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第一章 初识经典场论

陈陈陈童童童

[本本本书书书假假假定定定读读读者者者学学学过过过经经经典典典力力力学学学的的的必必必要要要知知知识识识，，，缺缺缺乏乏乏相相相关关关基基基础础础的的的读读读者者者可可可以以以

先先先阅阅阅读读读我我我的的的《《《理理理论论论力力力学学学新新新讲讲讲》》》。。。]

法拉第和麦克斯韦最早引入了场的概念。场和粒子一样是一种物理实

体，但与粒子不同，场是一种空间分布，通常称这种分布为场位形，场位

形随时间的演化就构成了场的动力学。和经典粒子的动力学一样，经典场

的动力学也可以用哈密顿力学或者拉格朗日力学的框架来处理，特别的，

经典场也满足最小作用量原理。

从事后的观点来看，之所以要在物理学的基本定律中引入场，是因为

我们的世界满足狭义相对论。根据狭义相对论，相互作用的传递速度有一

个上限，即光速，特别的，相互作用不能瞬时传递，这就排除了超距作用

的可能性，并进而将某种局域性原理强加在所有的相互作用上。而在一个

连续的时空中，场是满足局域性原理的最简单机制。因此，狭义相对论会

自然导向场的概念，而本书将要讲述的经典场论，也是指满足狭义相对论

的经典场论，这就将流体力学这样的场论排除在外了。

不过，我们也需要指出，流体力学这样的理论其实是导向场论的第二

条路径，即场论作为对一些多自由度系统(在流体力学的例子中就是大量

流体分子)宏观大尺度行为的有效描述，这时候场其实是系统微观自由度

的宏观集体表现。沿着这条路的一个重要例子就是万有引力，今天人们普

遍相信爱因斯坦的广义相对论(是一个经典场论)，包括由此而来的时空概

念，都是对引力系统微观自由度的大尺度有效描述。只不过今天人们还不
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第一章 初识经典场论 3

是很确定万有引力真正的基本自由度是什么。不过，本书并不会过多涉及

导向场论的这一条路径，因此也不会详细讨论广义相对论这一重要的经典

场论。

当然，最为人们熟知的经典场就是电磁场。但是，对于经典场论的学

习来说，也许从数学上更为简单的标量场开始更为合适。不过，标量场和

人们日常在宏观世界里感知到的电磁场以及引力场这两种基本力场无关。

因此对于本章将要讲述的标量场理论，一个更为合适的看法也许是将之看

成理论研究的玩具模型。在现代物理学研究中，面对复杂的世界或者数学

上远为棘手的问题时，人们往往会首先研究一个更为简单的玩具模型。一

方面，玩具模型的研究有可能揭示复杂世界背后简单的物理机制，另一方

面，更为重要的是，人们可以在研究简单模型的过程中逐步发展出能够对

付棘手问题的数学方法。基于这些原因，本章将从标量场的玩具模型开始，

然后在后续的章节中逐步过渡到真正的电磁场理论。

1.1 经典场论的基本框架

1.1.1 从粒子到场

为了看清楚如何将经典力学框架从点粒子拓展到场，我们考察一个n自

由度的点粒子系统，其广义坐标为qi, i = 1, 2, 3..., n, 广义动量为pi, i =

1, 2, ..., n, 系统的哈密顿量为H(qi, pi)(表达式中的qi和pi分别代表所有的广

义坐标和广义动量)。则相应的相空间作用量为

S[qi(t), pi(t)] =

∫
dt
[∑

i

piq̇i −H(qi, pi)
]
, (1.1)

由相空间的最小作用量原理即可以得到哈密顿正则方程

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (1.2)

进一步，任意两个物理量的泊松括号则是

[A,B] =
∑
i

(∂A
∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
. (1.3)

现在，设想将上面的指标记号i替换成记号σ，并设想σ可以连续取

值(因而这时自由度数目为无穷大)，从而根据《理论力学新讲》第二章
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关于变分法和泛函导数的相关讲述可以知道，我们应该将所有对i的求

和替换成对连续变量σ的积分，将H(qi, pi)重记为泛函H[qσ, pσ], 将物理

量A(qi, pi), B(qi, pi)分别重记为泛函A[qσ, pσ], B[qσ, pσ], 并将对qσ, pσ的偏导

改写成泛函导数。因而即有相空间作用量

S[qσ(t), pσ(t)] =

∫
dt
[ ∫

dσpσ q̇σ −H[qσ, pσ]
]
, (1.4)

