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第二章 相对性原理与场论

陈陈陈童童童

上一章说过，我们主要考察满足狭义相对论的经典场论。本章就从相

对论的基本原理出发，考察狭义相对论将给经典场论施加什么限制。

在本章中，对于一个带指标的量，将使用上、下两种指标，并且两者

通常是有区别的。我们引入一个所谓的求求求和和和约约约定定定，即当一个表达式中某个

上指标和某个下指标符号相同时，就默认对这个指标的所有可能性进行求

和。

2.1 相对性原理

2.1.1 信息传播的最大速度

伽利略最早论述了相对性原理，它说的是，在所有惯性系中力学规律

都是一样的。力学规律当然也要包括物体之间相互作用的规律，但是在伽

利略和牛顿时代建立的理论中，两个物体之间的相互作用是瞬时进行的，

比如牛顿的万有引力定律就是这样，这就是所谓的超距相互作用。正如牛

顿已经注意到的，这肯定是有问题的，一个物体要和另一个物体相互作用，

也就是要对另一个物体施加影响，这种影响不可能即时，而必定有一个时

间的延迟，但是伽利略的力学相对性原理没有考虑到这一点。

爱因斯坦将相对性原理进行了推广，爱因斯坦提出，在所有惯性系中，

一切物理规律――包括相互作用的传播规律――都是相同的。特别的，爱因
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第二章 相对性原理与场论 3

斯坦提出，相互作用的传播速度不是无穷大，而是有限的。这个相互作用

传播速度有限的相对性原理就是爱因斯坦的相对性原理，今天谈相对性原

理时都默认指的是这条原理。

的确，按照今天对经典物理的理解，一个物体要对另一个物体施加作

用，就要向它发出一个信号，而受作用的物体只是对这个信号进行响应，

在场论中，这个传播相互作用的信号就是场的波动。总之，物体间的相互

作用需要信息的传递，但是信息传递的速度不可能像超距作用说的那样是

无穷大，而必定是有限的。不妨记信息传播的最大速度为c(当然，正如后

面的章节中将会证明的，c就是真空中的光速)，按照相对性原理，c必定不

依赖于所选的惯性系，而是一个不变的常数，因因因此此此我我我们们们当当当然然然可可可以以以合合合适适适地地地选选选

择择择时时时间间间的的的单单单位位位，，，使使使得得得c = 1。

同时的相对性

信息传播的最大速度是常数的一个立即推论即是，两个不同地点的事

件是否同时发生是依赖于参考系的，在一个惯性系中同时发生的两件事，

在另一个惯性系中往往不同时，这就是同时的相对性。同时的相对性意味

着，在狭义相对论中，时间不是绝对的，不同的惯性系将有不同的时间！

为了理解同时的相对性，让我们考虑两个惯性系，分别称为S系

和S ′系，假设S ′沿着S的x轴正方向匀速运动。设想在S系的x轴上两个不

同点A和B(假设xA < xB) 同时发生了两个事件，并且在事件发生的同时，

A、B两地分别向着AB的中点以最大传播速度c发出一个信号，很显然，

在S系位于AB中点的观察者看来，这两束信号将同时到达。并且正是根据

这两者的同时到达，这个观察者才可以推断A、B两点的事件是同时发生

的。现在假设在S ′系的AB中点也有一个观察者，同样的道理，这个观察者

对A、B两地的事件是否同时发生的判断也是依据他是否同时接收到事件发

生时发出的那两个信号。

那么S ′系的这个观察者是否会同时接收到那两个信号呢？根据c的不变

性，答案将是否定的，实际上这个观察者将先接收到B地发出的信号。这

是因为，根据最大信息传播速度的不变性，A、B两地发出的信号在S ′的

观察者看来依然以同样的速度c传播，但是，现在这两个信号将要到达的

目的地–也就是AB在S ′系中的中点–在朝着B地发出的信号运动(同时也在

背着A地发出的信号运动)，因此S ′系位于中点的这个观察者无疑会先接收

到B地发出的信号。因此，在S ′系的这个观察者就会进而得出结论，即A、
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B两地的这两个事件不是同时发生的，而是B点的事件先发生，A点的事件

后发生，因此同时是相对的。请千万要记住，在整个分析过程中，你心中

绝对不能预设A、B两地的信号在S ′系中也是同时发出的。

2.1.2 间隔不变性

依然考察S系和S ′系这两个惯性系，假定同一事件在这两个参考系中

的时空坐标分别是(t, x, y, z)和(t′, x′, y′.z′)。则，由于时空的均匀性，这两

个参考系之间的坐标变换一定是一个线线线性性性变变变换换换。

现在，设想在S系中，从(t, x, y, z)点发出一束光到达(t+ dt, x+ dx, y +

dy, z + dz)点，由于c = 1，显然我们有

−dt2 + dx2 + dy2 + dz2 = 0. (2.1)

根据c的不变性，同样的两个事件在S ′系看来也得满足

−dt′2 + dx′2 + dy′2 + dz′2 = 0. (2.2)

换言之，两个邻近事件在两不同参考系中的时空坐标必得满足一个约束关

系，即当(2.1)成立时必有(2.2)成立，反之亦然。又由于两参考系之间的坐

标变换是线性变换，因此，对任意的两个邻近事件，我们必有

−dt′2 + dx′2 + dy′2 + dz′2 = D(v)(−dt2 + dx2 + dy2 + dz2), (2.3)

式中v是S ′系相对于S系的速度。同样的，由于S与S ′地位平等，如果从S ′变

换到S，就有

−dt2 + dx2 + dy2 + dz2 = D(−v)(−dt′2 + dx′2 + dy′2 + dz′2). (2.4)

