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第六章 哈密顿系统中的规则与混

沌

陈陈陈童童童

前面我们讲过对称性与守恒定律的关系，也说明过对称性如何决定系

统的作用量。其实，对称性还强烈地限制着哈密顿力学系统的动力学行为。

一个系统的对称性越高，其动力学行为就越呈现出规则性，而对称性的降

低就可能导致混沌。相反，一个系统的行为越表现出规则性往往就意味着

它有越高的对称性，不过这个对称性可能是隐藏的。

另一方面，连续对称性总是对应着守恒量，也就是与哈密顿量泊松对

易的物理量1。因此，如果一个力学系统有越多的守恒量，其动力学行为就

会越规则，而守恒量的不足也是力学系统呈现混沌行为的必要条件。本章

我们将从最规则的力学系统(也就是所谓的可积系统)出发，逐步探讨哈密

顿力学系统如何从规则过渡到混沌。

6.1 最规则的哈密顿系统-可积系统

动力学行为最规则的哈密顿系统是所谓的可积系统，也称作刘维尔可

积系统。这个概念上一章已经引入了，假设我们考察的是一个n自由度的

哈密顿系统，那么可积的定义是，存在n个泊松对易的独立守恒量，不妨记

1假设不显含时间。
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这些守恒量为Ga, a = 1, 2, 3..., n，它们满足[H,Ga] = 0。所谓泊松对易即满

足

[Ga, Gb] = 0, (6.1)

而所谓独立即满足

dG1 ∧ dG2 ∧ ... ∧ dGn ̸= 0. (6.2)

对于2n维相空间，不可能有超过n个相互独立且泊松对易的守恒量。由于

哈密顿量H本身也是守恒量2，而且它和所有Ga均泊松对易，因此这意味

着H不是独立的，而必然是Ga的函数。实际上，后面将看到，H完全由这

些Ga决定，不再依赖于更多的独立变量。

6.1.1 不变环面

由于Ga是守恒量，因此系统在相空间的运动轨道一定会被限制

在Ga, a = 1, 2, ..., n取常数值的n维超曲面上，不同的取值就将相空间分

层成不同的超曲面，不妨记Ga = ga, a = 1, 2, ..., n的那一层超曲面为Mg。

可以证明，如如如果果果Mg连通且有限(用数学术语来说即紧致)，那它一定可以参

数化为n维环面Tn = S1 × S1 × ...× S1, 即Mg = Tn，称作相空间的不变环

面，不变的意思是，系统始终在这个环面上运动。图(6.1)中所示的就是一

个两维环面T2。

图 6.1: 相空间的不变环面。图片来自Tom W.B. Kibble and Frank H.

Berkshire, Classical Mechanics(下图同)。

2我们仅考虑H不显含t的情形。
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为了证明上一段的这个结论，我们引入相空间坐标x = (q, p), 并

以xi, i = 1, 2, ..., 2n来表示它的各分量。很显然，等Ga面Mg的法向就

是Ga的梯度方向，即有
∂Ga

∂x
, a = 1, 2, .., n均垂直于Mg。另一方面，我们

取Ga, a = 1, 2, .., n为生成元，让它们在相空间生成相流，并记相应的相流

参数为λa，即有相流方程

dxi

dλa
= viGa

= ωij∂jGa, (6.3)

式中viGa
表示相应相流的速度场。很显然，总共有n个这样的相流，并且

由于Ga, a = 1, 2, .., n相互独立，所以这些相流的速度场是线性独立的。另

外，

viGb
∂iGa = (∂iGa)ω

ij(∂jGb) = [Ga, Gb] = 0, (6.4)