以及相应的哈密顿正则方程

q̇σ =
δH

δpσ
, ṗσ = −δH

δqσ
. (1.5)

式中的泛函导数可以由变分法计算，即

δH[qσ, pσ] =

∫
dσ

[δH
δqσ

δqσ +
δH

δpσ
δpσ

]
, (1.6)

请读者注意区分这里的变分和应用相空间最小作用量原理时涉及的变分，

这里的变分是等σ变量的变分，时间t是给定的，因此不需要对t积分。进而

泊松括号现在应该定义成

[A,B] =

∫
dσ

( δA

δqσ

δB

δpσ
− δA

δpσ

δB

δqσ

)
. (1.7)

注意到qσ, pσ均依赖于连续指标σ，因此当然可以看成是σ的函数，从而

我们可以再次改变一下记号，记

ϕ(σ, t) = qσ(t), π(σ, t) = pσ(t). (1.8)

从而上一段的方程可以再次改写，其中相空间作用量应该改写为

S[ϕ(σ, t), π(σ, t)] =

∫
dtdσ[π(σ, t)ϕ̇(σ, t)]−

∫
dtH[ϕ(σ), π(σ)], (1.9)

式中ϕ̇(σ, t) = ∂
∂t
ϕ(σ, t)。相应的哈密顿正则方程则是

ϕ̇(σ, t) =
δH

δπ(σ)
, π̇(σ, t) = − δH

δϕ(σ)
. (1.10)

在上面两个式子中，当操作不涉及固定时间t时，我们就省略了函数自变量

中的t。同样，这里的泛函导数可以由变分法计算，即

δH[ϕ(σ), π(σ)] =

∫
dσ

[ δH

δϕ(σ)
δϕ(σ) +

δH

δπ(σ)
δπ(σ)

]
. (1.11)
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而物理量的泊松括号就应该是

[A,B] =

∫
dσ

( δA

δϕ(σ)

δB

δπ(σ)
− δA

δπ(σ)

δB

δϕ(σ)

)
. (1.12)

特别的，利用 δϕ(σ)
δϕ(σ′)

= δ(σ − σ′), δπ(σ)
δπ(σ′)

= δ(σ − σ′), δϕ(σ)
δπ(σ′)

= δπ(σ)
δϕ(σ′)

= 0,

人们容易算得如下基本泊松括号

[ϕ(σ, t), π(σ′, t)] = δ(σ − σ′), [ϕ(σ, t), ϕ(σ′, t)] = [π(σ, t), π(σ′, t)] = 0.(1.13)

注意这里的第一个式子其实就是[qi, pj] = δij在连续指标情形的对应物，即

当指标为连续的σ, σ′时，就应该将克龙内克δ符号替换成狄拉克δ函数。进

而则可以将哈密顿正则方程重写成如下熟悉的形式

ϕ̇(σ, t) = [ϕ(σ, t), H], π̇(σ, t) = [π(σ, t), H]. (1.14)

由于σ可以是任何连续变量，我们当然可以将之取成三维空间的坐标

矢量x，则相应的ϕ(x)就是空间上的一个分布，也就是一个场，π(x)则是这

个场的共轭动量，它同样也是场，而ϕ(x, t)、π(x, t)则分别描述的是这两个

场随时间的演化，哈密顿正则方程则是这种时间演化的动力学。这样，我

们就成功地将哈密顿力学的理论框架从点粒子系统延展到了场论系统。而

注意到空间是三维的，因此场论系统泊松括号的更准确写法应该是

[A,B] =

∫
d3x

( δA

δϕ(x)

δB

δπ(x)
− δA

δπ(x)

δB

δϕ(x)

)
. (1.15)

1.1.2 局域场论

[从本小节开始，我们以x = (t,x)代表时空点。]

不过，上一小节所说的场论系统过于一般性了，实际上人们更关心也

更重要的场论系统是所谓的局域场论，即满足一定局域性要求的场论。简

单来说，这样的局域性要求即是，要求系统的能量体现为局域性的能量密

度分布。具体来说即是，要求描述系统能量的哈密顿量具有如下形式

H =

∫
d3xH(π, ϕ,∇ϕ). (1.16)

