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第八章 刚体的运动

陈陈陈童童童

刚体是非相对论力学中的一种理想模型，它是一个质点系，但是其中

任何两个质点之间的距离始终恒定不变，即

|xi − xj| = constant, (8.1)

式中xi表示组成刚体的第i个质点的位置矢量。在实际应用中，我们常常

认为一些刚体的质量是连续分布的，从而可以引入单位体积的质量分布，

即质量密度ρ(x)，并进而将对离散的各质点的求和改成连续的积分，比如

将
∑

imi替换成
∫
dτρ(x)(这里dτ代表三维体积元dxdydz)。

但是，刚体只是非相对论力学中的理想模型，利用相对论的简单知识

可以证明，绝对符合定义的刚体是不存在的！这是因为，对于刚体来说，

当我们在它的一端踢一脚，由于距离绝对不变，它的另一端立即就得有反

应，但是，根据狭义相对论，任何信号的传递速度都有限，因此一端的影

响要传递到另一端肯定需要时间，即是说，另一端不可能立即有反应。从

而在一端被踢动而另一端还没来得及反应的这段时间内，两端的距离就变

了，因此根据狭义相对论，刚体是不存在的！但是，在非相对论力学的近

似下，我们可以近似认为信号的传播速度为无穷大，从而可以近似将很多

物体看成刚体。当然，大家以后学广义相对论就能发现，在广义相对论中

可以有流体模型，但刚体模型是没有的，道理就是刚才讲过的道理。

我们可以将刚体的运动看成是由3个独立分量的平动叠加上绕某个

点O(比如质心)的转动。对于平动的分析来说，完全可以把整个刚体看成单
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第八章 刚体的运动 3

个质点而不需要引入任何新的知识，需要仔细讨论的是刚体绕某个点O的

转动。忽略平动以后我们可以认为O是固定的，从而这就是刚体的定点转

动。我们将会看到，描述刚体定点转动也需要3个变量，因此加上3个平动

自由度，刚体的总自由度数目为6。

(说明一下，本章不再区分上下指标，但依然使用求和约定，即是说，

只要表达式中出现了两个重复指标我们就默认对它求和，不再要求这两个

指标分别为上下指标。)

8.1 运动学

8.1.1 刚体转动的位形空间

为了考察刚体绕某个固定点O的转动，我们以O为坐标原点，引入两种

坐标系，其一是固定在空间的空间坐标系，记它的三个坐标分量的单位矢

量为ẽa, a = 1, 2, 3。另一种坐标系是固定在刚体上随着刚体一起转动的刚

体坐标系，其三个坐标分量的单位矢量记为ea, a = 1, 2, 3，如图(8.1)所示。

很显然，这些基矢量满足如下关系

图 8.1: 空间坐标系和刚体坐标系。

ẽa · ẽb = ea · eb = δab. (8.2)

由于刚体坐标系是活动坐标系，所以其矢量基{ea}实际上依赖于时间，有
时候记为{ea(t)}。
很明显，刚体的取向状态(称作刚体的位形)完全由刚体坐标系矢量基

的取向{ea}确定。从而刚体的位位位形形形空空空间间间(记记记为为为C)就是刚体坐标系所有可能
取向所构成的空间。
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给定刚体坐标系的一个取向{ea}，我们可以把它在空间坐标系{ẽa}中
作矢量展开，即(注意，式中有默认的求和)

eb = ẽaRab. (8.3)

很显然，展开系数Rab构成一个3 × 3的矩阵，相应的矩阵形式可以记为R。

容易证明R必定为正交矩阵，这是因为

δab = ea · eb = ẽcRca · ẽdRdb = RcaRcb = (RTR)ab, (8.4)

这就说明RTR为单位矩阵，从而R为3 × 3的正交矩阵。而且，由于刚体坐

标系和空间坐标系均为右手系，因此其变换矩阵的雅可比行列式必定为1，

这就说明det(R) = 1，从而排除了det(R) = −1的情形。综上可知，刚体坐

标系的所有可能取向和行列式等于1的正交矩阵一一对应。从而刚体的位形

空间就等价于所有行列式等于1的正交矩阵的集合。通常称这种正交矩阵为

特殊正交矩阵(Special Orthogonal Matrix)并记它们的集合为SO(3)。从而

即有，刚体的位形空间C等于SO(3)，即

C = SO(3). (8.5)

3× 3的矩阵有9个矩阵元，但是考虑到正交矩阵的条件RTR = 1，因此

这9个矩阵元要满足6个独立的限制方程，从而真正独立的参数只有3个。即

是说，集合SO(3)可以用3个参数来参数化，从而刚体的位形空间C也可以
用3个广义坐标来参数化，怎么选择这3个参数是后面会进一步讨论的内容。

正因为C是3维的，所以前面我们说刚体有3个转动自由度!