换言之，我们必有D(−v)D(v) = 1。又由于空间的各向同性可知，D对

相对速度v的依赖只能是依赖于其大小v，而必定和其方向无关，因此

我们必定有D(−v) = D(v) = D(v)。因此，D(−v)D(v) = (D(v))2 = 1，

即D(v) = ±1。又由于D(v)是v的连续函数，而且D(0) = 1(对应S和S ′为同

一个参考系的情形)，因此必有D(v) = 1。因此，对于任意两个邻近事件我

们必有

−dt′2 + dx′2 + dy′2 + dz′2 = −dt2 + dx2 + dy2 + dz2. (2.5)
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通常将−dt2+ dx2+ dy2+ dz2称为两个邻近事件的时空间隔的平方，简

称间隔平方，并记为ds2，即

ds2 = −dt2 + dx2 + dy2 + dz2 = −dt2 + dx2. (2.6)

用这个记号，方程(2.5)就可以简记成

ds′2 = ds2, (2.7)

称为两个事件的间隔不变性。

人们通常约定t = ct = x0, x = x1, y = x2, z = x3，这样就把四个时空坐

标统一地记成了xµ, µ = 0, 1, 2, 3。利用这个记号，我们就可以将间隔的计

算公式重写为

ds2 = ηµνdx
µdxν , (2.8)

式中我们默认了求和约定(后文也都默认求和约定)，而ηµν为，−η00 =

η11 = η22 = η33 = 1, 其它指标分量都等于零。ηµν称为四维闵可夫斯基时空

的度规张量，所谓的闵可夫斯基时空指的就是狭义相对论中的平直时空。

值得注意的是，ηµν关于它的两个指标是对称的，即满足ηµν = ηνµ。

我们可以将ηµν看成是一个4 × 4矩阵的分量形式(记这个矩阵为η)，进

而引入这个矩阵的逆矩阵η−1，其分量形式记为ηµν，

ηαβη
βγ = δγα, (2.9)

式中δγα为4 × 4单位矩阵的分量形式。很容易看出，ηµν也为，−η00 = η11 =

η22 = η33 = 1, 其它指标分量都等于零。

假设我们考察的不是两个邻近时空点，而是两个有限间隔的时空

点xµ
1和xµ

2 , 记∆xµ = xµ
2 − xµ

1，记这两个事件的时空间隔为∆s，则有

(∆s)2 = ηµν∆xµ∆xν = −(∆t)2 + (∆x)2. (2.10)

同样，无论在哪个参考系中计算，间隔∆s都是不变的。1. 如果(∆s)2 <

0, 我们就称xµ
1和xµ

2这两个事件类类类时时时相相相间间间(timelike separated)。由于这时

候(∆x
∆t

)2 < 1，所以我们总可以用信号将这两个事件联系起来，所以这两个

事件就存在因果关系，而且正如马上就会看到的，在不同的惯性系中，事

件的因果关系将会保持不变，先发生的事件在任何惯性系中都会先发生。

2. 如果(∆s)2 = 0, 我们就称这两个事件类类类光光光相相相间间间(lightlike separated)。这
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时候可以用光信号将两个事件联系起来。3. 如果(∆s)2 > 0, 我们就称这

两个事件类类类空空空相相相间间间(spacelike separated)。这时候两事件没有任何因果关系，

不可能用任何信号将它们联系起来，同时它们的先后顺序也是相对的，在

不同参考系中对哪个事件先发生会有不同的看法。

为了将上述两事件间的关系看得更清楚，我们取其中一个事件为xµ
1 =

0, 即位于时空图的坐标原点，另一个事件xµ
2 = xµ，记事件xµ与原点事件的

间隔为s，则

s2 = −t2 + x2. (2.11)

对于s2 = 0的类光相间情形，方程−t2 + x2 = 0给出的是时空图上以原点为

顶点的圆锥面，称之为光锥(lightcone), 如图(2.1)所示。 对于s2 < 0情形，

图 2.1: 时空图上原点处的光锥。

这时候方程t2 − x2 = −s2 > 0给出的是具有两支的双曲面，一支位于上半

光锥所包围的内部区域，一支位于下半光锥所包围的内部区域，由于不同

惯性系中t2 − x2 = −s2保持不变，因此在不同惯性系中事件2的坐标xµ只能

在这个双曲面上变动。不过由于双曲面被光锥分隔成了两支，所以在不同

惯性系中上半支的点只能在上半支上变动，即恒有t > 0，而下半支的点则

恒有t < 0, 即是说，处于原点未来的事件在任何惯性系中都保持在未来，

而处于原点过去的事件在任何惯性系中都在过去，即，不同参考系不会改

变事件间的因果关系。要让双曲面上半支的点变到下半支只能是经过一

个t → −t的时间反演。最后，对于s2 > 0情形, 方程x2 − t2 = s2 > 0给出的

是一个连通的双曲面，原则上，这个双曲面上的任何点可以在一个合适的

参考系中变到双曲面上的任何其它点，特别的，t > 0的点可以变到t < 0，

反之亦然。即是说，与原点类空相间的事件是先于原点发生还是后发生并

没有绝对的意义！
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固有时

假如原来有一个参考系，有一个粒子从参考系的(t, x, y, z)点运动到(t+

dt, x + dx, y + dy, z + dz)点，这两点(它们当然类时相间)间的间隔当然满

足ds2 = ηµνdx
µdxν。现在，假设有一个钟固定在这个粒子上，记此钟走过

的时间为dτ，并且我们依托这个钟建立一个固定在粒子上的参考系，那么

在这个参考系中，粒子的空间位移当然是零，从而从这个固定在粒子的参

考系看来，间隔ds应该满足，ds2 = −dτ 2，即

ηµνdx
µdxν = −dτ 2. (2.12)