式中H称之为哈密顿密度，它描述局域场论系统的能量密度，并且通常是
场变量ϕ(x)，其空间梯度∇ϕ, 以及共轭动量π(x)的一个函数(注意，是普通
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函数而不是泛函)，因此记为H(π, ϕ,∇ϕ)。举例来说，H(π, ϕ,∇ϕ)可以取如

下形式，

H(π, ϕ,∇ϕ) =
1

2

[
π2 + c2(∇ϕ)2

]
, (1.17)

式中c为真空中的光速，式中的1
2
π2表示场的动能密度，而1

2
c2(∇ϕ)2表示场

的势能密度。

很显然，对于局域场论系统，其相空间作用量可以写成

S[ϕ(x), π(x)] =

∫
dtd3x[π(x)ϕ̇(x)]−

∫
dtH[ϕ(x), π(x)]

=

∫
d4x

[
π(x)ϕ̇(x)−H(π, ϕ,∇ϕ)

]
. (1.18)

式中
∫
d4x =

∫
dtd3x是对整个四维时空积分。而为了应用相空间最小作用

量原理，我们需要考虑时空上的变分δϕ(x), δπ(x)，并且要满足边界条件，

即，δϕ(x)在时空的无穷远边界上等于零！

从上面相空间作用量泛函的表达式可以看出，π(x)ϕ̇(x)具有能量密

度的量纲，记为[πϕ̇] = [EL−3]。这里以[]号表示取一个物理量的量纲，因

此[E]表示能量量纲，[L]表示空间长度量纲，[t]表示时间量纲。由[πϕ̇] =

[EL−3]很容易看出，

[π][ϕ] = [EL−3][t]. (1.19)

从这种量纲分析中我们就能理解为什么(1.17)式中要引入常数c，因为只有

这样整个表达式的量纲才可能对。具体来说，对于(1.17)式给出的哈密顿密

度，我们有

[π] = [EL−3]
1
2 , [ϕ] = [π][t]. (1.20)

但是，在进行理论推导时，人们常常通过重新选取时间的单位以使得光

速c = 1, 在这样的单位制中当然就有[L] = [t]。不仅如此，这种重新选取单

位的方法还可以推广，以使得给定场论系统哈密顿密度表达式中一些原本

带量纲的常数成为1，后文我们常常会这样做。

根据《理论力学新讲》第二章的知识可以知道，从相空间最小作用量

原理出发，让作用量对共轭动量变分等于零，从而从作用量表达式中消去

共轭动量，就可以得到所谓的“坐标空间最小作用量原理”。当然在场论

的情形中用坐标空间这个词不太合适，更准确的说法是得到位形空间的最

小作用量原理，或者就称为通常的最小作用量原理。
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让S[ϕ(x), π(x)]对π(x)变分等于零，得到的是

ϕ̇(x) =
∂H
∂π

, (1.21)

从这个式子反解出π(x)并代入S[ϕ(x), π(x)]，就可以得到位形空间的作用量

S[ϕ(x)] =

∫
d4xL(ϕ, ϕ̇,∇ϕ). (1.22)

式中L(ϕ, ϕ̇,∇ϕ)称为拉格朗日密度，它其实就是在表达式L(ϕ, ϕ̇,∇ϕ) =

π(x)ϕ̇(x)−H(π, ϕ,∇ϕ)中消去π(x)而得到，更准确的写法应该是

L(ϕ, ϕ̇,∇ϕ) = extremπ

[
πϕ̇−H(π, ϕ,∇ϕ)

]
. (1.23)

当然，这也就是勒让德变换，即拉拉拉格格格朗朗朗日日日密密密度度度是是是哈哈哈密密密顿顿顿密密密度度度的的的勒勒勒让让让德德德变变变

换换换！反过来，哈密顿密度也是拉格朗日密度的勒让德变换，即

H(π, ϕ,∇ϕ) = extremϕ̇

[
πϕ̇− L(ϕ, ϕ̇,∇ϕ)

]
. (1.24)

因此也有

π =
∂L
∂ϕ̇

. (1.25)

经过了对π(x)求极值的操作以后，相空间的最小作用量就变成了位形

空间的最小作用量原理，也就是通常的最小作用量原理。根据这条原理，

场位形ϕ(x)应该使得作用量泛函S[ϕ(x)]取极值，即对于变分δϕ(x)有如下方

程

δS[ϕ(x)] = 0. (1.26)