8.1.2 角速度矢量

由于刚体坐标系{ea}随着刚体一起运动，这就在位形空间C中画出一条
路径{ea(t)}, 因此当然可以计算ėa(t)。我们将ėa 在刚体系{ea}中展开，即
设

ėa = ωacec, (8.6)

式中ωac为展开系数。可以证明，它必然满足

ωab + ωba = 0, (8.7)
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即ωab关于两个指标反对称。证明如下：首先，我们将方程(8.6)点乘eb，得

到

eb · ėa = ωab. (8.8)

其次，我们将方程ea · eb = δab对时间求导，注意到右边δab是常数，对时间

求导等于零，从而即有

ėa · eb + ea · ėb = 0 ⇒ ωab + ωba = 0. (8.9)

进一步利用3维空间特殊的列维-西维塔符号1ϵabc，即可以定义角速度

矢量，其在刚体坐标系中的分量ωa为

ωa =
1

2
ϵabcωbc ⇔ ωbc = ϵabcωa, (8.10)

上面我们利用了列维-西维塔符号的恒等式ϵabcϵade = δbdδce − δbeδcd。进而就

可以将方程(8.6)重写为

ėa = ωacec = ϵacbωbec = −ϵabcωbec. (8.11)

或者也可以将这个式子写成

ėa = ω⃗ × ea, (8.12)

式中ω⃗就是角速度矢量，其定义为ω⃗ = ωaea。在(8.12)式的推导过程中，我

们也利用了关系式ea × eb = ϵabcec。由(8.12)式可以知道，刚体上一个位置

矢量为x = xaea的质点的速度为，

ẋ = ω⃗ × x, (8.13)

为了得出这个结果我们只需注意这个质点在刚体坐标系中的坐标分量xa是

不变的。

以上结果也可以用更直观的方式推导出来。为此我们假设刚体在δt的

无穷小时间内绕着某个瞬时转轴n⃗转过一个无穷小角度δϕ，记n⃗δϕ = δ⃗ϕ。

如图(8.2)所示，设刚体上的矢量x转到了x′, 改变量为δx = x′ − x。 从图

中很容易看出|δx| = δϕ|x| sin θ, 也容易看出δx的方向正好是n⃗叉乘x的方向，

因此即有

δx = δ⃗ϕ× x. (8.14)

1参见第2章的相关部分
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图 8.2: 绕瞬时转轴旋转δϕ角。

将这个式子除以δt即得(8.13)式，其中

ω⃗ =
δ⃗ϕ

δt
=
δϕ

δt
n⃗. (8.15)

这正给出了角速度矢量的直观含义。值得强调的是，转轴n⃗通常不固定，而

是会随着时间改变。

8.2 惯量张量

8.2.1 惯量张量

这一节我们要介绍刚体转动最重要的概念之一，叫做惯量张量。它其

实是大家在力学中学过的转动惯量概念的推广，不过在力学中我们只分析

转轴固定的定轴转动，所谓转动惯量描述的就是刚体绕这个固定转轴的转

动惯性。但现在我们研究的转动其转轴并不固定，从而描写转动惯性的量

就要更复杂，要推广成所谓的惯量张量。

为了引入惯量张量，让我们计算一下刚体转动时的动能，

T =
∑
i

1

2
miẋ

2
i =

∑
i

1

2
mi

(
ω⃗ × xi

)2
=

∑
i

1

2
mi

[
(x2

i )(ω⃗
2)− (xi · ω⃗)2

]
=

1

2
Iabωaωb. (8.16)
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式中Iab为

Iab =
∑
i

mi

[
(x2

i )δab − (xi)a(xi)b
]
, (8.17)

其中(x)a表示矢量x在刚体坐标中的第a分量，即(x)a = xa。很显然，Iab关

于两个指标是对称的，它可以看成是一个对称矩阵I的矩阵元。人们通常

把Iab称作惯惯惯量量量张张张量量量的的的分分分量量量形形形式式式，简称为惯量张量。对于刚体质量连续分布

的情况，惯量张量I为，

I =

∫
dτρ(x)

y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 . (8.18)