上式中的τ就称之为粒子走过的固有时，而x0 = t则称之为坐标时。很显然，

固有时就是固连在粒子上的钟所走过的时间。

假设粒子的速度为v，即dx = vdt，则根据(2.12)式即有

dτ 2 = dt2 − dx2 = dt2(1− v2) ⇒ dt =
dτ√
1− v2

. (2.13)

即是说，坐标时总是比固有时长的。测固有时的钟当然是相对于原参考系

运动的钟，所以这个结果常常也被人们说成是，运动的钟会变慢，因为对

同一个参考系中的过程，它测出来的时间更短。

但是，这并非运动的钟本身有什么问题，而是从原参考系的静止观察

者来看，运动的一切事物都变慢了，运动的人的生命过程也变慢了。不过，

从运动的人自己来看，他自己的一切都是正常的，在他看来，反而是原参

考系中的观察者在运动(运动是相对的)，反而是这观察者的生命过程变慢

了。

那么假设有两只钟，一只是静止的，另一只沿着闭合路径运动一圈再

回到起点与静止的钟比较，那到底哪只钟慢了呢？回答是，运动的钟绝对

地慢了。但是运动不是相对的吗？从运动钟来看，不是静止的钟在运动

吗？但是，从这以运动的钟为参考系的后一种观点导不出静止的钟变慢的

结论，因为这时候这个参考系不是一个惯性系，这是由于这个运动的钟是

沿着闭合路径运动一圈而不是作匀速直线运动。

2.1.3 洛伦兹变换

狭义相对论中，两个参考系之间的时空坐标变换称作洛伦兹变换，根

据前面所说，它是一个保持间隔不变性的线性变换，通常写成

x′µ = Λµ
νx

ν , (2.14)
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式中Λµ
ν 构成变换矩阵Λ的分量形式。根据间隔不变性，我们有

ηµνdx
′µdx′ν = ηµνΛ

µ
αΛ

ν
βdx

αdxβ = ηαβdx
αdxβ, (2.15)

从而即有

ηµνΛ
µ
αΛ

ν
β = ηαβ. (2.16)

更一般地，人们也把任何满足上式的时空坐标变换Λµ
ν称作洛伦兹变换，哪

怕它不是源于不同惯性系之间的变换。

我们当然可以将(2.16)式写成矩阵形式，即

ΛTηΛ = η. (2.17)

很容易验证，如果洛伦兹变换Λ1满足上面式子，Λ2也满足上面式子，

则Λ1Λ2必定也满足上面式子，从而也是洛伦兹变换。即是说，所有洛

伦兹变换的集合在矩阵乘法下封闭。另外，对(2.17)式两边求行列式，并注

意到det(η) = −1, 从而即可得

[det(Λ)]2 = 1 ⇒ det(Λ) = ±1. (2.18)

由此可知矩阵Λ必定存在逆矩阵Λ−1，并且很明显Λ−1也是洛伦兹变换，即

任何洛伦兹变换都有逆变换。满足乘法封闭性，并且存在逆元素的元素集

合就是数学上所谓的群，所以，所有洛伦兹变换的集合构成一个群，称作

洛伦兹群，常常记作O(1, 3)。很明显，所有det(Λ) = 1的洛伦兹变换也构成

一个群，它是O(1, 3)的子群，通常记作SO(1, 3)，实际上，人们在谈到洛伦

兹群的时候更多都是指的这个SO(1, 3)群。

进一步，在(2.16)式中取α = β = 0, 即可得

(Λ0
0)

2 = 1 +
∑

i=1,2,3

(Λi
0)

2 ≥ 1 ⇒ Λ0
0 ≥ 1 or Λ0

0 ≤ −1. (2.19)

从而根据det(Λ)的正负以及Λ0
0的正负，我们可以将洛伦兹变换的集合分成

四个子集。其中所谓的正洛伦兹变换要求满足下面条件

det(Λ) = 1, Λ0
0 ≥ 1. (2.20)

容易验证，正洛伦兹变换的集合也构成一个群，称作正洛伦兹群，它是洛

伦兹群的子群，通常记为SO+(1, 3)。
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一般来说，洛伦兹变换依赖于某些连续参数，比如两个参考系的相对

速度以及坐标轴的相对角度等等。最简单的洛伦兹变换就是Λµ
ν = δµν的恒

等变换，它描写两个始终完全重合的参考系。但是，我们可以设想连续地

改变洛伦兹变换的参数，使得这两个参考系变得不再重合，从而使得恒

等变换变成非平凡的洛伦兹变换。而正洛伦兹变换的集合正是能够由恒

等变换连续地变化过来的所有洛伦兹变换。这是因为，恒等变换显然满

足det(Λ) = 1, Λ0
0 ≥ 1, 而连续的变化不可能使得det(Λ)从+1突变到−1, 也

不可能使得Λ0
0 从≥ 1突变到≤ −1，所以能和恒等变换连续过渡的洛伦兹变

换一定是正洛伦兹变换。

另外，按照洛伦兹变换的一般定义，t′ = −t, x′ = x的时间反演

变换显然也是一种洛伦兹变换，它的变换矩阵Λ显然满足，Λ0
0 = −1,

det(Λ) = −1。因此，在任何正洛伦兹变换的基础上再进行一个时间反

演变换，得到的就是det(Λ) = −1, Λ0
0 ≤ −1的洛伦兹变换。类似的，空

间反演变换t′ = t,x′ = −x也是洛伦兹变换，它的变换矩阵满足Λ0
0 = 1,

det(Λ) = −1，因此，在正洛伦兹变换的基础上再进行一个空间反演变换，

得到的就是det(Λ) = −1, Λ0
0 ≥ 1的洛伦兹变换。而在正洛伦兹变换的基础

上再同时进行时间和空间的反演，得到的就是det(Λ) = 1, Λ0
0 ≤ −1的洛伦

兹变换。

正洛伦兹变换的一个例子就是三维空间旋转，即如下洛伦兹变换

Λ0
0 = 1, Λ0

i = Λi
0 = 0, Λi

j = Rij, (2.21)