即这些相流的流动方向均与Ga的梯度方向相垂直！从而也即是说，这些相

流均是沿着曲面Mg流动的。当这n个线性独立相流流遍n维超曲面Mg时，

它们的参数λa, a = 1, 2, .., n就给出了Mg的一种坐标。而这些相流是可以一

直持续下去的，它们并没有边界。因此要么这组n维参数(λ1, λ2, ..., λn)的取

值范围都是(−∞,+∞), 从而相当于一个n维空间Rn, 要么，如果每个参数

的取值都有限的话，那每一个参数的取值范围都只能是在一个圆周S1上，

从而相当于一个n维环面Tn, 而这正是我们想要证明的结论。比如图(6.1)中

所画的两维环面T2上的坐标网就是由相流参数组(λ1, λ2)所参数化的。如此

就完成了整个证明。

Tn由n个圆周作笛卡尔积而成，每一个圆周对应一个拓扑独立的非平

凡回路，即不可以通过连续形变相互过渡也不可以连续收缩为一点的回

路，因此Tn上有n个拓扑独立的非平凡回路，不妨记为Ca, a = 1, 2, ..., n。

假设Mg = Tn, 则系统就在这个n维环面上运动，它在每一个独立回路Ca方

向都是周期性的，但是整个完整的相轨道却不一定是闭合轨道，因为这里

有两种不同的可能性。为了弄清楚问题，我们记系统在Ca方向的运动周期

为Ta，从而它在这个方向的角频率为ωa =
2π
Ta
。仔细考虑一下不难明白，如

果任何两个方向的角频率之比ωa/ωb 都是整数比，则各个方向的运动一定

有公共的周期，从而整个系统一定作周期性的运动，从而一定是闭合轨道，

图(6.2)中左图所画的就是这种情形。但是，如果这些角频率之比都是无理

数，那就没有公共的周期，也没有闭合轨道，实际上，这时候系统的相轨

道最终将密密布满整个Tn, 称作相轨道遍历整个不变环面，图(6.2)中右图

所画的就是这种情形。 一般来说，对于具有角频率ω⃗ = (ω1, ω2, ..., ωn)的
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图 6.2: 不变环面上的相轨道。

不变环面, 它不不不能能能被相应相轨道遍历的充要条件是，存在一组整数m⃗ =

(m1,m2, ...,mn) ̸= 0, 使得ω⃗ · m⃗ = m1ω1 +m2ω2 + ...+mnωn = 0。这个条件

称之为共振条件，满足共振条件的不变环面就是所谓的共振环面。

6.1.2 另一个刘维尔定理

刘刘刘维维维尔尔尔定定定理理理：：： 可积系统的相空间运动可以通过积分法求解。

类似的结论上一章我们其实证明过，但那个证明假定了能找到哈密

顿-雅可比方程的一组解析解。下面要给出的证明完全不依赖于这个假定，

相反，我们可以用证明得出的哈密顿正则方程的解析解构造出相应哈密

顿-雅可比方程的解析解，如何构造已经在上一章讲过了。

下面我们来证明这个刘维尔定理。证明的关键在于找到一组正则变换，

将相空间坐标由原来的x = (q, p)变换为x′ = (ψ,G)，式中G代表所有相互

泊松对易的守恒量Ga，它们是新的正则动量，ψ代表新的正则坐标ψ
a, a =

1, 2, ..., n。如果我们成功地做到这一步，那这首先证明了哈密顿量H只能

依赖于守恒量G, 不能依赖于ψ，这是因为0 = [H,Ga]x = [H,Ga]x′ = ∂H
∂ψa，

即 ∂H
∂ψa = 0。其次，如果我们成功找到这样的正则变换，则

Ġa = [Ga, H] = 0, ψ̇a = [ψa, H] =
∂H

∂Ga

= Ωa, (6.5)

式中Ωa定义为
∂H
∂Ga
，是一些仅仅依赖于G的量。从而我们就可以得到系统的

运动在这组新正则变量下的解

Ga(t) = Ga(0), ψa(t) = ψa(0) + tΩa. (6.6)
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将这组解变换回去，就能得到原来正则变量(q, p)下的解。如果这组正则变

换可以用某个积分表达式来生成，那我们就证明了能通过积分法得到系统

在原变量(q, p)下的解析解。这样就完成了想要的证明。

为了构造这组正则变换，我们注意到系统的运动总是限制在某层超曲

面Mg上，而Mg由Ga(q, p) = ga确定，因此我们可以反解出pa作为g, q的函

数，记为pa(g, q)。下面在Mg上任意选定一个参考点q0，并在Mg上考察一

条从q0到q的路径，然后将pa(g, q)dq
a沿着这条路径积分3。很明显，如果积

分的结果与具体的路径无关，而只与起末两点位置有关，那这个积分就定

义了一个函数F (G, q)，

F (G, q) =

∫ q

q0

pa(g, q)dq
a. (6.7)