值得强调的是，惯量张量是在刚体坐标系中定义的，并且从上面的表达

式很容易看出，Ixx = I11就是绕e1轴(即x轴)定轴转动的转动惯量，Iyy =

I22和Izz = I33分别是绕e2轴和e3轴的转动惯量，可见惯量张量的确是转动

惯量的推广。

但是刚体坐标系的选取有任意性，我们当然可以将刚体坐标系重新

选取为e′a = Oabeb，这里O为正交矩阵。注意到角速度矢量ω⃗应该与刚体

系的选取无关，即ω⃗ = e′aω
′
a = eaωa，从而新刚体坐标下的角速度分量必

为ω′
a = Oabωb。进一步，刚体转动动能T当然也与刚体坐标的选取无关，

从而即有I ′abω
′
aω

′
b = Iabωaωb, 由此可知新坐标下惯量张量的分量I

′
ab 必定

为I ′ab = OacObdIcd。即是说，在坐标系的正交变换下，惯量张量按照如下方

式变换

Iab → I ′ab = OacObdIcd, (8.19)

或者我们也可以用矩阵形式将这个变换关系写成

I → I′ = OIOT . (8.20)

在线性代数中这种变换也称作矩阵I的正交变换。

而I是一个对称矩阵，根据线性代数的知识可以知道，它必定可以正交

变换为一个对角矩阵，其对角元就是I的本征值。换言之，我们总可以选择

一个合适的刚体坐标系,在这个坐标系中，惯量张量表现为对角的形式，即

I =

I1 I2

I3

 . (8.21)
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这样的刚体坐标系就称作惯量主轴坐标系，它的三个正交的坐标轴就是惯

量主轴，惯量张量在惯量主轴坐标系中的对角元I1, I2, I3就称之为主转动惯

量。对于一个有对称性的刚体，其对称轴通常是惯量主轴。另外，由于转

动动能1
2
Iabωaωb总大于等于零，所以矩阵I是半正定的，从而主转动惯量必

定大于等于零，即I1 ≥ 0, I2 ≥ 0, I3 ≥ 0。

举例：薄圆盘

考察一个半径为R厚度可以忽略的薄圆盘，假设它绕其中心转动。根

据对称性我们可以找到圆盘的3个惯量主轴，分别为沿着盘面的e1, e2轴，

以及垂直盘面的e3轴，如图(8.3)所示。 根据对称性很明显有I1 = I2, 即

图 8.3: 薄圆盘的惯量主轴。图片来自David Tong,《classical dynamics》

I1 = I2 =

∫
dτρx2 =

∫
dτρy2 =

1

2

∫
dτρ[x2 + y2] =

1

2
I3. (8.22)

式中ρ = m/(πR2)为质量面密度，dτ为面积元。很容易算出上面的面积分，

进而得

I3 =
1

2
mR2 = 2I1 = 2I2. (8.23)

刚体的角动量

下面来讨论一下如何用惯量张量和角速度分量来表达出刚体转动的角
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动量J。为此进行如下推导

J =
∑
i

mixi × ẋi =
∑
i

mixi × (ω⃗ × xi)

=
∑
i

mi

[
x2
i ω⃗ − xi(xi · ω⃗)

]
. (8.24)

我们可以在刚体坐标系中考察J的分量形式J = Jaea，则从上面的表达式容

易看出

Ja = Iabωb. (8.25)

从这个表达式可知，对于刚体定点转动而言，一般来说，其角速度矢量的

方向和角动量的方向并不相同，而是相差一个线性变换。特别的，在惯量

主轴坐标系中，我们有

J1 = I1ω1, J2 = I2ω2, J3 = I3ω3. (8.26)

8.2.2 平行轴定理

惯量张量的定义依赖于坐标原点，也就是固定点O。O点原则上可以任

意，但有一个点比较特殊，那就是质心C。假设我们先在质心C处建立质心

刚体坐标系，然后再将这个刚体坐标系平移到O点，我们想问，刚体绕C点

转动和绕O点转动的惯量张量的关系是什么？不妨设O相对于质心的位置

矢量为a，设质点在质心系中的位置矢量为x′，在平移后的O点坐标系中的

位置矢量为x，很显然x = x′ − a。另外，不妨记绕质心C转动的惯量张量

为I
(c)
ab，记绕O点转动的惯量张量为Iab，则有

Iab =
∑
i

mi

[
(xi)

2δab − (xi)a(xi)b
]
=

∑
i

mi

[
(x′

i − a)2δab − (x′
i − a)a(x

′
i − a)b

]
=

∑
i

mi

[
(x′

i)
2δab − (x′

i)a(x
′
i)b

]
+
∑
i

mi

[
(a)2δab − (a)a(a)b

]
− 2a ·

∑
i

(mix
′
i)δab +

∑
i

mi

[
(x′

i)a(a)b + (x′
i)b(a)a

]
= I

(c)
ab +m

[
(a)2δab − (a)a(a)b

]
.