式中i, j = 1, 2, 3，而3×3矩阵R是特殊正交矩阵，即满足RTR = 1, det(R) =

1。不过，通常我们谈到洛伦兹变换的时候不是指这种旋转变换，虽然它的

确很重要。

一些重要的洛伦兹变换

下面我们来构造一个最为通常而重要的洛伦兹变换。为此，让我们考

虑一种特殊情况，假如S ′系沿着S系的x轴正方向以匀速v运动。假设我们

这么选取S ′的坐标轴，以使得初始时两个坐标系的坐标轴完全重合。这样

一来，由于两坐标系的相对运动只发生在x方向上，与y, z方向无关，所以

显然有y′ = y, z′ = z。因此，我们只需要考虑事件的t坐标和x坐标在参考系

变换下如何变换，为此不妨暂时忽略间隔公式(2.6)中的y, z坐标，进而将间

隔公式简化为

ds2 = −dt2 + dx2 = dx+dx−, (2.22)
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式中x+ = x + t, x− = x − t。间隔不变性告诉我们，参考系变换以后

的x′+ = x′ + t′, x′− = x′ − t′必然满足dx′+dx′− = dx+dx−。显然这就意味着

必定有某个参数ω使得x′+ = e−ωx+, x′− = eωx−, 即有

x′ = cosh(ω)x− sinh(ω)t, (2.23)

t′ = − sinh(ω)x+ cosh(ω)t. (2.24)

考虑S ′系的坐标原点x′ = 0，它在S中的运动速度为v, 因此我们

有tanh(ω) = v，利用双曲函数的相关公式，容易得到cosh(ω) = 1/
√
1− v2，

sinh(ω) = v/
√
1− v2, 也即是说，x, t坐标的变换公式为

t′ =
t− vx√
1− v2

,

x′ =
x− vt√
1− v2

, (2.25)

再加上前面的y′ = y, z′ = z，这四个式子就是最常用的一组洛伦兹变换。而

且，反过来，S系也在以−v的速度相对S ′系运动，所以必定有

t =
t′ + vx′
√
1− v2

,

x =
x′ + vt′√
1− v2

. (2.26)

另外，也容易得到e−ω = coshω − sinhω =
(
1−v
1+v

) 1
2 , 从而即有

x′ + t′ =
(1− v

1 + v

) 1
2 (x+ t), x′ − t′ =

(1 + v

1− v

) 1
2 (x− t). (2.27)

如果先将S系变换到以速度v1沿着x轴运动的S ′系，从而即有x′ + t′ =(
1−v1
1+v1

) 1
2 (x+ t)，接着再变换到以速度v2相对S ′系沿x运动的S ′′系，即有x′′ +

t′′ =
(
1−v2
1+v2

) 1
2 (x′+t′)。则S ′′系相对S系的变换将是，x′′+t′′ =

(
1−v
1+v

) 1
2 (x+t) =(

1−v2
1+v2

) 1
2
(
1−v1
1+v1

) 1
2 (x+ t)，式中v为S ′′系相对于S系的速度。从而即有，(1− v

1 + v

) 1
2 =

(1− v1
1 + v1

) 1
2 ·

(1− v2
1 + v2

) 1
2 . (2.28)

很明显，只要v1 < 1, v2 < 1，则上面等式右边就是两个正实数的乘积，因

此结果也必定是正实数，从而必有v < 1，即是说，我们不可能通过多次洛

伦兹变换使得相对运动速度大于光速。另外，从(2.28)式也容易得到

1− v

1 + v
=

1− v1 − v2 + v1v2
1 + v1 + v2 + v1v2

. (2.29)
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也即有

v =
v1 + v2
1 + v1v2

, (2.30)

这就是相对论的速度合成公式。

下面，我们对(2.25)式给出的洛伦兹变换进行一个推广。依然考虑两个

参考系S与S ′之间的变换，同样假设初始时这两个参考系的坐标轴完全重

合。不过，现在S ′系相对于S系以任意方向的速度v运动。以v = |v|表示速
度的大小，以vi, i = 1, 2, 3表示速度v的各分量。为了利用(2.25)式，我们将

坐标矢量x正交分解成平行于速度v的x∥和垂直于速度v的x⊥两部分，它们

满足

x∥ =
v(v · x)

v2
, x⊥ = x− x∥. (2.31)

则根据(2.25)式，容易写出下面洛伦兹变换关系

t′ =
t− v · x√
1− v2

,

x′
∥ =

x∥ − vt√
1− v2

,

x′
⊥ = x⊥. (2.32)

由此即可以得到，

x′ = x′
⊥ + x′

∥ = (x− x∥) +
x∥ − vt√
1− v2

= x+ (
1√

1− v2
− 1)

v(v · x)
v2

− v√
1− v2

t. (2.33)

将以上结果用洛伦兹变换矩阵Λµ
ν写出来即是，

Λ0
0 =

1√
1− v2

Λ0
i = − vi√

1− v2
= Λi

0

Λi
j = δij +

( 1√
1− v2

− 1
)vivj
v2

. (2.34)

