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Abstract

本文将应用射影几何的初步知识、复平面的莫比乌斯变换、以及

外尔旋量的初步知识，回答高速运动观察者眼中的世界是怎样的这一

问题。本文只要求读者对狭义相对论有初步的了解，其余知识(包括

所需的那些数学知识)本文都会介绍。

[本本本文文文假假假定定定合合合适适适地地地选选选取取取了了了时时时间间间的的的单单单位位位以以以使使使得得得光光光速速速c = 1。。。本本本文文文还还还引引引入入入了了了

求求求和和和约约约定定定，，，即即即当当当一一一个个个表表表达达达式式式中中中某某某个个个上上上指指指标标标和和和某某某个个个下下下指指指标标标相相相同同同时时时，，，即即即默默默认认认

对对对这这这个个个指指指标标标的的的所所所有有有可可可能能能性性性求求求和和和。。。]

对于一个朝前高速运动的观察者而言，一切事物都相对于他高速向后运

动，因此在运动的方向上会发生长度收缩。那高速运动的观察者看到的世

界是被缩扁的吗？

实际问题并没有那么简单，因为观察者实际看到的是飞入眼中的光线，

而不同点发出的光线到达观察者眼中的时间是不同的，因此观察者眼中的

世界并不简单地是洛伦兹收缩后的世界，而是还要考虑到光线飞行时间带

来的延迟。本文就是要回答高速运动观察者眼中的世界实际是怎样的这一

问题。

要研究高速运动观察者眼中的世界，就需要研究飞入观察者眼中的光线

集合，同时也要研究每一条光线在不同的惯性系中如何变换。光线的变换

虽然不同于时空坐标的洛伦兹变换，但却和它密切相关，因此，本文第一

节将从回顾洛伦兹变换和洛伦兹群的必要知识开始，有了这些准备以后，

第二节才开始详细讨论高速运动观察者眼中的世界。

1 洛洛洛伦伦伦兹兹兹群群群

1.1 正正正洛洛洛伦伦伦兹兹兹群群群SO+(1, 3)

四维时空中同一事件在不同的惯性系中有不同的时空坐标，假设有两个

起始时坐标原点完全重合的惯性系S和S ′，设某事件在S系中的时空坐标
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为(t, x, y, z)，在S ′系中的时空坐标为(t′, x′, y′, z′), 则根据狭义相对论有

t2 − x2 − y2 − z2 = t′2 − x′2 − y′2 − z′2. (1)

称作事件与时空原点的间隔不变性，其中s2 = t2 − x2 − y2 − z2称作事件与

时空原点的间隔平方。

人们也常常引入四维时空记号，记x0 = t, x1 = x, x2 = y, x3 = z，从而

将事件的时空坐标记为xµ, µ = 0, 1, 2, 3。进而间隔平方s2可以写成

s2 = ηµνx
µxν , (2)

式中ηµν满足η00 = 1, η11 = η22 = η33 = −1，其它情况都等于零。

S系与S ′系之间的时空坐标变换就称作洛伦兹变换，它是一个线性变

换，

x′µ = Λµ
νx

ν . (3)

间隔不变性意味着洛伦兹变换必须满足

ηµνΛ
µ
ρΛ

ν
σ = ηρσ. (4)

人们可以将ηµν看作某个4 × 4矩阵η的矩阵元形式，将Λµ
ν看作某个4 × 4矩

阵Λ的矩阵元形式，进而就可以将上面的方程写作

ΛTηΛ = η. (5)

式中T表示矩阵转置。因此，洛伦兹变换必定满足(5)式，反过来，满

足(5)式的变换Λ就称作洛伦兹变换。

作为例子，不妨讨论几个具体的洛伦兹变换。容易验证，下面的变换满

足(5)式，从而为洛伦兹变换，

t′ =
t− vz√
1− v2

, z′ =
z − vt√
1− v2

, x′ = x, y′ = y. (6)

这个洛伦兹变换称之为沿着z轴的洛伦兹推动(Boost)。如果令cosh(σ) =

1/
√
1− v2，sinh(σ) = v/

√
1− v2，则这一沿z轴的洛伦兹推动也可以写成

z′ = cosh(σ)z − sinh(σ)t,

t′ = − sinh(σ)z + cosh(σ)t,

x′ = x, y′ = y. (7)
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或者写成

t′ + z′ = e−σ(t+ z), t′ − z′ = eσ(t− z), x′ = x, y′ = y. (8)