上面的推导过程中利用了质心系的定义
∑

imix
′
i = 0，式中的m =

∑
imi代

表刚体的总质量。不妨将最后的结果重写一遍

Iab = I
(c)
ab +m

[
(a)2δab − (a)a(a)b

]
. (8.27)
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这个结果就是所谓的平行轴定理。值得注意的是，平行轴定理中多出来的

项m
[
(a)2δab − (a)a(a)b

]
正好是刚体的质量全部集中在质心时绕O点的惯量

张量。

8.2.3 同时考虑平动和转动

前面说过，刚体的一般运动可以分解成质心的平动叠加上绕质心的转

动。但是前面仅仅只考虑了转动，为了同时考虑转动和平动，我们假定刚

体坐标系是一个质心系，它的坐标原点(即质心)相对于空间坐标系在运动。

记质心在空间坐标系中的位置矢量为xc，记刚体上的质点在刚体坐标系中

的位置矢量为x′
i，而在固定的空间坐标系中的位置矢量为xi, 很显然

xi = x′
i + xc. (8.28)

由于刚体绕质心的转动，我们有

ẋ′
i = ω⃗ × x′

i, (8.29)

因此刚体坐标系中的一切分析都和前面一样。

下面我们来计算一下同时考虑质心平动和刚体绕质心转动时刚体的动

能，

T =
∑
i

1

2
miẋ

2
i =

∑
i

1

2
mi(ẋ

′
i + ẋc)

2

=
∑
i

1

2
mi(ẋ

′
i)
2 +

∑
i

miẋ
′
i · ẋc +

1

2
mẋ2

c

=
1

2
Iabωaωb +

1

2
mẋ2

c . (8.30)

式中m =
∑

imi，上面的推导过程中利用了
∑

imiẋ
′
i = d(

∑
imix

′
i)/dt = 0

(因为对于质心系
∑

imix
′
i = 0)。由此可见，刚体的总动能等于质心平动动

能加上刚体绕质心转动的动能。因此分析刚体的一般运动时，我们可以将

质心的平动与绕质心的转动独立分析。

8.3 欧拉陀螺

现在我们来研究一个不受外力矩作用的刚体的转动，它可以是一个绕

着固定点自由转动的刚体，甚至也可以是一个悬挂在太空中的星星。在后
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面这种情况中，假设我们不关心星星质心的运动，仅仅关心星星绕质心的

自由转动。欧拉最早研究了这样的自由转动，所以人们也常常称这种自由

转动的刚体为欧拉陀螺。由于不受外力矩，所以欧拉陀螺的空间角动量是

守恒的，即满足

dJ

dt
= 0. (8.31)

现在，将J在刚体坐标系中表达为J = Jaea, 则有

dJa
dt

ea + Ja
dea
dt

= 0

⇒ dJa
dt

ea + Jaω⃗ × ea = 0. (8.32)

现在，我们取惯量主轴坐标系，从而J1 = I1ω1, J2 = I2ω2, J3 = I3ω3, 则可

以算得上面方程的分量形式

I1ω̇1 + ω2ω3(I3 − I2) = 0

I2ω̇2 + ω3ω1(I1 − I3) = 0

I3ω̇3 + ω1ω2(I2 − I1) = 0. (8.33)

这一组方程就是所谓的欧拉方程。

顺带说一下，欧拉方程虽然常常用来研究自由转动的欧拉陀螺，但它

也可以推广到受力矩作用的刚体，这时候方程(8.33)的右边就不再为零，而

分别是力矩的三个分量。

欧拉方程也可以在哈密顿力学框架下推导出来，为此只需要注意两点：

其一，角动量各分量满足如下代数关系

[Ja, Jb] = −ϵabcJc. (8.34)

注意这个代数关系和前面第五章讲泊松括号时作为例子推导出来的角动量

代数关系差一个负号。这是因为，第五章的那个代数关系各分量是相对于

空间固定坐标系而言的，而现在的各分量是相对于转动的刚体坐标系的，

即现在Ja = ea · J, 因此也需要考虑到矢量ea本身是变量。最后再利用第五

章中的标准角动量代数，推导出来的就是(8.34)式，推导虽不算难，但过程

稍微有些长，我们留给感兴趣的读者自行探索2。其二，需要注意到，在惯

2值得说明的是，角动量代数完全是由空间旋转的数学性质决定的，数学上只允许这两

种形式，就是第五章的形式以及这里多出一个负号的形式。
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量主轴坐标系中，欧拉陀螺的动能(从而也就是哈密顿量)为，