很显然，当速度v → 0时，这种洛伦兹变换就退化为恒等变换，所以它可

以与恒等变换连续过渡，从而必定是正洛伦兹变换。实际上，任何正洛伦

兹变换都可以表示成以上洛伦兹变换和空间旋转变换R的乘积。
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利用上面的洛伦兹变换，我们可以计算一下两个事件在不同参考系中

的时间差，即有

∆t′ =
∆t− v|∆x∥|√

1− v2
= ∆t

(1− v
|∆x∥|
∆t√

1− v2

)
. (2.35)

如果两事件类时相间，则有|∆x∥| ≤ |∆x| < |∆t|, 即 |∆x∥|
|∆t| < 1, 从而

1− v
|∆x∥|
∆t

≥ 1− v
|∆x∥|
|∆t|

≥ 1−
|∆x∥|
|∆t|

> 0. (2.36)

从而，对于这种类时相间的情况，(2.35)式子左边∆t′的正负符号与右

边∆t的正负符号相同，即是说，这时候洛伦兹变换不会改变事件的先

后顺序，也就是会保持事件之间的因果关系！这个结论当然是我们已经知

道了的。并且，从上面的讨论也可以看出，如果两事件类空相间，那它们

之间的先后顺序就是相对的，在不同的参考系看来可能有不同的结论。

2.2 四维时空的矢量和张量

2.2.1 四维矢量和张量

上一节说过，在不同的参考系中，时空坐标按照下面的洛伦兹变换而

变换，

dx′µ = Λµ
νdx

ν , (2.37)

式中变换矩阵Λ满足

ΛTηΛ = η ⇔ Λ−1 = η−1ΛTη. (2.38)

类比于四分量的dxµ，假设一个任意的四分量量Aµ = (A0,A)在参考系

的变换下与dxµ的变换规则相同，即满足

A′µ = Λµ
νA

ν , (2.39)

则我们称Aµ为一个四维时空的矢量，简称四矢量，当然严格来讲Aµ是四矢

量的分量形式。与时空间隔类似，我们可以定义四矢量的平方A2为

A2 = ηµνA
µAν = −(A0)2 +A2 = −(A0)2 + (A1)2 + (A2)2 + (A3)2. (2.40)
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很明显，A2在洛伦兹变换下是不变的。

我们也可以定义下指标的四分量量Aµ为，

Aµ = ηµνA
ν , (2.41)

写得更清楚一点就是

Aµ = (A0, A1, A2, A3) = (−A0, A1, A2, A3) = (A0,A). (2.42)

则A2就可以写成A2 = AµA
µ，而A2在洛伦兹变换下的不变性则意味着

A′
µA

′µ = AµA
µ. (2.43)

注意到Aµ在洛伦兹变换下按照(2.39)式变换，因此上式就意味着Aµ必然按

照下式变换

A′
µ = (Λ−1)νµAν . (2.44)

在洛伦兹变换下按照这样变换的量同样叫做四矢量。不过为了区分上指标

的四矢量和下指标的四矢量，有时候人们称Aµ为四矢量的逆变分量，而

称Aµ为四矢量的协变分量。利用ηµν我们可以把上指标降下来，进而将逆变

分量转化为协变分量，反过来，我们也可以利用ηµν将下指标升上去，即

Aµ = ηµνAν . (2.45)

假设记∂µ = ∂
∂xµ，则不难明白全微分d = dxµ∂µ是不依赖于坐标系的，

由此即可以看出，偏导运算∂µ在洛伦兹变换下和协变四矢量的变换规则相

同，即按下式变换

∂′
µ = (Λ−1)νµ∂ν . (2.46)

归纳一下即是，在洛伦兹变换下，四矢量的逆变分量和dxµ的变换规则相

同，而协变分量则和∂µ的变换规则相同。

很显然，任意一个逆变四矢量Aµ和任意一个协变四矢量Bµ都可以构成

一个在洛伦兹变换下保持不变的量，这个量即是AµBµ, 有时候也记作A ·B，
称作两个四矢量A和B的内积。两个四矢量的内积是洛伦兹不变的，称作一

个四维标量，四维标量即是在洛伦兹变换下保持不变的量。
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四维矢量是只有一个指标的量，我们当然可以进一步考察多个指标的

量，比如Bµν , 如果这个量的每一个指标在洛伦兹变换下都按逆变矢量那样

变，即是说

B′µν = Λµ
αΛ

ν
βB

αβ, (2.47)

我们就称Bµν为一个2阶逆变张量，或者记作(2, 0)张量，(2, 0)代表它有2个

上指标0个下指标。类似的，我们也可以考察(0, 2)张量，它即是两个下指

标，且在洛伦兹变换下按照下式变换的量，

B′
µν = (Λ−1)αµ(Λ

−1)βνBαβ. (2.48)

进一步，也可以考察混合型张量，比如(1, 1)张量，它即是一个上指标一个

下指标，且在洛伦兹变换下按照下式变换的量，

B′µ
ν = Λµ

α(Λ
−1)βνB

α
β. (2.49)