很显然，这个函数满足

pa =
∂F

∂qa
, (6.8)

因此我们将之取为正则变换的第二类生成函数，进而将Ga看作新的正则动

量，并定义新的正则坐标为，

ψa =
∂F

∂Ga

. (6.9)

这样，所需的正则变换就构造出来了。唯一还需要证明的就是(6.7)式的积

分的确与具体路径无关！

要证明积分和路径无关，只需证明在Mg的闭合回路
4上的积分等于

零(请读者自己思考一下为什么是这样？ )，即证明
∮
padq

a|Mg = 0。但

是padq
a就是辛势Θ，因此就是要证明

∮
Θ|Mg = 0。根据斯托克斯公式，这

就是要证明 ∮
Θ|Mg =

∫
dΘ|Mg =

∫
ω|Mg = 0. (6.10)

3本章同样使用求和约定。
4假设它可以连续收缩成到q0点
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为此只需证明，辛形式限制在Mg上等于零，即ω|Mg = 0。这个证明如下，

ω|Mg =
1

2
ωij

dxi

dλa
dxj

dλb
dλa ∧ dλb

=
1

2
ωijv

i
Ga
vjGb

dλa ∧ dλb

=
1

2
ω(vGa , vGb

)dλa ∧ dλb

=
1

2
[Gb, Ga]dλ

a ∧ dλb = 0. (6.11)

上面的推导过程使用了上一章讲相流时推导的相关公式。到此为止就完成

了整个刘维尔定理的证明。

6.1.3 作用-角变量

如果可积系统的运动有限，从而其Mg = Tn，那就可以选择一组非

常有用的正则变量，称之为作用-角变量。其中作用变量通常记为Ia, a =

1, 2, .., n，是一组互相泊松对易的守恒量，它和原来的守恒量G互为函数关

系。Ia常常作为正则动量，与之对应的正则坐标记为θ
a，称作角变量。可

积系统的哈密顿量只是作用变量I的函数，记为H(I)。

作用变量的定义相应于不变环面Tn上的非平凡回路，对于每一个独立

非平凡回路Ca，可以定义相应的Ia如下

Ia =

∮
Ca

Θ

2π
=

∮
Ca

pbdq
b

2π
, (6.12)

由于Mg = Tn由原守恒量G定义，因此这样定义的Ia显然是G的函数。

进而我们也可以将不变环面刻画成Ia, a = 1, 2, ..., n取常数值的超曲面，

即Ia(q, p) = fa的超曲面，不同的f值就将整个相空间分层成不同的不变环

面。比如，第一章讲势能曲线的时候，实际上我们已经初步接触过一维情

形下的作用变量，在一维运动的情形中，相空间是两维的，而不变环面也

是一维的，就是一条闭合的相轨道，这时候作用变量就是这条相轨道包围

的面积除以2π，具体细节读者不妨往回翻看一下。

为了定义角变量θa，我们仿照对刘维尔定理的证明过程，首先通过反

解Ia(q, p) = fa, a = 1, 2, ..., n得出pa = pa(f, q)，进而引入正则变换的第二

类生成函数F (I, q), 定义如下

F (I, q) =

∫ q

q0

pa(I, q)dq
a. (6.13)
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进而即有

pa =
∂F

∂qa
, θa =

∂F

∂Ia
. (6.14)

θa之所以称作角变量，是因为它在回路Ca上以2π为周期，而在其它b ̸= a的

回路Cb上周期是零，即满足 ∮
Cb

dθa

2π
= δab. (6.15)

证明如下， ∮
Cb

dθa =

∮
Cb

∂2F

∂qc∂Ia
dqc

=
∂

∂Ia

∮
Cb

∂F

∂qc
dqc =

∂

∂Ia

∮
Cb

pcdq
c

= (2π)
∂Ib
∂Ia

= (2π)δab. (6.16)

