 3维空间中一个以
∂D 为边界的 k 维曲面 (因此 ∂D 是 k − 1维的，而 dα则是一个 k -形
式)。k = 2时，它就是斯托克斯公式，k = 3时它就是高斯定理。可见，
利用外微分运算，我们可以将矢量分析中那些著名的公式和定理统一
起来。

ct |理论力学新讲第 1章



43

微分形式和外微分
外微分与斯托克斯公式

不仅如此，我们还可以将上面的结果推广到 n维空间，对于 n维空间
的一个 k − 1形式 α = 1

(k−1)!αi1 i2...ik−1
dx i1 ∧ dx i2 ∧ ... ∧ dx ik−1，我们可

以一般性地定义其外微分 dα为

dα =
1

(k − 1)!
(∂jαi1 i2...ik−1

)dx j ∧ dx i1 ∧ dx i2 ∧ ... ∧ dx ik−1 . (51)

显然，dα是一个 k 形式。可以证明 (请参考相关数学书)，我们将依然
有 (50)式！和前面的唯一区别是，现在，它不再限于 3维空间中了，
因此 k 也不限于小于等于 3了，而是 k ≤ n。正因为如此，人们通常
称 (50)式为广义的斯托克斯公式，或者有时候就简称为斯托克斯公式。
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微分形式和外微分
外微分与斯托克斯公式

外微分有一个非常优雅而重要的性质，即对任何微分形式进行两次外
微分，结果恒等于零，通常将这个结果简写成

d2 = 0. (52)

它的含义就是对于任何 k − 1形式 α,必有

d2α = d(dα) = 0. (53)
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微分形式和外微分
外微分与斯托克斯公式

上述结果的证明非常简单，按照外微分的定义

d2α =
1

(k − 1)!
(∂i∂jαi1 i2...ik−1

)dx i ∧ dx j ∧ dx i1 ∧ dx i2 ∧ ... ∧ dx ik−1 . (54)

显然这是一个 k + 1形式，但是这个 k + 1形式的分量 ∂i∂jαi1 i2...ik−1
关

于 i , j 指标恒对称，而不是反对称，按照我们前面的分析，这就意味着
这个 k + 1形式等于零，从而就完成了证明。
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微分形式和外微分
外微分与斯托克斯公式

下面介绍两个常用概念:
▶ 首先，一个微分形式 α，如果它的外微分等于零，即 dα = 0，我
们就称它为闭形式。

▶ 其次，一个微分形式 α，如果它是另一个微分形式 β 的外微分，
即有 α = dβ，我们就称这样的 α为一个恰当形式。

▶ 根据性质 (52)，很显然，任何恰当形式都必定是闭形式！反过来，
闭形式却不一定是恰当形式，闭形式什么时候是恰当形式什么时
候不是，这往往和空间的拓扑有关系，是所谓的 de Rahm上同调
研究的内容。
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微分形式和外微分
保守力的特性

我们先回顾一下前面给出的保守力的定义∑
i

Fi · dxi = −dV . (55)

为了将这个定义写得更漂亮一点，我们引入指标 µ = 1, 2, 3, ..., 3N，令
它的前 3个分量表示第 1个粒子的三个直角坐标分量，次 3个分量表
示第 2个粒子的三个直角坐标分量，依次类推，直到最后 3个分量代
表第 N 个粒子的三个直角坐标分量。从而可以将上面这个保守力的定
义式重写成

Fµdxµ = −dV (x1, ..., x3N). (56)

当然，在这个式子中我们用了求和约定。
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微分形式和外微分
保守力的特性

我们可以称这样定义出来的 Fµdxµ 为力 1形式，简记为 F ,即
F = Fµdxµ,则上面这个保守力的定义式告诉了我们，保守力 1形式是
一个恰当形式，满足

F = −dV , (57)

势能 V 是一个标量函数，也就是 0形式，也称作势能 0形式。则由恰
当形式必定是闭形式的数学定理，我们立马知道

dF = 0. (58)
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微分形式和外微分
保守力的特性

根据外微分的定义，我们很容易计算 dF (下面的 ∂µ = ∂
∂xµ )，

dF = (∂µFν)dxµ ∧ dxν =
[1
2
(∂µFν − ∂νFµ) +

1

2
(∂µFν + ∂νFµ)

]
dxµ ∧ dxν . (59)

根据微分形式分量表达的指标对称部分没有贡献，我们立马有

dF =
1

2
(∂µFν − ∂νFµ)dxµ ∧ dxν . (60)

因此 dF = 0就等价于

∂µFν − ∂νFµ = 0. (61)

特别的，对于单个质点的情形 (指标只能取 1, 2, 3)，上面这个结果其实
就是力矢量 F的旋度等于零，即

∇× F = 0. (62)
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微分形式和外微分
保守力的特性

另一方面，注意到力 1形式 F 是 3N 维坐标空间的 1形式，我们可以
在 3N 维坐标空间取一条闭合回路 ∂D, ∂D 是 3N 维坐标空间中某个 2
维曲面 D 的边界，则由斯托克斯公式，我们有∫

∂D
F =

∫
D

dF = 0. (63)

即是说，保守力 1形式在坐标空间任何闭合回路上的积分都等于零。

人们通常称力 1形式在某条路径上的积分为功，因此这个结果就相当
于说，保守力在任何闭合回路上所做的功恒为零！

由此容易知道，摩擦力必定不是保守力，因为在摩擦力的作用下将粒
子沿着闭合回路运动一圈，摩擦力是要做非零的负功的，正是这个负
功将机械能耗散为了热量。

ct |理论力学新讲第 1章



Thank You!


	能量与力
	势能与力
	哈密顿正则方程
	势能曲线

	无磨损摩擦的一个物理模型
	微分形式和外微分
	微分形式
	外微分与斯托克斯公式
	保守力的特性