H =
3∑

a=1

J2
a

2Ia
. (8.35)

利用这两点，并代入物理量Ja的哈密顿运动方程J̇a = [Ja, H]，就可以算得

比如J̇1 = −J2J3
(

1
I2
− 1

I3

)
，代入J1 = I1ω1, J2 = I2ω2, J3 = I3ω3就可以得到

前面的欧拉方程。以上的推导说明，欧欧欧拉拉拉陀陀陀螺螺螺是是是一一一个个个哈哈哈密密密顿顿顿系系系统统统。

但是，欧拉陀螺作为哈密顿系统是不同寻常的，因为整个系统的基本

力学变量只有Ja, a = 1, 2, 3，这3个基本力学变量当然要参数化这个哈密顿

系统的相空间，但这就说明，欧拉陀螺的相空间是3维的！我们知道，通常

的相空间由于可以分解成正则坐标和正则动量，所以一定是2n维的，因此

欧拉陀螺不是通常的哈密顿系统。为了把它变成一个通常的哈密顿系统，

我们注意到J2 = J2
1 + J2

2 + J2
3与哈密顿量H泊松对易, 即

[J2, H] = 0. (8.36)

从而J2是这个哈密顿系统的守恒量，如此一来我们就可以把系统限制

在J2为常数的相空间球面S2上来考察问题，

J2 = J2
1 + J2

2 + J2
3 = C ≥ 0. (8.37)

我们可以把这个相空间球面S2看成限制以后的相空间，很显然它是2维的，

因此在S2上就能构成一个通常的哈密顿系统！不仅如此，这个限制以后的

哈密顿系统还是一个可积系统，因为作为一个相空间为2维的哈密顿系统，

它有一个守恒量，即H，所以当然是可积系统。

上述可积系统的相空间不变环面必定是一些闭合的相空间轨道，实际

上，这些相空间轨道可以由
∑3

a=1
J2
a

2Ia
= E的椭球面和上述S2的相交线决定，

即为(J1, J2, J3)空间中下面两个曲面的交线，

J2
1 + J2

2 + J2
3 = C ≥ 0.

J2
1

2EI1
+

J2
2

2EI2
+

J2
3

2EI3
= 1. (8.38)

假设I1 < I2 < I3, 那么这些相空间轨道如图(8.4)所示。从图中很容易

看出来，在J1和J3轴附近，相空间轨道为环绕坐标轴的圆周。这是因为，

J1, J3轴分别为椭球面的短轴和长轴，所以它和球面的交线当然为简单的圆
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周(请想象一下)。也即是说，如果欧拉陀螺绕着e1或者e3轴转动，那这种转

动将是稳定的，因为扰动它的话只相当于将相轨道扰动到J1或J3轴附近的

小圆周上，陀螺的转动大体上依然绕着e1或e3轴。但是，从图(8.4)中很容

易看出，J2轴附近的相轨道完全不同，绕着e2轴的转动完全不稳定！e2轴

就是转动惯量I2大小居中的轴，所以结论是，欧拉陀螺绕着转动惯量大小

居中的主轴转动是不稳定的！这个结论通常称作网网网球球球拍拍拍定定定理理理(tennis racket

theorem). 网球拍定理的直观演示非常有趣，请读者在知乎上搜索“网球

拍定理”，找一些相关的演示视频来看。

图 8.4: 欧拉陀螺的相空间轨道。图片来自Tom W.B. Kibble Frank H.

Berkshire，Classical Mechanics

特别的，如果所考察的欧拉陀螺是一个对称陀螺，有绕e3轴的旋转不

变性，从而I1 = I2 ̸= I3。那么相应的相空间轨道也将绕着J3轴旋转不变，

如图(8.5)所示。 这个结论也很容易通过直接求解欧拉方程来证明，求解并

不难，我们留给读者作练习。最后，请请请注注注意意意，以上所有相轨道描述的运动

都是相对于刚体坐标系的，而不是相对于空间坐标系的。

另一种证明网球拍定理的方法

另一种证明网球拍定理的方法是直接分析欧拉方程。同样，我们假
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图 8.5: 对称的欧拉陀螺的相空间轨道。图片来自Tom W.B. Kibble Frank

H. Berkshire，Classical Mechanics

设I1 < I2 < I3, 假设初始时刚体绕着e2轴转动，即

ω2 = Ω, ω1 = ω3 = 0. (8.39)

下面假设加上一个小扰动，扰动后

ω2 = Ω+ ϵ2, ω1 = ϵ1, ω3 = ϵ3, (8.40)

式中ϵ1, ϵ2, ϵ3为随时间演化的小量。将上面的ωa代入欧拉方程(8.33), 并保留

到一阶小量(即忽略ϵ2阶和更高阶小量)，即有

I1ϵ̇1 + Ωϵ3(I3 − I2) = 0

I2ϵ̇2 = 0

I3ϵ̇3 + ϵ1Ω(I2 − I1) = 0.