式中e−σ = cosh σ − sinhσ =
(
1−v
1+v

) 1
2，参数σ也称为洛伦兹推动的快度。

另外，按照上面的定义，三维空间旋转也是洛伦兹变换，即如下变换是

洛伦兹变换

Λ0
0 = 1, Λ0

i = Λi
0 = 0, Λi

j = Rij, (9)

式中i, j = 1, 2, 3，而3×3矩阵R是特殊正交矩阵，即满足RTR = 1, det(R) =

1。

很容易验证，如果洛伦兹变换Λ1满足(5)式，Λ2也满足(5)式，则Λ1Λ2

必定也满足(5)式，从而也是洛伦兹变换。即是说，所有洛伦兹变换的集合

在矩阵乘法下封闭。另外，对(5)式两边求行列式，并注意到det(η) = −1,

从而即可得

[det(Λ)]2 = 1 ⇒ det(Λ) = ±1. (10)

由此可知矩阵Λ必定存在逆矩阵Λ−1，并且很明显Λ−1也是洛伦兹变换，即

任何洛伦兹变换都有逆变换。满足乘法封闭性，并且存在逆元素的元素集

合就是数学上所谓的群，所以，所有洛伦兹变换的集合构成一个群，称作

洛伦兹群，常常记作O(1, 3)。很明显，所有det(Λ) = 1的洛伦兹变换也构

成一个群，它是O(1, 3)的子群，通常记作SO(1, 3)，实际上，人们在谈到

洛伦兹群的时候更多都是指的这个SO(1, 3)群。

进一步，在(4)式中取ρ = σ = 0, 即可得

(Λ0
0)

2 = 1 +
∑

i=1,2,3

(Λi
0)

2 ≥ 1 ⇒ Λ0
0 ≥ 1 or Λ0

0 ≤ −1. (11)

从而根据det(Λ)的正负以及Λ0
0的正负，我们可以将洛伦兹变换的集合分成

四个子集。其中所谓的正洛伦兹变换要求满足下面条件

det(Λ) = 1, Λ0
0 ≥ 1. (12)

容易验证，正洛伦兹变换的集合也构成一个群，称作正洛伦兹群，它是洛

伦兹群的子群，通常记为SO+(1, 3)。

一般来说，洛伦兹变换依赖于某些连续参数，比如两个参考系的相对

速度以及坐标轴的相对角度等等。最简单的洛伦兹变换就是Λµ
ν = δµν的恒
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等变换，它描写两个始终完全重合的参考系。但是，我们可以设想连续地

改变洛伦兹变换的参数，使得这两个参考系变得不再重合，从而使得恒

等变换变成非平凡的洛伦兹变换。而正洛伦兹变换的集合正是能够由恒

等变换连续地变化过来的所有洛伦兹变换。这是因为，恒等变换显然满

足det(Λ) = 1, Λ0
0 ≥ 1, 而连续的变化不可能使得det(Λ)从+1突变到−1, 也

不可能使得Λ0
0 从≥ 1突变到≤ −1，所以能和恒等变换连续过渡的洛伦兹

变换一定是正洛伦兹变换。而且，这样的连续参数有6个，3个描写空间坐

标的旋转角度，3个是分别沿着x, y, z轴洛伦兹推动(Boosts)的速度。即是

说，正洛伦兹群SO+(1, 3)可以用6个连续参数刻画。

1.2 SO+(1, 3) ≃ SL(2,C)/Z2

我们可以把四维时空坐标(t, x, y, z)安排进一个2 × 2的厄密矩阵X中，X的

定义如下

X =

(
t+ z x− iy

x+ iy t− z

)
. (13)

反过来，任何一个2× 2的厄密矩阵也必定都可以写成这种形式，因此这就

在四维时空坐标和2 × 2厄密矩阵之间建立了一一对映。特别的，我们发

现X的行列式正好是间隔平方，即

det(X) = t2 − x2 − y2 − z2 = s2. (14)

很显然，X在如下变换之下结果依然是2× 2厄密矩阵，

X → X ′ = LXL†, (15)

式中L为任意2× 2复矩阵, 并且我们同样可以将变换后的X ′写成如下形式

X ′ =

(
t′ + z′ x′ − iy′

x′ + iy′ t′ − z′

)
. (16)