类似于前面对刘维尔定理的讨论，作用变量和角变量满足的哈密顿正

则方程为

İa = 0, θ̇a =
∂H

∂Ia
= ωa(I), (6.17)

式中ωa(I)定义为
∂H
∂Ia
，为系统在Ca方向上运动的角频率。不仅如此，而且

第一章谈到的玻尔-索末菲量子化条件也可以推广为

Ia = na~, (6.18)

式中na为非负整数，是一个标记量子状态的量子数。假设我们以作用变量

和角变量为相空间的坐标，那玻尔-索末菲量子化条件将带来一个直观的相

空间图像，对于一维运动情形，它意味着相空间沿着θ轴可以划分成一个个

长为2π的区间，而沿着I轴可以划分成一个个长为~的区间，这样就可以将
整个相空间分成一些宽为2π，高为~, 从而面积为2π~，的小格子，称之为
相格。玻尔-索末菲量子化条件告诉我们，每一个相格对应一个量子状态。

推广到n自由度情形即是，相空间可以划分成一些体积为(2π~)n的相格，每
一个相格对应一个量子状态。
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6.1.4 开普勒问题和两维谐振子问题

开普勒问题

前面的章节中求解过粒子在中心力场V (r) = −k
r
(k > 0)中运动的问题，

也就是所谓的开普勒问题。我们知道，这个问题可以化简为一个平面运动

问题，相应的哈密顿量为

H =
p2r
2m

+
p2θ

2mr2
− k

r
. (6.19)

其中pθ就是角动量，有时候也记为J，它当然是一个守恒量，因此pθ与H泊

松对易。所以，我们有两个相互泊松对易的守恒量，H和pθ，而这又是

一个两自由度的两维运动问题，所以它构成一个可积系统。我们可以

选取H, pθ为正则动量(两者看成相互独立)，相应的两个正则坐标分别记

为ψH , ψθ。很明显

ψ̇H =
∂H

∂H
= 1, ψ̇θ = 0. (6.20)

由此即知道ψH = t− t0，ψθ为常数。

如果我们想进一步求出r, θ如何随时间演化，那根据刘维尔定理的证明

过程，就需要将守恒量H, pθ以及相应的两个正则坐标ψH , ψθ正则变换回去。

这个正则变换的生成函数(第二类生成函数)F (H, pθ, r, θ)为

F (H, pθ, r, θ) =

∫ (
prdr + pθdθ

)
=

∫
dr

√
2m

(
H − p2θ

2mr2
+
k

r

)
+ pθθ. (6.21)

这个生成函数按照下式生成正则变换

t− t0 = ψH =
∂F

∂H
=

∫
dr

m√
2m

(
H − p2θ

2mr2
+ k

r

)
ψθ =

∂F

∂pθ
= −

∫
dr

pθ/r
2√

2m
(
H − p2θ

2mr2
+ k

r

) + θ (6.22)

这里的ψθ就可以理解为初始角度θ0。读者可以将这个结果与第四章第五章

的相应结果进行比较，不同的方法结论是完全一致的。
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下面我们看看如何用作用-角变量处理开普勒问题。对于束缚运动(符

合运动区域有限的条件)，开普勒问题的两个作用变量I1, I2分别为

I2 =

∮
pθdθ

2π
= pθ

I1 =

∮
prdr

2π
=

1

2π

∮
dr

√
2m

(
H − p2θ

2mr2
+
k

r

)
=

1

π

∫ rmax

rmin

dr

√
2m

(
H − p2θ

2mr2
+
k

r

)
. (6.23)

式中对r的回路积分表示从下限rmin积到上限rmax，然后再积回下限rmin。

rmin, rmax由pr = 0确定，从而是方程H − p2θ
2mr2

+ k
r
= 0的两个根，两根之和

以及两根之积分别为

rmin + rmax = − k

H
, rminrmax = − p2θ

2mH
. (6.24)

由此也可以知道，必有总能量H < 0。为了进一步算出I1表达式中的积分，

我们可以利用如下公式∫ rmax

rmin

dr

√(
1− rmin

r

)(rmax
r

− 1
)
=
π

2
(rmin + rmax)− π

√
rminrmax. (6.25)