从上面方程中容易得到

ϵ̈3 +
Ω2

I1I3
(I2 − I3)(I2 − I1)ϵ3 = 0

⇒ ϵ̈3 + Aϵ3 = 0, (8.41)

式中A = Ω2

I1I3
(I2 − I3)(I2 − I1)。很显然，当A > 0时，这是一个小振动方

程，描写的是一个小振动，从而系统稳定。但是，当A < 0时，这个方程的

通解是指数增长的，从而不稳定。而按照我们的假设，I1 < I2 < I3，很显

然A < 0，这就证明了绕e2轴的转动是不稳定的！类似的证明也说明绕e1轴

和e3轴的转动是稳定的。这就证明了网球拍定理。
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8.4 欧拉角

8.4.1 欧拉角

前面说过，刚体转动的位形空间C是3维的，但是到现在为止我们一直

没有给出过这个位形空间的广义坐标。现在我们来介绍一种最常用的广义

坐标选取，即所谓的欧拉角。

我们要做的就是参数化刚体坐标{ea}的所有取向，或者等价地参数化
所有3× 3的特殊正交矩阵。以固定的空间坐标系为基准，刚体坐标系的一

个一般取向如图(8.6)所示。为了参数化刚体坐标系的取向，我们假设初始

时刚体坐标系与空间坐标系完全重合，然后按照下面3步旋转到达一般取

向，

{ẽa}
R3(ϕ)−−−→ {e′a}

R1(θ)−−−→ {e′′a}
R3(ψ)−−−→ {ea}. (8.42)

图 8.6: 刚体坐标系相对于空间坐标系的一般取向。图片来自David Tong，

Classical dynamics, 下面3幅图同样。

首先第一步，将与空间坐标系重合的刚体坐标系绕ẽ3轴旋转ϕ角，得

到e′a = ebR3(ϕ)ba, 其中矩阵R3(ϕ)为

R3(ϕ) =

cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 . (8.43)

如图(8.7)所示。
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图 8.7: 绕ẽ3轴旋转ϕ角。

第二步，将上面得到的{e′a}绕e′1轴旋转θ角，得到e′′a = e′bR1(θ)ba，其中

矩阵R1(θ)为，

R1(θ) =

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 . (8.44)

如图(8.8)所示。

图 8.8: 绕e′1轴旋转θ角。

第三步，将上一步得到的{e′′a}绕e′′3轴旋转ψ角，最终达到ea = e′′bR3(ψ)ba,

其中R3(ψ)为

R3(ψ) =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 . (8.45)
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图 8.9: 绕e′′3轴旋转ψ角。

如图(8.9)所示。

将三步联合起来，即有ea = ẽbRba(ϕ, θ, ψ), 式中

R(ϕ, θ, ψ) = R3(ϕ)R1(θ)R3(ψ). (8.46)

这三个角度ϕ, θ, ψ就是欧欧欧拉拉拉角角角，也就是我们要选取的转动位形空间广义坐

标。矩阵R(ϕ, θ, ψ)可以直接算出来，为cosψ cosϕ− cos θ sinϕ sinψ − cosϕ sinψ − cos θ cosψ sinϕ sin θ sinϕ

sinϕ cosψ + cos θ sinψ cosϕ − sinψ sinϕ+ cos θ cosψ cosϕ − sin θ cosϕ

sin θ sinψ sin θ cosψ cos θ

 .

任何一个特殊正交矩阵都可以表示成这种形式。

注意到3个欧拉角中，θ是e3轴与ẽ3轴的夹角，ϕ和ψ分别是绕ẽ3轴和

绕e3轴转动的角度，所以通常约定3个欧拉角的取值范围分别为

θ ∈ [0, π], ϕ ∈ [0, 2π], ψ ∈ [0, 2π]. (8.47)

8.4.2 角速度的欧拉角表示法

我们可以将刚体的旋转角速度用欧拉角表示出来。为此首先注意到，

根据上面的3步旋转，有

ω⃗ = ϕ̇ẽ3 + θ̇e′1 + ψ̇e3. (8.48)

下面只需将ẽ3和e′1用最终的刚体坐标{ea}表示出来。这并不难，首先根据
上面的3步，并利用矩阵R(ϕ, θ, ψ)的正交性，我们有ẽ3 = R3a(ϕ, θ, ψ)ea, 即

ẽ3 = sin θ sinψe1 + sin θ cosψe2 + cos θe3. (8.49)
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类似的，根据上面3步的第3步，也容易得到

e′1 = cosψe1 − sinψe2. (8.50)

进而即可以得到角速度在刚体坐标中的表达式，

ω⃗ = [ϕ̇ sin θ sinψ + θ̇ cosψ]e1 + [ϕ̇ sin θ cosψ − θ̇ sinψ]e2 + [ψ̇ + ϕ̇ cos θ]e3.