类似的概念可以很容易推广到有p个上指标q个下指标的(p, q)张量。特别的，

(0, 0)张量就是四维标量，(1, 0)张量就是四维逆变矢量，而(0, 1)张量则是四

维协变矢量。

当然，完全类似于四矢量情形，我们同样可以用ηµν来将张量的上指标

降下来，也可以用ηµν来将张量的下指标升上去。而且，对于一个(p, q)张

量，我们可以让它的某个上指标和某个下指标相同，从而默认对这个指标

求和，结果就是一个(p− 1, q − 1)张量，这就叫做张量的缩并。比如说，对

于(1, 1)张量Bµ
ν，我们可以考察Bµ

µ = B0
0 +B1

1 +B2
2 +B3

3，注意它的上指

标和下指标已经求和掉了，从而人们很容易验证它是洛伦兹不变的，即是

一个(0, 0)张量，或者说是一个四维标量。

另外，比如说对于(2, 0)张量Bµν，我们可以进一步要求它的两个指标

对称，即满足Bµν = Bνµ，这就叫二阶对称张量。而如果我们要求两个指

标反对称，即满足Bµν = −Bνµ，那就叫二阶反对称张量。对于反对称张

量Bµν，我们有B00 = B11 = B22 = B33 = 0, 这是因为比如说B00 = −B00，

从而必有B00 = 0。对于(0, p)张量Cµ1µ2...µp，如果它的任意两个指标均反对

称，我们就称之为p阶反对称张量。但是在四维时空中，必定有p ≤ 4。这

是因为，在四维时空中，任何指标都只能取0, 1, 2, 3，从而对于p > 4的情

形，Cµ1µ2...µp的任意p个下指标中必有两个取相同值，考虑到反对称这就意

味着Cµ1µ2...µp = 0, 即高于4阶的反对称张量必定为零。进一步，由于p阶反



第二章 相对性原理与场论 15

对称张量场p个指标必须全不相同，所以在四维时空中，它的独立分量个数

就是 4!
p!(4−p)!

。

最后，四维张量的概念很容易推广到场，如果一个量既是一个四维张

量，同时还是一个场，那就叫做张量场，比如一个(0, 2)型二阶张量场可以

写成Bµν(x)，式中x表示时空点。

2.2.2 四维时空中的微分形式

在《理论力学新讲》的第一章，我们介绍过微分形式和外微分的知识，

实际上，微分形式与反对称张量场有密切的联系，这一小节就让我们从这

个联系开始。具体来说，对于一个p-形式C，我们可以写出它的分量形式，

C =
1

p!
Cµ1µ2...µpdx

µ1 ∧ dxµ2 ∧ .... ∧ dxµp . (2.50)

式中Cµ1µ2...µp为这个p形式的分量，它的指标是两两反对称的。事实上，

Cµ1µ2...µp必定是一个p阶反对称张量场。这是因为，p-形式本身不依赖于坐

标系，因此洛伦兹变换到x′µ坐标后必有

C ′
µ1µ2...µp

(x′)dx′µ1 ∧ .... ∧ dx′µp = Cν1ν2...νp(x)dx
ν1 ∧ .... ∧ dxνp . (2.51)

由此易知Cµ1µ2...µp在洛伦兹变换下必定按照(0, p)张量的变换规则变换。从

而p-形式的分量和p阶反对称张量场一一对应。

在四维时空中，由于p阶反对称张量场必须满足p ≤ 4，因此在四维时

空中最多考虑4-形式，更高阶的微分形式自动为零。

有一个特殊的4-形式值得专门讲一下，那就是所谓的四维时空的体积

形式Ω，

Ω = dt ∧ dx ∧ dy ∧ dz. (2.52)

但这个四形式严格来说算不上一个微分形式，而是所谓的赝形式，原因在

于它在坐标变换以后会相差一个雅可比行列式，因此洛伦兹变换以后

Ω′ = dt′ ∧ dx′ ∧ dy′ ∧ dz′ = det(Λ)Ω. (2.53)

因此对于det(Λ) = 1的洛伦兹变换，它和一个真正的微分形式一样不依赖

于坐标系。但是，对于det(Λ) = −1的洛伦兹变换，比如空间反演变换或时

间反演变换，那它就要多出一个负号，而不是真正不依赖于坐标系。像这
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样的在空间反演和时间反演之下多出一个负号的“微分形式”就叫做赝形

式。但是，对于物理学研究来说，由于主要考虑的是正洛伦兹变换，这时

候自动有det(Λ) = 1, 因此我们常常将赝形式和真正的微分形式同等对待。

赝形式的分量也不是真正的反对称张量，而是所谓的赝张量，即它在

空间反演或时间反演之下相比于真正张量的变换规则会多出一个负号。但

是，和平等对待赝形式一样，在物理学中，我们也常常将赝张量和张量平

等对待。因此，以后除非某些地方需要特别做出区分，否则我们就将赝形

式同样称为微分形式，也将赝张量同样称为张量。

为了写出体积形式Ω所对应的反对称张量，我们引入如下定义

ϵµ1µ2µ3µ4 =


1, (µ1µ2µ3µ4)是(0123)的偶置换

−1, (µ1µ2µ3µ4)是(0123)的奇置换

0, 其它情况

. (2.54)

容易验证有，

Ω =
1

4!
ϵµ1µ2µ3µ4dx

µ1 ∧ dxµ2 ∧ dxµ3 ∧ dxµ4 . (2.55)

可见ϵµ1µ2µ3µ4正是体积形式所对应的四阶反对称张量(赝张量)，不过，由

于ϵµ1µ2µ3µ4的定义不依赖于坐标系，所以这个反对称张量实际上在洛伦兹变

换下变换的结果是保保保持持持原原原值值值不不不变变变。

我们注意到p形式的独立分量个数与4−p形式的独立分量个数相同，均

为 4!
p!(4−p)!