事实上，位形空间作用量泛函S[ϕ(x)]和对称性的关系更为直接，人们往往

可以根据系统所须满足的对称性直接写出S[ϕ(x)]，然后再利用位形空间

的最小作用量原理得出场ϕ(x)所满足的运动方程。(这也将是本书后续章

节中将要采用的主要处理方式。) 从这个意义上看，位形空间的作用量泛

函S[ϕ(x)]以及相应的最小作用量原理对于我们来说更重要，而前面的哈密

顿力学框架以及相空间最小作用量原理则可以看成是为了自然地引出这些

位形空间概念的前期准备。尤其是，通过这些准备工作，我们可以看清楚

拉格朗日密度的物理含义，即，它是场论系统能量密度的勒让德变换。
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根据(1.22)式，我们可以进行如下推导

δS[ϕ(x)] =

∫
d4xδL(ϕ, ϕ̇,∇ϕ)

=

∫
d4x

[∂L
∂ϕ

δϕ+
∂L
∂ϕ̇

δϕ̇+
∂L

∂(∇ϕ)
· δ(∇ϕ)

]
=

∫
d4x

[∂L
∂ϕ

− ∂

∂t

(∂L
∂ϕ̇

)
−∇ ·

( ∂L
∂(∇ϕ)

)]
δϕ

+

∫
d4x

∂

∂t

(∂L
∂ϕ̇

δϕ
)
+

∫
d4x∇ ·

( ∂L
∂(∇ϕ)

δϕ
)
. (1.27)

很显然，最后一行的两项都是全微分项，因此积分可以算出来，结果为∫
d4x

∂

∂t

(∂L
∂ϕ̇

δϕ
)
+

∫
d4x∇ ·

( ∂L
∂(∇ϕ)

δϕ
)

=

∫
d3x

(∂L
∂ϕ̇

δϕ
)
|t=∞ +

∫
dt

∫
dS ·

( ∂L
∂(∇ϕ)

δϕ
)
|r=∞. (1.28)

很明显，结果只在无穷远过去和无穷远将来的边界上，以及空间上无穷远

处的边界上有贡献，总之，结果仅仅在四维时空的无穷远边界上有贡献。

但是，前面我们提到过，在时空的边界上，δϕ = 0，因此这两项的最终结

果其实都等于零。从而即有

δS[ϕ(x)] =

∫
d4x

[∂L
∂ϕ

− ∂

∂t

(∂L
∂ϕ̇

)
−∇ ·

( ∂L
∂(∇ϕ)

)]
δϕ(x), (1.29)

进一步应用最小作用量原理δS[ϕ(x)] = 0，即可得到

∂

∂t

(∂L
∂ϕ̇

)
+∇ ·

( ∂L
∂(∇ϕ)

)
=

∂L
∂ϕ

. (1.30)

这就是场ϕ(x)需要满足的微分方程，称之为场方程，它显然是经典力学中

拉格朗日方程的推广。

举例

[正正正如如如前前前面面面提提提到到到过过过的的的，，，从从从现现现在在在开开开始始始，，，我我我们们们假假假定定定选选选取取取了了了合合合适适适的的的时时时间间间单单单位位位，，，

以以以使使使得得得光光光速速速c = 1。。。]

作为例子，下面考察一类特定的场论模型，我们假定场论系统的能量

密度由下面的哈密顿密度描述

H =
1

2

[
π2 + (∇ϕ)2

]
+ U(ϕ), (1.31)
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式中U(ϕ)是一个关于场ϕ的函数。即是说，假定场论系统的动能T和势

能V分别为

T =

∫
d3x

[1
2
π2
]
, V =

∫
d3x

[1
2
(∇ϕ)2 + U(ϕ)

]
. (1.32)

在这里，关于场动能的假定是很通常的，至于势能，这个假设说的即是，

场的空间梯度会产生一种势能，它由密度1
2
(∇ϕ)2描述，另外，场的相互作

用也会产生一种势能，它由密度U(ϕ)描述，这两种密度加起来就是总的势
能密度。

为了进行勒让德变换，我们容易求出ϕ̇ = ∂H
∂π

= π, 从而有

L =
1

2

[
(∂tϕ)

2 − (∇ϕ)2
]
− U(ϕ), (1.33)

式中∂tϕ = ϕ̇ = ∂ϕ
∂t
。将这个拉格朗日密度代入拉格朗日方程(1.30)，就可以

得到场的运动方程，为

∂2
t ϕ−∇2ϕ = −∂U

∂ϕ
. (1.34)