从而变换(15)就诱导了一个四维时空坐标的变换(t, x, y, z) → (t′, x′, y′, z′)。

进一步，假设我们要求

det(L) = 1, (17)
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则显然有

det(X ′) = det(L) det(X) det(L)∗ = det(X), (18)

根据(14)式，这正是四维时空的间隔不变性。从而变换(15)所诱导的四维时

空坐标变换必然为洛伦兹变换！

即是说，行列式为1的2 × 2复矩阵L对应一个洛伦兹变换，而且可以证

明是对应正洛伦兹变换。另外，从(15)式也容易看出±L对应同一个正洛伦

兹变换。反过来，任何正洛伦兹变换必然都对应±L这一对行列式为1的复

矩阵。所以，行列式为1的2 × 2复矩阵的集合与正洛伦兹群SO+(1, 3)之间

存在二对一的对应关系。容易证明，行列式为1的2 × 2复矩阵的集合在矩

阵乘法下构成一个群，记作SL(2,C)群。因此即有

SO+(1, 3) ≃ SL(2,C)/Z2, (19)

式中模去Z2代表的就是±L对应的是同一个正洛伦兹变换，通常称SL(2,C)

为SO+(1, 3)的二重覆盖。

我们可以粗略地验证一下上面的(19)式。为此回想前面说过的，SO+(1, 3)

群可以被6个实参数所刻画。那么SL(2,C)能够被多少个参数刻画呢？作

为2 × 2的复矩阵，它有4个复参数(复矩阵元)，但是行列式等于1的条件将

独立复参数的个数减少了1，从而SL(2,C)的独立复参数个数为3，正好相

应于6个实参数。所以SO+(1, 3)和SL(2,C)的参数个数正好对应得上。

特别的，SO+(1, 3)中的所有空间旋转操作构成一个子群，即三维空间

旋转群，记作SO(3)。很明显，空间旋转即是保持时间坐标不变的洛伦兹

变换，因此它对应的L应该满足

X =

(
t 0

0 t

)
→ X ′ =

(
t 0

0 t

)
. (20)

根据(15)式容易看出，这样的L必然满足

LL† = 1. (21)

满足这一要求的2 × 2行列式为1复矩阵就是所谓的特殊幺正矩阵，它也构

成一个群，即SU(2)群，所以我们也有

SO(3) ≃ SU(2)/Z2. (22)

即SU(2)群为空间旋转群SO(3)的二重覆盖。

5



2 高高高速速速运运运动动动观观观察察察者者者眼眼眼中中中的的的世世世界界界是是是怎怎怎样样样的的的？？？

2.1 光光光线线线与与与天天天球球球

本文一开始就说过，决定观察者眼中世界的，是飞入他眼中的光线。因此

要研究高速运动观察者眼中的世界，我们就需要研究光线本身，以及光线

如何在不同惯性系中变换。

假设我们考察一个位于时空原点的静止观察者，以他为参考系建立的时

空坐标为(t, x, y, z)，则飞入观察者眼中的光线显然满足如下方程

t2 − x2 − y2 − z2 = 0. (23)

这个方程描述的是一个位于时空原点的圆锥面，称作这个原点位置观察

者的光锥，如图(1)所示。其中光锥的上半部分(即上半光锥)描述的是从

观察者发出，飞向四周的光线，称作未来光锥，因为这些光线从t = 0飞

向t > 0的未来。而下半光锥则描述的是观察者在t = 0时刻接收到的从过去

飞来的光线，称作过去光锥。很显然，要研究观察者看到的世界，就需要

仔细研究过去光锥上的那些光线。

Figure 1: 时空图上原点处的光锥和原点处静止观察者的天球(celestial

sphere)。

为了将每一条光线本身作为一个基本研究对象，我们注意到满足(23)式

的时空坐标(t, x, y, z)和时空坐标λ(t, x, y, z)(λ > 0)落在同一条光线上，因

此我们可以将这样的[t, x, y, z]看成是光线(而不是时空点)的齐次坐标，所

谓的齐次坐标，即是满足下面等价关系的数组[t, x, y, z]

[t, x, y, z] ∼ λ[t, x, y, z], λ > 0. (24)
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从而，方程(23)就是汇聚于原点的光线的齐次方程。齐次坐标和齐次方程