, 这使得人们想到也许可以建立两者间的一一对映。的确，这样的

对映是存在的，它叫做霍奇对偶(Hodge duality)，通常用∗号来标记。具体
来说，我们定义∗号为一个线性映射，它在微分形式上的作用如下

∗(dxµ1 ∧ ... ∧ dxµp) =
1

(4− p)!
ϵµ1...µp

νp+1...ν4
dxνp+1 ∧ ... ∧ dxν4 . (2.56)

特别的，∗1将映射到体积形式Ω

∗1 =
1

4!
ϵµ1µ2µ3µ4dx

µ1 ∧ dxµ2 ∧ dxµ3 ∧ dxµ4 = Ω. (2.57)

而对于任意的p形式C,

C =
1

p!
Cµ1µ2...µpdx

µ1 ∧ dxµ2 ∧ .... ∧ dxµp , (2.58)
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根据线性性，我们有

∗C =
1

p!
Cµ1...µp ∗ (dxµ1 ∧ .... ∧ dxµp)

=
1

(4− p)!p!
Cµ1...µpϵ

µ1...µp
νp+1...ν4

dxνp+1 ∧ ... ∧ dxν4 , (2.59)

结果显然为(4− p)形式。

特别的，2形式的霍奇对偶依然为2形式！对于2形式，我们也常常

可以等价地认为霍奇对偶是作用在它的分量上，这是通过定义∗Cµ1µ2 =

(∗C)µ1µ2。则根据(2.59)式，易有

∗Cµ1µ2 =
1

2
Cν3ν4ϵ

ν3ν4
µ1µ2

. (2.60)

定定定理理理：对于p形式C,

∗ ∗ C = (−)(−)p(4−p)C. (2.61)

即，对于p = 1, 3形式，有∗ ∗ C = C; 对于p = 0, 2, 4形式，有∗ ∗ C = −C;

特别的，对于p = 2形式，有∗ ∗ C = −C。

证明如下。重复应用∗映射的作用，有

∗ ∗ C =
1

(4− p)!p!
Cµ1...µpϵ

µ1...µp
νp+1...ν4

∗ (dxνp+1 ∧ ... ∧ dxν4)

=
1

(4− p)!p!p!
Cµ1...µpϵ

µ1...µp
νp+1...ν4

ϵνp+1...ν4
ρ1...ρp

dxρ1 ∧ ... ∧ dxρp

=
(−)p(4−p)

(4− p)!p!p!
Cµ1...µpϵ

µ1...µp
νp+1...ν4

ϵ νp+1...ν4
ρ1...ρp

dxρ1 ∧ ... ∧ dxρp

=
(−)p(4−p)

(4− p)!p!p!
Cµ1...µpϵ

µ1...µpνp+1...ν4ϵρ1...ρpνp+1...ν4dx
ρ1 ∧ ... ∧ dxρp

= (−)(−)p(4−p) 1

p!
Cµ1...µpdx

µ1 ∧ ... ∧ dxµp = (−)(−)p(4−p)C. (2.62)

式中我们利用了恒等式

1

p!(4− p)!
ϵµ1...µpνp+1...ν4ϵρ1...ρpνp+1...ν4dx

ρ1 ∧ ... ∧ dxρp

= (−)dxµ1 ∧ ... ∧ dxµp , (2.63)

这里的负号来自于ϵ0123 = −ϵ0123 ⇒ ϵµ1...µ4 = (−)ϵµ1...µ4。
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霍奇对偶运算可以和外微分运算结合起来，为了本书后面章节的应用，

让我们考察一个重要的例子。假设我们考察一个2形式F ,

F =
1

2
Fµ1µ2dx

µ1 ∧ dxµ2 , (2.64)

让我们来计算一下∗d ∗ F的结果是什么。

∗d ∗ F =
1

2

1

2
∗ d

(
Fµ1µ2ϵ

µ1µ2
ν3ν4

dxν3 ∧ dxν4
)

=
1

2

1

2
∂ρFµ1µ2ϵ

µ1µ2
ν3ν4

∗ (dxρ ∧ dxν3 ∧ dxν4)

=
1

2

1

2
∂ρFµ1µ2ϵ

µ1µ2
ν3ν4

ϵρν3ν4σdx
σ

=
1

2

1

2
∂ρFµ1µ2ϵ

µ1µ2ν3ν4ϵρσν3ν4dx
σ

= −∂ρFρσdx
σ. (2.65)

式中我们再次应用了前面用过的恒等式

1

2

1

2
ϵµ1µ2ν3ν4ϵρσν3ν4Fµ1µ2 = −Fρσ. (2.66)

不妨小结一下推导的结果，即是

∗d ∗ F =
(
− ∂µFµν

)
dxν , (2.67)

是一个1形式。

完全类似的推导可以得到，对于1形式A = Aµdx
µ有

∗d ∗ A = −∂µAµ, (2.68)

结果为0形式。而对于3形式C = 1
3!
Cµ1µ2µ3dx

µ1 ∧ dxµ2 ∧ dxµ3 ,

∗d ∗ C =
1

2!

(
− ∂µCµρσ

)
dxρ ∧ dxσ. (2.69)

结果为2形式。

实际上，无需计算即可知，对于任何p形式C, ∗d ∗C必定为一个p− 1形

式，原因其实很简单，我们留给读者自己思索。即是说，∗d∗运算的效果刚
好与外微分运算相反，外微分运算会将微分形式升高1次，而∗d∗运算则会
将微分形式降低1次。
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另外，也可以把霍奇对偶与外微分最漂亮的结论，即广义斯托克斯定

理，结合起来。为此我们先回顾一下广义斯托克斯定理，它说的是，对于

时空中任何一个p+ 1维超曲面D，其p维边界我们记为∂D，有∫
∂D

Cp =

∫
D

dCp, (2.70)

式中Cp表示一个任意p形式。

下面取D为四维时空中的一个区域，∂D为它的三维边界，则对于任

意1形式A = Aµdx
µ我们有∫

∂D

∗A =

∫
D

d ∗ A = −
∫
D

∗ ∗ d ∗ A =

∫
D

∂µAµ ∗ 1 =

∫
D

(∂µAµ)Ω. (2.71)