利用这些结果，不难算出

I1 = −I2 + k

√
m

−2H
. (6.26)

进而即有

H = − mk2

2(I1 + I2)2
= E. (6.27)

从上面的结果容易得到ω1 =
∂H
∂I1

= ∂H
∂I2

= ω2, 以及

ω1 = ω2 =
mk2

(I1 + I2)3
=
m

k

(
− 2E

m

)3/2
. (6.28)

这说明两件事情：第一，由于ω1/ω2 = 1是一个有理数，这说明粒子的

运动是一个周期运动，特别的，运动轨道是闭合轨道。第二，周期T =
2π
ω1

= (2π)km1/2
(
− 2E

)−3/2
, 这正是开普勒第三定律，这是因为半长轴a =

k
(
− 2E

)−1
, 所以T = (2π)

√
m
k
a3/2。
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两维谐振子问题

下面再考察一个例子，即一个两维谐振子，其哈密顿量为

H =
1

2

(
p21 + ω2

1q
2
1 + p22 + ω2

2q
2
2

)
. (6.29)

很显然系统1,2两个分量的哈密顿量都是守恒量，而且相互泊松对易，分

别记为H1, H2，H1 = 1
2

(
p21 + ω2

1q
2
1

)
, H2 = 1

2

(
p22 + ω2

2q
2
2

)
。同样很明显的是，

H1 = E1给出的是相空间(q1, p1)平面上的一个椭圆，椭圆在拓扑上当然等

同于圆周S1。同样H2 = E2也是(q2, p2)平面上的椭圆，也拓扑等价于S
1，

所以系统的运动正是限制在这两个S1的笛卡尔积上，这也就是相空间的不

变环面T2 = S1 × S1。所以这个系统当然是一个可积系统，人们不难按照

求解可积分系统的一般办法得出系统的解析解。不过，我们这里真正想讨

论的是如何构造这个系统的作用-角变量。

人们当然可以按照构造作用-角变量的一般方法找到这个系统的作

用-角变量，但这不是最快捷的方法。对于这个系统而言最快捷的方法就是

先找到参数化两个独立S1的角变量，然而通过正则变换进一步找到与角变

量对应的作用变量。具体来说，对于H1 =
1
2

(
p21 + ω2

1q
2
1

)
= E1的椭圆，我们

可以定义相空间的坐标变换

p1 = ρ1 cos θ1, ω1q1 = ρ1 sin θ1, (6.30)

式中θ1正是参数化这个椭圆的角变量，但满足ρ
2
1 = 2E1的ρ1却不一定是相

应的作用变量，因为上面的变换只是相空间的坐标变换，却不一定是正则

变换。同样，对于H2 =
1
2

(
p22 + ω2

2q
2
2

)
= E2的椭圆，我们也可以定义相空间

的坐标变换

p2 = ρ2 cos θ2, ω2q2 = ρ2 sin θ2, (6.31)

式中θ2也是一个角变量。

找到作用变量的关键是找到以上面两个角变量θ1, θ2为正则坐标的正则

变换，而找到正则变换的关键则是要求相空间的坐标变换保持辛结构。为

此我们进行如下计算

ω = dp1 ∧ dq1 + dp2 ∧ dq2
=

1

ω1

ρ1dρ1 ∧ dθ1 +
1

ω2

ρ2dρ2 ∧ dθ2

= d
( 1

2ω1

ρ21
)
∧ dθ1 + d

( 1

2ω2

ρ22
)
∧ dθ2. (6.32)
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从这个计算可以知道，只需令I1 =
1

2ω1
ρ21, I2 =

1
2ω2
ρ22, 就会有

ω = dp1 ∧ dq1 + dp2 ∧ dq2 = dI1 ∧ dθ1 + dI2 ∧ dθ2. (6.33)

这正是正则变换的保辛结构条件。也即是说，上面定义的I1, I2正是我们要

找的作用变量。

不妨将作用-角变量与原来变量之间的正则变换关系明显地写出来，

p1 =
√
2I1ω1 cos θ1, q1 =

√
2I1
ω1

sin θ1,

p2 =
√
2I2ω2 cos θ2, q2 =

√
2I2
ω2

sin θ2. (6.34)