或者也可以写成

ω1 = ϕ̇ sin θ sinψ + θ̇ cosψ

ω2 = ϕ̇ sin θ cosψ − θ̇ sinψ

ω3 = ψ̇ + ϕ̇ cos θ. (8.51)

利用上面这个角速度的欧拉角表达式，我们就可以在解出ω1, ω2, ω3以

后，进一步把欧拉陀螺相对于空间坐标的转动情况用ϕ̇, θ̇, ψ̇表达出来，因

为三个欧拉角就是相对于空间坐标系定义的。

8.5 拉格朗日陀螺

欧拉陀螺通常可以指任何自由转动的刚体，而拉格朗日陀螺则通常指

的就是小朋友们玩的陀螺。如图(8.10)所示，假设这个陀螺绕固定点P转

动，其质心到P点的距离为l, 并且陀螺当然受重力的作用。很显然，这样

的陀螺有一个对称轴，它绕这个对称轴旋转不变，这个对称轴当然是惯量

主轴，记为e3，由于旋转不变性，与e3垂直的另两个主轴可以任意选，只

要两者相互垂直就行。显然，I1 = I2 ̸= I3，即是说拉格朗日陀螺是一个对

称陀螺。三个欧拉角如图(8.10)所示，其中ϕ的运动称为进动，θ的运动称为

章动，ψ的运动则称为自转。

很容易写出欧拉陀螺的拉格朗日量，为

L =
1

2
I1(ω

2
1 + ω2

2) +
1

2
I3ω

2
3 −mgl cos θ

=
1

2
I1
(
θ̇2 + sin2 θϕ̇2

)
+

1

2
I3
(
ψ̇ + cos θϕ̇

)2 −mgl cos θ. (8.52)
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图 8.10: 绕固定点P转动的陀螺。图片来自David Tong, classical dynamics,

下图同。

很容易求出与3个欧拉角对应的广义动量，为

pθ =
∂L

∂θ̇
= I1θ̇

pψ =
∂L

∂ψ̇
= I3(ψ̇ + cos θϕ̇) = I3ω3 = J3

pϕ =
∂L

∂ϕ̇
= I1 sin

2 θϕ̇+ I3 cos θ(ψ̇ + ϕ̇ cos θ)

= I1 sin
2 θϕ̇+ cos θpψ. (8.53)

利用这些广义动量，就可以将系统的能量E表达成哈密顿量

E =
1

2
I1
(
θ̇2 + sin2 θϕ̇2

)
+

1

2
I3
(
ψ̇ + cos θϕ̇

)2
+mgl cos θ

⇒ H =
p2θ
2I1

+
(pϕ − pψ cos θ)

2

2I1 sin
2 θ

+
p2ψ
2I3

+mgl cos θ. (8.54)

由于这个哈密顿量的表达式与ϕ, ψ无关，所以显然有

[pϕ, H] = [pψ, H] = 0. (8.55)

从而系统有三个相互泊松对易的守恒量pϕ, pψ, H。而这又是一个自由度数

为3的哈密顿系统，从而拉格朗日陀螺是是是一一一个个个可可可积积积系系系统统统。



第八章 刚体的运动 20

由于pϕ, pψ守恒，而且哈密顿量不显含ϕ, ψ，所以我们可以先忽略ϕ, ψ的

运动，进而将上述系统约化为单个自由度θ的系统，约化系统的哈密顿量为

H =
p2θ
2I1

+ U(θ), (8.56)

式中约化系统的势能U(θ)由下式给出

U(θ) =
(pϕ − pψ cos θ)

2

2I1 sin
2 θ

+
p2ψ
2I3

+mgl cos θ. (8.57)

约化系统当然也是可积系统，其守恒量就是能量，

1

2
I1θ̇

2 + U(θ) = E. (8.58)