是从射影几何中借用来的概念，它们描述的是光线本身，而不是光线上的

某一个时空点。

由于等价关系(24)，我们显然可以将过去光锥上的光线投影到t = −1的

超平面上，这时候齐次方程(23)就变成，

x2 + y2 + z2 = 1, (25)

它描写的是三维空间中的一个两维球面S2，如图(1)中那个红色的圆圈所

示。过去光锥上的每一条光线都投影为这个两维球面上的一个点，因此这

些点可以看成是刻画光线的某种坐标。这个两维球面就是原点处静止观察

者的天球(celestial sphere)，原点处这个观察者所看到的一切画面都可以投

影到天球上。

现在，假设另外再考察一个同样位于时空原点处但是高速运动的观

察者。以他为参考系建立的时空坐标记作(t′, x′, y′, z′), 很显然，x′µ和之前

的xµ之间相差一个洛伦兹变换。则原来的光线[t, x, y, z]在洛伦兹变换以后

新的齐次坐标就是[t′, x′, y′, z′], 变换以后光线新的齐次方程就是

t′2 − x′2 − y′2 − z′2 = 0. (26)

同样，我们可以把过去光锥上的光线投影到新的t′ = −1超平面上，得到一

个新的天球，

x′2 + y′2 + z′2 = 1, (27)

如图(2)所示，这就是原点处高速运动观察者的天球。过去光锥上同一条光

线在这两个不同观察者各自天球上的投影就定义了一个S2 → S2的映射。

正是这个S2 → S2的映射将两个不同观察者眼中的画面联系了起来！

值得说明的是，上面两个天球都是三维空间包围原点的两维球面，不同

的是，它们分别是两个不同观察者看到的两维球面。两个观察者都会把各

自眼中的世界投影到各自的天球上，我们要研究的就是同一条光线在这两

个天球上的坐标的变换关系。下面两个小节主要讲的就是一种导出这一变

换关系的优雅方法。

2.2 天天天球球球的的的球球球极极极投投投影影影

为了下面两小节的方便，我们重新约定四维时空坐标与2× 2厄密矩阵之间
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Figure 2: 原点处运动观察者的天球。

的对应关系如下

X =

(
−t+ z x+ iy

x− iy −t− z

)
. (28)

这种重新约定并非实质性的，它只是为了使得下面两小节的一些公式更靠

近人们熟知的形式，它也不会改变前面的任何分析结果。

很显然，光线的齐次方程(23)就相当于

det(X) = 0. (29)

并且，对于过去光锥上的光线，相比于把它们投影到天球上，我们也可以

取如下复坐标w，

w =
x+ iy

−t− z
=

−t+ z

x− iy
. (30)

即是说，复坐标w等于矩阵X第二列的两个矩阵元之比，同时由于det(X) =

0，w也等于矩阵X第一列的两个矩阵元之比。这种复坐标的好处是，它

在等价关系(24)的作用下保持不变，即天然就有每一条光线对应一个复坐

标w。

为了看清楚光线在天球上的坐标和复坐标w的关系，我们在(30)式中

取t = −1，即有

w =
x+ iy

1− z
=

1 + z

x− iy
. (31)

这正是天球到复w平面的球极投影，如图(3)所示。
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Figure 3: 天球到复w平面的球极投影。图中标的z平面有点错，应该是w平

面。

完全类似的，我们也可以在运动观察者的参考系中引入光线的复坐标，

记作w′, w′ = x′+iy′

−t′−z′
= −t′+z′

x′−iy′
。相应的，它也是运动观察者的天球到复w′平

面的球极投影。

很明显，在球极投影的帮助下，要弄清楚光线的天球坐标如何随不同惯

性系变换，我们只需弄清楚光线的复坐标之间如何变换，即w → w′的变换

关系是什么。下面一小节就是要优雅地解决这个问题。

2.3 外外外尔尔尔旋旋旋量量量

根据本文前一节关于洛伦兹群的讨论可知，时空坐标的洛伦兹变换完全可

以由厄密矩阵X(28)的如下变换诱导出来，

X → X ′ = LXL†, (32)

式中L ∈ SL(2,C)为一个行列式等于1的2 × 2复矩阵。举例来说，当矩

阵L为如下形式时

L =

(
eσ/2 0

0 e−σ/2

)
, (33)

相应的洛伦兹变换为沿z轴的洛伦兹推动，即有

t′ + z′ = e−σ(t+ z), t′ − z′ = eσ(t− z), x′ + iy′ = x+ iy. (34)