很显然，H1 = I1ω1, H2 = I2ω2，从而

H = I1ω1 + I2ω2. (6.35)

利用作用-角变量的哈密顿正则方程，我们容易得到

θ̇1 =
∂H

∂I1
= ω1, θ̇2 =

∂H

∂I2
= ω2. (6.36)

从而即有θ1 = ω1t + φ1, θ2 = ω2t + φ2, 代回(6.34)式就可以得到原来的变

量q1, q2, p1, p2的解。

6.1.5 绝热不变量

作用变量还有一重身份，就是作为所谓的绝热不变量。为了讲清楚这

个问题，我们考虑一个一维系统，假设其势能曲线将系统约束在一个有限

的区间上作周期运动，从而其相空间的不变环面就是一条相空间闭合回

路C，拓扑上等价于S1。

进一步，再假设势能函数依赖于某个控制参数λ，记为V (q, λ)，因此系

统的哈密顿量为

H =
p2

2m
+ V (q, λ). (6.37)

现在，假设我们以几几几乎乎乎恒恒恒定定定的的的速速速率率率缓慢地调节参数λ，即让λ以几乎恒定的

速率随时间缓慢变化, 记为λ(t)，那这就变成了一个显含时间t的系统，能

量E因此不再守恒，而是也依赖于时间，记为E(t)。很显然，如果参数λ相
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对于系统的运动周期来说变化得足够缓慢，那系统将依然近似作周期运动，

但是它的各个物理量(比如能量)都将同时随时间缓慢变化。所谓的绝热不

变量，指的就是这样一个特殊物理量，它在参数的缓慢调节下保持不变！

下面我们将证明，作用变量I = 1
2π

∮
pdq就是一个绝热不变量。

首先，注意到在每一个瞬时均有E = p2

2m
+ V (q, λ), 从而

p =
√
2m

[
E − V (q, λ)

]
= p(q, E, λ), (6.38)

即我们将E和λ看成两个独立变量，并用它们表达出动量p。从而作用

变量I = 1
2π

∮
pdq也是E, λ的函数，记为I(E, λ)。随着参数的缓慢调节，

E和λ都将随时间缓慢变化，但是，这两者的变化并不相互独立，而是满足

Ė =
∂H

∂t
=
∂H

∂λ
λ̇. (6.39)

这使得这两种变化对作用变量I的贡献正好相互抵消，从而使I绝热不变。

下面我们就是要证明这一点。

为此，我们进行如下计算

İ =
∂I

∂E
Ė +

∂I

∂λ
λ̇ =

(
∂I

∂E

∂H

∂λ
+
∂I

∂λ

)
λ̇. (6.40)

根据第一章关于势能曲线的相关讨论可以知道，

∂I

∂E
=

T

2π
, (6.41)

式中T为系统的运动周期。另一方面，我们也有

∂I

∂λ
=

1

2π

∂

∂λ

∮
pdq =

1

2π

∮
∂p

∂λ
dq

=
1

2π

∫ T

0

∂p

∂λ

dq

dt
dt =

1

2π

∫ T

0

∂p

∂λ

∂H

∂p
dt. (6.42)

为了算出 ∂p
∂λ
，我们将p = p(q, E, λ)的表达式代入哈密顿量H(q, p, λ)，并将

等式H(q, p, λ) = E对独立变量λ求导，即有

∂H

∂λ
+
∂H

∂p

∂p

∂λ
= 0. (6.43)

将这个结果代入(6.42)式即有

∂I

∂λ
= − 1

2π

∫ T

0

∂H

∂λ
dt. (6.44)
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将这个结果和(6.41)式一起代入(6.40)式，即得

İ =

(
T
∂H

∂λ
−

∫ T

0

∂H

∂λ
dt

)
λ̇

2π
. (6.45)

我们看到，右边的两项已经接近了，并且呈现出抵消的趋势，但是，两者

还是有点差别。

下一步，我们将(6.45)式对一个运动周期求平均。任何一个物理

量A(t, λ)的周期平均记为A，定义如下

A =
1

T

∫ T

0

dtA(t, λ). (6.46)