特别的，如果函数U = 0，那上面的场方程就简化为

∂2
t ϕ−∇2ϕ = 0. (1.35)

这是一个标准的波动方程，它描写的是以光速c = 1传播的一种波动。但这

种波动并不是电磁波，因为这里考察的场ϕ(x)是一种标量场，而电磁波的

场是矢量场。不过，这个例子使得我们自然想到，有可能用一个类似上面

的拉格朗日密度描写电磁波和电磁场，当然，为此我们需要将上面的理论

框架稍作推广，这种推广我们放到后续的章节中进行。

在下一章中，我们将看到，(1.33)式给出的拉格朗日密度在很大程度上

是由狭义相对论的洛伦兹对称性所决定的。实际上，从下一章开始我们就

不再像这里一样通过有些任意性地假设场的哈密顿密度表达式来研究场论

了，而是通过先猜测系统所须满足的对称性，然后根据这个对称性直接写

出拉格朗日密度来进行研究。这时候场的能量密度是反过来通过对拉格朗

日密度进行勒让德变换得到的。

1.2 粒子作为场方程的一种解

我们已经初步领略了场论的味道，场和粒子都可以用哈密顿力学以及

拉格朗日力学的框架来描述，但是，在物理上，场和粒子似乎完全不同，
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场的能量是分布在整个空间的，而粒子的能量是集中在一个很小的空间区

域上的。看起来似乎是，大自然同时给了我们两种完全不同的物理实体，

一种是电子、质子这样的粒子，另一种是电磁场这样的场。然而，现代物

理的研究表明，电子、质子同样可以用场来描述，场和粒子与其说是两种

不同的物理实体，不如说是对物理实体的两种相互对偶的不同描述。

正确解释粒子与场的关系需要将场量子化，进而将粒子作为场的一种

激发态，因此这是量子场论的主题。但是在经典场论的框架下也有可能给

粒子提供一种解释(虽然它不能解释所谓的基本粒子)，即将粒子看成是场

方程的一种特殊解，通常称作孤立子解，在这种解中，场的能量主要集中

在空间上一个很小的局部区域上，并且能够稳定地维持在这样的区域上不

弥散，这样从更大的尺度来看，我们就可以把这个小局部区域当成一个粒

子，而当这个稳定区域移动时，我们就可以认为是一个粒子在运动。本节

就是要以1 + 1维时空(1维空间+1维时间)中一个特殊场论模型为例，解释

孤立子解是如何可能的。

这一节的下面一些内容都是在1+1维时空中考察问题。我们以σ来表

示一维空间坐标，以x = (σ, t)来表示时空点，从而时空上的场为ϕ(x) =

ϕ(σ, t)。

1.2.1 场位形的拓扑等价类

假设我们考察的场论模型具有如下拉格朗日密度

L =
1

2

[
(∂tϕ)

2 − (∂σϕ)
2
]
− U(ϕ), (1.36)

式中∂σϕ = ∂ϕ
∂σ
。从而场的动能和势能分别为

T =

∫ +∞

−∞
dσ

[1
2
(∂tϕ)

2
]
, V =

∫ +∞

−∞
dσ

[1
2
(∂σϕ)

2 + U(ϕ)
]
. (1.37)

场的运动方程为

∂2
t ϕ− ∂2

σϕ = −∂U
∂ϕ

. (1.38)

特别的，对于不依赖时间的静态场位形，场方程的相应解就是使得势能泛

函取极值的位形，这可以通过δV [ϕ(σ)] = 0导出方程来验证。

进一步，我们假设函数U(ϕ)有下界(这是为了确保系统的能量有下界)，

而由于我们总可以通过给势能密度加上一个常数来调节这个下界的值，所

以我们再假定，U(ϕ)的下确界为零，即U(ϕ)的最小值为零。



第一章 初识经典场论 11

我们称使得U(ϕ)取最小值零的场位形为真空场位形，更严格地说，我
们定义真空场位形的集合Ω为

Ω = {ϕ|∂tϕ = ∂σϕ = 0, and U(ϕ) = 0}. (1.39)