这就是一个标准的一维问题，我们在第一章中就已经学会如何对这样的问

题进行积分了。根据第一章的分析可以知道，θ的运动范围必定在U(θ) ≤
E的区间上。

我们可以画出U(θ)的势能曲线。注意到当θ → 0, π时，U(θ) → ∞(除

非pϕ = ±pψ，这种例外我们后面再分析)，并且根据微积分知识可以证

明U(θ)只有一个极小值，记为θ0，所以势能曲线必定如图(8.11)所示。 给

图 8.11: U(θ)的势能曲线。图片来自Kibble, classical mechanics, 下面3幅图

同样。

定能量E，很显然，θ必定在[θ1, θ2]的区间上来回运动，如图(8.11)所示。当

然，如果能量水平线E和势能曲线在最低点相切，那θ就只能等于θ0，这种

情况描述的就是一个以固定倾斜角度θ0绕着竖直轴稳定进动的陀螺。
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按照一维问题求解完θ(t)的运动以后，就可以进一步求ϕ, ψ的运动，方

程如下

ϕ̇ =
∂H

∂pϕ
=
pϕ − pψ cos θ

I1 sin
2 θ

ψ̇ =
∂H

∂pψ
=
pψ
I3

− cos θ
pϕ − pψ cos θ

I1 sin
2 θ

. (8.59)

习惯上常常将θ, ϕ的运动画在两维球面上，以θ为球面的纬度，以ϕ为球面的

经度。ϕ的运动就是陀螺的进动，而θ在[θ1, θ2]区间上的来回运动就是陀螺

的章动。很显然，这个球面上的运动轨迹也就是陀螺转轴e3的运动轨迹。

从公式(8.59)可以看出，进动角速度ϕ̇ = 0当且仅当θ = arccos(pϕ/pψ),

如果这个角度落在[θ1, θ2]的区间之外，或者|pϕ/pψ| > 1，那在整个[θ1, θ2] 区

间上进动角速度ϕ̇将不会改变正负号，即陀螺永远按照一个方向进动。这

时候在(θ, ϕ)球面上，e3轴的运动轨迹必定如图(8.12)所示。

图 8.12: 陀螺永远按照一个方向进动的情形。

反过来，如果θ1 < arccos(pϕ/pψ) < θ2，那随着陀螺的章动，其进动

角速度将会变号，因此陀螺在纬度靠近θ1那一端的进动方向就和纬度靠

近θ2那一端的进动方向相反，从而e3轴的运动轨迹必定如图(8.13)所示(注

意e3轴总是顺着这条轨迹运动)。

特别的，如果arccos(pϕ/pψ) = θ1，那e3轴的轨迹线在θ1的那一端就会

退化为尖点，如图(8.14)所示。在那些尖点上，陀螺的章动速度θ̇ = 0, 进动

角速度ϕ̇也等于零，从而陀螺的动能达到最小。这种情形当我们让陀螺转

动但是初始时自转轴e3瞬时静止就会出现。 值得注意的是，e3轴的轨迹曲

线不会在θ2处变为尖点，原因在于，一个初始时转轴瞬时静止的陀螺无法

自动抬高其自转轴。
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图 8.13: 陀螺的进动不断改变方向的情形。

图 8.14: 初始时自转轴瞬时静止的陀螺运动。

转轴垂直的陀螺

下面来分析一种重要的特殊情况，即陀螺的自转轴e3垂直且保持不变

的转动，也即θ恒等于零的情形。我们要分析什么时候这种转动是稳定的，

什么时候会转化为上面分析的有章动的一般情形。首先，从U(θ)的表达式

容易看出，θ = 0能出现就意味着必定有pϕ = pψ = J3，因为否则θ = 0时必

有U(0) = ∞从而不可能。
下面在U(θ)的表达式中取pϕ = pψ = J3，从而有

U(θ) =
J2
3

2I1
tan2(

1

2
θ) +

J2
3

2I3
+mgl cos θ. (8.60)

为了研究θ = 0的稳定性，我们将这个势能表达式在θ = 0处泰勒展开到二
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阶小量，即有

U(θ) =
( J2

3

2I3
+mgl

)
+

1

2

( J2
3

4I1
−mgl

)
θ2 + ... (8.61)

很显然，如果

J2
3

4I1
−mgl > 0 ⇒ ω2

3 >
4I1mgl

I23
= ω2

0, (8.62)

那θ = 0就是势能的极小值，从而系统就是稳定的。即是说，如果角速

度ω3 > ω0，那转轴垂直就是稳定的！但是反过来，如果|ω3| < ω0，那θ =

0就是势能的极大值，从而转动就是不稳定的。

对于一个真实的陀螺来说，我们可以给它一个很大的角速度ω3, 让它

一直绕着垂直的转轴转动，但是摩擦力会逐渐将角速度降下来，当ω3 <

ω0时，陀螺就开始章动和进动了。
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