现在，对于过去光锥上的光线来说，它满足齐次方程det(X) = 0，而

且由于在过去光锥上t < 0, 所以很显然Tr(X) = −2t > 0。满足det(X) =
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0，Tr(X) > 0的2 × 2厄密矩阵必定有一个本征值为零，另一个本征值大于

零，记这个正本征值的本征矢量为ϕ = ( ϕ1

ϕ2
), 则必定可以将这样的厄密矩阵

分解成

X = ϕϕ† =

(
|ϕ1|2 ϕ1ϕ

∗
2

ϕ2ϕ
∗
1 |ϕ2|2

)
. (35)

读者很容易验证它满足det(X) = 0，Tr(X) > 0。

由于光线的复坐标w等于矩阵X第二列的两个矩阵元之比，所以利用上

面的分解就有

w =
ϕ1

ϕ2

. (36)

因此要弄清楚w如何随不同的惯性系而变换，就只需弄清楚本征矢量ϕ如何

随不同的惯性系变换。

为此我们对洛伦兹变换以后的矩阵X ′进行同样的操作，即将它分解

成X ′ = ϕ′ϕ′†。由于X ′ = LXL†，所以即有

ϕ′ϕ′† = Lϕϕ†L†, (37)

很显然，最简单地满足这个式子的办法就是取

ϕ′ = Lϕ. (38)

这就是ϕ在不同惯性系中的变换关系，其中L ∈ SL(2,C)。满足这种变换关

系的两分量列矢量又称作外尔旋量！

我们可以将矩阵L明确地写出来

L =

(
a b

c d

)
, ad− bc = 1. (39)

式中a, b, c, d均为复数。则上面的变换关系(38)就可以写成(
ϕ1

ϕ2

)
→

(
ϕ′
1

ϕ′
2

)
=

(
a b

c d

)(
ϕ1

ϕ2

)
. (40)

从而容易推导出光线复坐标的变换关系为

w → w′ =
aw + b

cw + d
, ad− bc = 1. (41)
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这正是复平面上的莫比乌斯变换。复平面上所有莫比乌斯变换所构成的群

正是SL(2,C)/Z2群，它正好一一对映于正洛伦兹群SO+(1, 3)。

不妨举一个例子，比方说，对于沿着z轴的洛伦兹推动，它对应

的SL(2,C)变换由(33)式给出，从而相应的光线复坐标变换为

w → w′ = eσw. (42)

现在，我们很容易求出光线在天球上的坐标如何随不同观察者变化了，

只需三步就能求出这个变换关系：第一步，将天球球极投影到复平面上；

第二步，根据洛伦兹变换所对应的SL(2,C)变换，对复平面进行一个莫比

乌斯变换；第三步，将莫比乌斯变换以后的复平面通过逆球极投影再次对

应到天球上。三步联合起来就得到了不同观察者天球间的变换S2 → S2。

2.4 物物物理理理讨讨讨论论论

通过本节前面的三个小节，我们实际上已经解决本文所提出的问题了，最

后这个小节我们进行一些物理讨论。

首先，我们知道球极投影是一种保角变换，而且保圆。所谓保圆指的

是，球极投影将球面上的圆周投影到复平面上的圆周或直线(直线可以看成

半径无穷大的圆)。其次，我们也知道复平面上的莫比乌斯变换也是一种保

角变换，而且同样保圆。

因此根据上一小节最后所说的三个步骤可以知道，不同观察者天球间的

变换必定是一种保角变换，而且保圆，即一个观察者天球上的圆周在另一

个观察者的天球上依然为圆周(虽然圆周的视觉大小可能会发生变化)。

作为一个应用，假设我们考察时空原点处的两个观察者，一个静止观

察者，一个高速运动的观察者，他们同时观察一个静止的球体。对于静止

观察者来说，这个球体的视觉效果就是他天球上的一个圆盘。根据上面的

结论，对于高速运动的观察者来说，球体看起来同样是其天球上的一个圆

盘(虽然圆盘在天球上的位置和视觉大小一般来说都会变化), 而不是像人们

预期的那样洛伦兹收缩为一个椭圆！这个结果是Terrell和Penrose在爱因斯

坦发表狭义相对论50年以后才独立意识到的！进一步，假设人们在球体的

表面上画一个图案，那第二个观察者看到的图案将是第一个观察者所见图

案的某种形变，具体来说，是一种保角的形变！
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