即是说，真空场位形是一种静态场位形，它在空间各点取值为常数，并且

这个常数使得函数U(ϕ)达到最小。很显然，真空场位形是场方程(1.38)的

解，称作真空解。同样很显然，真空场位形的动能和势能都是零，从而真

空场位形的总能量为零。而从动能T以及势能V的表达式也很容易看出，其

它任何场位形的能量必定大于真空场位形的能量。从而，真空场位形就是

使得场的总能量取最小值(即零)的场位形。

对于本节所要考察的模型来说，使得U(ϕ)取最小值的ϕ并不唯一，从

而真空场位形集合Ω中的元素多于1个，即是说，系统有多个真空。

另外，从T和V的表达式也可以看出，对于任何场位形，为了使得系统

的总能量有限，它在空间无穷远处必须要趋于真空场位形，否则在无穷远

区域的动能密度和势能密度就不等于零，积分的话就会贡献无穷大的总能

量。我们记

ϕ± = lim
σ→±∞

ϕ(σ), (1.40)

则根据刚才的论述，必有

ϕ± ∈ Ω. (1.41)

如果ϕ+ = ϕ−，则我们可以在保持总能量始终有限的前提下连续地改

变场位形，以使得最终ϕ(x) = ϕ+，即使得最终的场位形处处取同一个真空

位形ϕ+。即是说，如果一个场位形满足ϕ+ = ϕ−, 那它就可以连续地变形为

真空解，我们称这种场位形拓扑上等价于真空位形。

反过来，如果ϕ+ ̸= ϕ−, 那任何将场位形连续变形为真空位形的过程

都要至少改变其在±∞某一端的边界值，比方说将−∞区域的ϕ−连续变形

为ϕ+，但很显然，这会使得这个边界位形在变形过程中偏离真空，从而需

要无穷大的总能量。因此，如果总能量始终有限，那么ϕ+ ̸= ϕ−的这种场

位形就不可能连续变形为真空场位形，我们称它和真空场位形拓扑不等

价。假设以无穷远边界位形对(ϕ−, ϕ+)来标记一个场位形，那么完全类似上

面的推理告诉我们，一般来说，两个(ϕ−, ϕ+)对不同的场位形不可能在保
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持总能量有限的情况下连续过渡，称之为拓扑不等价1。所以，一般来说，

(ϕ−, ϕ+)对标记的是场位形的拓扑等价类，同一类的就拓扑等价，不同类的

就拓扑不等价。

特别的，我们可以将场位形随时间的演化看成是一种对场位形连续变

形的过程，那上面的论证就告诉我们，不同拓扑等价类的场位形不可能相

互演化，比方说，一个ϕ+ ̸= ϕ−的场位形不可能演化成一个真空场位形，

反过来也一样，一个真空场位形也不可能演化成一个ϕ+ ̸= ϕ−的场位形。

即是说，场位形的拓扑等价类在时间演化之下是稳定不变的。

人们通常称一个ϕ− ̸= ϕ+的场位形为扭结(kinks), 这个名称来源于，这

种场位形从−∞处的ϕ−值过渡到+∞处的ϕ+, 它在中间必定要扭一下。场方

程(1.38)的扭结解其实就是一种孤立子，因为正如我们将要看到的，对于这

种解，其能量将主要集中在场位形的扭结处，这通常是一个很小的空间区

域。而且，扭结解拓扑等价类的稳定性正好相应于孤立子的稳定性。

1.2.2 Bogomolny能限和Bogomolny方程

下面我们来考察每一个场位形拓扑等价类的能量下界，以及使得

能量达到下界的场位形。很显然，为了使得能量E尽可能低，我们只需

考察动能为零的场位形，也就是静态场位形，这时候E = V [ϕ(σ)] =∫ +∞
−∞ dσ

[
1
2
(∂σϕ)

2 + U(ϕ)
]
。本小节下面都是默认考虑静态场位形。

首先，我们有下面不等式
1

2

(
∂σϕ±

√
2U(ϕ)

)2

≥ 0 ⇒ 1

2

(
∂σϕ

)2
+ U(ϕ) ≥ ±

√
2U(ϕ)∂σϕ. (1.42)

将上面的结果对空间坐标σ进行积分，即有∫ +∞

−∞
dσ

[1
2
(∂σϕ)

2 + U(ϕ)
]
≥ ±

∫ +∞

−∞

√
2U(ϕ)∂σϕdσ. (1.43)

因此有

E ≥
∣∣∣∣∫ ϕ+

ϕ−

√
2U(ϕ)dϕ

∣∣∣∣ . (1.44)