式中第2个等号利用了对于4形式C4有∗ ∗C4 = −C4(而d ∗A正是一个4形式)，

另外，式中第3个等号是代入了(2.68)式，最后一个等号是利用了∗1 = Ω。

不妨将最终的结果写清楚一点，即∫
∂D

∗A =

∫
D

(∂µAµ)Ω. (2.72)

这正是四维时空中的高斯定理。

2.3 相对性原理与经典场论

现在我们可以将相对性原理重新表述为，任何物理规律都应该在洛伦

兹变换下保持不变。因此本书要考察的经典场论当然也要满足这种洛伦兹

不变性，进一步，从第一章我们已经知道，经典场论的规律(也就是场方

程) 可以由最小作用量原理导出，因此这就意味着经典场论的作用量泛函

必须在洛伦兹变换下保持不变！这就意味着经典场论的作用量泛函必须是

洛伦兹标量。

另外，对于局域场论，作用量S总可以写成拉格朗日密度L的积分，
即S =

∫
d4xL，注意到体积元d4x等价于体积形式Ω，因此显然是洛伦兹不

变的，因此S要是洛伦兹标量当且仅当拉格朗日密度L为洛伦兹标量！
进一步，假设我们考虑的是一个标量场论，场变量记为ϕ，则从第一章

可以知道L = L(ϕ, ϕ̇,∇ϕ)。很显然，场的时间导数ϕ̇可以和空间导数∇ϕ结

合成一个四维矢量∂µϕ = (ϕ̇,∇ϕ)。所以拉氏密度实际上是ϕ和∂µϕ的函数，

记为L = L(ϕ, ∂µϕ)。从而最小作用量原理导出来的场方程就是，

∂µ

( ∂L
∂(∂µϕ)

)
=

∂L
∂ϕ

. (2.73)
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而∂µϕ能构造出来的最简单洛伦兹标量就是

∂µϕ∂
µϕ = ηµν∂µϕ∂νϕ = −(∂tϕ)

2 + (∇ϕ)2. (2.74)

要求动能项为正，并进一步通过将一个合适的常数吸收进场ϕ的定义之中，

我们总能将∂µϕ对拉氏密度最简单的贡献写作

−1

2
∂µϕ∂

µϕ. (2.75)

另外，很显然，ϕ的任意函数−U(ϕ)都是洛伦兹标量，因此可以加到拉氏密
度中去，进而就得到如下最简单的洛伦兹不变的拉氏密度

L = −1

2
∂µϕ∂

µϕ− U(ϕ)

=
1

2
[(∂tϕ)

2 − (∇ϕ)2]− U(ϕ). (2.76)

很显然，这给出的正是前面第一章中所考察的经典场论例子。所以，第一

章的例子不是完全任意写出来的，它实际上是洛伦兹不变性限制下的最简

单例子！

当然，洛伦兹不变性并不能完全决定拉氏密度，比如，读者很容易发

现下面的拉氏密度同样洛伦兹不变，

L = −1

2
g(ϕ)∂µϕ∂

µϕ− U(ϕ), (2.77)

式中g(ϕ)为ϕ的任意函数。这也是一种很常见的标量场模型，虽然人们对它

的研究可能比上面那个更简单的模型略少。在这个模型中取g(ϕ)为常数g0,

然后再将
√
g0吸收到ϕ场的定义中去，就回到了上面那个更简单的模型。

读者可能会想为什么只用ϕ和∂µϕ构造拉氏密度呢？为什么不考虑二阶

导数(∂µ∂νϕ)，甚至更高阶导数呢？的确，考虑二阶导数也能轻易构造出洛

伦兹不变的拉氏密度，比如

L = −1

2
∂µϕ∂

µϕ+ f(ϕ)(∂µ∂νϕ)(∂
µ∂νϕ). (2.78)

但实际上，人们几乎不会研究这种场论模型，原因有两个：第一，这种场

论模型用最小作用量原理导出的场方程是四阶微分方程，而我们通常要求

物理系统的运动微分方程为二阶微分方程。第二，可以证明，这样含高阶

导数的模型导出来的哈密顿量(也就是能量)没有下界，即没有最低能量，

从而物理上是不允许的，这就是所谓的Ostrogradsky 不稳定性。
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前面的标量场模型很容易推广，比如说，我们可以同时考察n个标量

场，记为ϕa, a = 1, 2, ..., n，这时候很容易构造出如下拉氏密度，

L = −gab(ϕ)∂µϕ
a∂µϕb. (2.79)

式中gab(ϕ)是ϕa的函数，实际上人们通常让它是场空间的黎曼度规。这样的

场论模型就是所谓的非线性sigma模型。之所以没有在非线性sigma模型的

拉氏密度中加上−U(ϕ)这样的项，是因为我们还要求了场空间的微分同胚
不变性，U(ϕ)这样的项会破坏这种不变性。

前面考察的标量场ϕ都是实数值的，我们当然也可以考察复数值的标

量场，不过由于作用量和拉氏密度必须是实数值的，所以这时候需要同时

考虑ϕ以及它的复共轭场ϕ。很显然，这时候最简单的拉氏密度可以取下面

的形式

L = −∂µϕ∂
µϕ− U(ϕϕ). (2.80)

很容易看出，除了洛伦兹不变性之外，这个拉氏密度还在下面变换下保持

不变，

ϕ → eiθϕ, ϕ → e−iθϕ. (2.81)

式中θ为一个任意常数。

以上只考虑了四维时空中的标量场论。四维矢量场甚至高阶张量场当

然也能构造相应的拉氏密度，进而得到相应的经典场论。但这时候为了得

到真正有用的经典场论，往往需要在洛伦兹不变性之外进一步对系统加上

更多的限制，我们还是留到后面的章节中讨论吧。