又由于我们假设U(ϕ)的最小值为零，即U(ϕ) ≥ 0, 所以可以引入一个W (ϕ)，

并令

U(ϕ) = 1

2

(dW
dϕ

)2
. (1.45)

1除非系统有某种对称性，比如后面sine-Gordon场论的例子讨论的那样，这时候某

些(ϕ−, ϕ+)对不同的场位形可能等价。
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代入上面的(1.44)式，即可以得到

E ≥ |W (ϕ+)−W (ϕ−)| . (1.46)

这就是场位形的能量下界，称之为Bogomolny能限，很显然，这个下限仅

仅依赖于场位形的拓扑等价类(ϕ−, ϕ+)。

从上面的推导过程不难看出，为了使得场位形的能量尽量低，以达

到Bogomolny能限，我们不仅要限于考虑静态场位形，而且此静态场位形

还应该满足

∂σϕ = ±
√

2U(ϕ), (1.47)

因为只有这样才能使得推导Bogomolny能限时的出发点不等式1
2

(
∂σϕ ±√

2U(ϕ)
)2

≥ 0取等于号。方程(1.47)就称为Bogomolny方程。

上面的推导告诉我们，一个静态场位形如果同时还满足Bogomolny方

程，那它一定使得势能泛函V [ϕ(σ)]在给定拓扑等价类中取最小值，从而当

然也就使得势能泛函V [ϕ(σ)]达到极小值，从而相应的场位形必定满足场

方程(1.38)。即，满足Bogomolny方程的静态场位形必定满足场方程(1.38)，

这个结论其实也不难直接验证。但是反之则不然，即满足场方程(1.38)的场

位形可不一定满足Bogomolny方程。Bogomolny方程相比场方程的巨大优

点就在于，它是一个很简单的一阶微分方程，很容易积分出来！

1.2.3 sine-Gordon模型和孤立子

这一节我们考察一个更加具体的场论模型，称之为sine-Gordon模型，

这个模型即是在前面两个小节的基础上取U(ϕ)为一个三角函数，比如取

U(ϕ) = 1− cosϕ = 2 sin2(ϕ/2). (1.48)

从而系统的拉格朗日密度为

L =
1

2

[
(∂tϕ)

2 − (∂σϕ)
2
]
−
(
1− cosϕ

)
. (1.49)

当这样取时，我们已经假定通过合适地选取长度和能量的单位来使得拉格

朗日密度中的各带量纲参数取1了。

很显然，sine-Gordon模型的真空场位形为，ϕ = 2πn, 其中n为任意

整数n ∈ Z。根据前两个小节，任何有限能量场位形的拓扑等价类一般
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来说可以由(ϕ−, ϕ+)来标记，ϕ±为空间无穷远处的渐近真空场位形，但

是，上面的sine-Gordon模型有一种特殊的对称性，即它的拉格朗日密度

在ϕ → ϕ ± 2π的变换下保持不变，因此实际上，下面两类场位形是等价

的，

(ϕ−, ϕ+) ∼ (ϕ− + 2πn, ϕ+ + 2πn). (1.50)

因此sine-Gordon模型场位形的拓扑等价类其实由ϕ+ − ϕ−分类。人们常常

定义场位形的拓扑荷N为

N =
ϕ+ − ϕ−

2π
=

1

2π

∫ ϕ+

ϕ−

dϕ =
1

2π

∫ +∞

−∞
(∂σϕ)dσ, (1.51)

式中(∂σϕ)/(2π)称作拓扑荷密度。很显然，拓扑荷N是一个整数，而且完全

分类了sine-Gordon场位形的拓扑等价类。

sine-Gordon模型的Bogomolny能限为

E ≥
∣∣∣∣∫ 2πN

0

2 sin(ϕ/2)dϕ

∣∣∣∣ = ∫ 2π|N |

0

2 |sin(ϕ/2)| dϕ. (1.52)

注意到函数|sin(ϕ/2)|的周期为2π，从而有

E ≥
∫ 2π|N |

0

2 |sin(ϕ/2)| dϕ = 4|N |
[
− cos(ϕ/2)

]2π
0

= 8|N |. (1.53)

能限的等于号仅在静态且满足下面Bogomolny方程的场位形中取到，

∂σϕ = ±2 sin(ϕ/2). (1.54)

很容易积分求解Bogomolny方程(1.54)，比方说对于(1.54)式取+号的情

形，我们容易积分得出

ϕ(σ) = 4 tan−1
(
eσ−a

)
, (1.55)

式中a为积分常数。很显然，这个解满足，ϕ− = ϕ(−∞) = 0, ϕ+ =

ϕ(+∞) = 2π，即这个解的拓扑荷N = 1。我们称这种解为静态单扭结

解(single kink solution)。类似的，如果我们在(1.54)式取−号，相应的解
很明显相当于将静态单扭结解作σ → −σ的替换，从而满足ϕ− = 2π,

ϕ+ = 0，因此是一个拓扑荷为N = −1的解，称之为静态反单扭结解(single

anti-kink solution)。另外，很显然，Bogomolny方程(1.54)还有ϕ = 2πn,
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n ∈ Z的真空解，这是方程(1.54)的特解，它相当于在上面的一般解(1.55)中

取a → ±∞的极限。这种真空解的拓扑荷当然满足N = 0。

下面我们来计算一下静态单扭结解的能量密度E，

E =
1

2
(∂σϕ)

2 + (1− cosϕ) = 4 sin2(ϕ/2). (1.56)

代入解(1.55)，可以得到

E(σ) = 4

cosh2(σ − a)
. (1.57)

很显然，这个能量密度在σ = a处达到最大，在a点的左右两侧都迅速衰减，

很快就衰减为零。并且当然，解的总能量E =
∫ +∞
−∞ E(σ)dσ = 8 · |1| = 8，

刚好处于Bogomolny能限。我们可以画出静态单扭结解场位形和能量密度

分布的示意图，如图(1.1)所示。 很显然，静态单扭结解的能量主要集中

图 1.1: 静态单扭结解的场位形和能量密度分布。

在a点附近的一个小区间内，因此从更大的尺度来看，人们可以等效地认为

是在a点附近有一个粒子，这就是孤立子(soliton)这一名称的来源。我们常

常称这个能量中心位置a为静态单扭结解的位置，这当然就是把它当成一个

粒子来看待了。

不仅如此，对于一个静态单扭结解，假如我们换一个以速度−v运动

的参考系来看它，那这个解看起来就是以速度v在运动，即它的能量中心

在以速度v朝前运动，看起来就像是一个以速度v运动的粒子。这就说明，

sine-Gordon模型不仅存在静态的孤立子解，而且从这些静态解也很容易得

到匀速运动的孤立子解。这就加强了将单扭结解和反单扭结解等效地看作

粒子的看法。

另外，从前面的讨论可以知道，Bogomolny方程(1.54)只有N = 0,±1的

解，而没有N取其它值的静态多扭结解。这意味着N ̸= 0,±1时Bogomolny
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能限是达不到的。而这又意味着，当我们将两个静态单扭结解叠加并做必

要的修正，以试图得到场方程(不是Bogomolny方程)的一个N = 2的2-扭结

解时，这个N = 2场位形的总能量一定严格大于8 · |2| = 16，即E > 8 · |2|，
其中多出来的能量E − 16可以解释为两个单扭结之间的相互作用势能，它

依赖于两个扭结之间的距离R，因此不妨记为VI(R)。另一方面，我们也知

道，如果相互叠加的这两个单扭结之间的距离趋于无穷，那它们之间的

相互影响就可以忽略，这时候场位形的总能量当然就趋于两个静态单扭

结解的能量总和，也就是E = 8 · 2, 从而VI(∞) = 0。直观上，这就说明，

2-扭结解的相互作用势能是随着两个扭结之间距离的增加而减少的，从而

有FI = −∂VI

∂R
> 0，这说明2-扭结解的两个扭结之间存在排斥力，在这个排

斥力的作用下，这两个扭结不可能保持静止，它们最终一定会相互远离。

以上的分析说明，sine-Gordon模型场方程的2-扭结解必定不是静态解！

通常来说，这种2-扭结解应该描述的是两个运动着的单扭结之间的散射, 如

图(1.2)所示。 同样的道理，其它多扭结解也都不是静态解，而是描述多个

图 1.2: 2-扭结散射的能量密度分布，3幅图的时间依次是t = −20, t = 0, t =

20。

单扭结之间的散射。1+1维sine-Gordon模型的特殊之处在于，它是一个可

积场论，从而原则上其实可以精确得到它的所有多扭结解！不过，用可积

系统的办法处理sine-Gordon模型超出了本书的范围。