很明显，如果我们考察İ，那右边的两项就正好抵消了！从而即有

İ = 0. (6.47)

从这个结果也容易得到

I(t+ T ) = I(t). (6.48)

也即是说，对于足够缓慢的参数调节来说，作作作用用用变变变量量量最最最多多多是是是以以以运运运动动动周周周期期期为为为

周周周期期期的的的函函函数数数，或者说作作作用用用变变变量量量在在在一一一个个个周周周期期期之之之内内内的的的平平平均均均变变变化化化率率率为为为零零零，这才

是前面我们说作用变量是绝热不变量的精确含义。注意到相对于参数变化

的时间尺度而言，运动周期T是非常短的，因此这其实是说，作用变量在

参数变化的时间尺度上近似不变。

以一维运动的谐振子为例，其哈密顿量为H = Iω，因此即使谐振子的

频率ω随时间缓慢变化，谐振子能量E与ω的比值E/ω 也近似保持不变。

实际上，历史上在从经典力学到量子力学的过渡过程中，人们首先注

意到了作用变量的绝热不变性，即注意到作用变量在参数的缓慢变化下保

持不变的性质，这使得人们自然假设它是一个量子化的量(因为量子化的量

不能连续变化，从而自然在参数的连续变化下保持不变)，由此人们才提出

作用变量的玻尔-索末菲量子化条件。

6.2 近可积系统与混沌系统

近可积系统与KAM定理

前面已经看到，对于有限区域内的运动，可积系统的相空间分层成不

同的不变环面Tn，并且我们可以将Tn的坐标取作角变量θ = (θ1, θ2, ..., θn)，
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将不同层的不变环面对应不同的作用变量I = (I1, I2, ..., In)。即是说，我们

可以用作用-角变量来描述可积系统，在这一描述下系统的哈密顿量仅为作

用变量的函数。

假设我们有一个可积系统H0(I)，现在我们给它加上一个微扰，使得整

个系统的哈密顿量变成

H(I, θ) = H0(I) + ϵH1(I, θ), (6.49)

式中ϵ代表一个小量，H1(I, θ)代表扰动，它不仅依赖于原来的作用变量同

时还依赖于原来的角变量。这个扰动以后的系统就是一个近可积系统。

起初人们认为，扰动会破坏可积系统的不变环面，使得原来n维不变

环面上的相轨道在扰动后弥漫到整个2n − 1维等能量曲面(注意，哈密顿系

统的能量守恒)。但是，1954年Kolmogorov 在世界数学家大会上指出：非

退化的可积系统在上述扰动之后，虽然某些不变环面会被扰动破坏掉(称

为共振环面)，但所谓满足强非共振条件的不变环面(这种不变环面占大多

数)仍然会被保存下来。也就是说近可积系统整个相空间中大部分的相轨道

依然是非常规则的！这个发现后来被Arnold和Moser 分别给予了严格的证

明，这就是著名的KAM定理。

证明KAM定理的基本办法是某种改进的牛顿迭代法。粗略地说，就

是找一系列的正则变换对扰动后得到的近可积系统进行步步变换，使

之越来越靠近一个可积系统(只要对大部分相空间区域能做到这一点就

行)。问题是，这个迭代展开在分母上依赖于ω⃗ · m⃗，ω⃗就是原来不变环面
的角频率，m⃗是任何形如(m1,m2, ...,mn)的整数组。因此这个展开对于共

振环面(即存在某个m⃗ ̸= 0使得ω⃗ · m⃗ = 0的不变环面)是不收敛的。不仅

如此，对于任何不变环面，实际上人们总可以选择m⃗，使得ω⃗ · m⃗任意接
近零，因此看起来这个迭代展开对于任何不变环面都不收敛，这就是所

谓的“小分母”困难。Arnold和Moser正是利用改进的牛顿迭代法解决了

“小分母”问题，证明对于满足所谓强非共振条件的不变环面，改进后

的迭代展开收敛，从而证明了KAM定理。对具体证明过程感兴趣的读者，

可以阅读Jurgen Poschel的文章A Lecture on the Classical KAM Theorem，

https://arxiv.org/abs/0908.2234v1。

在那些不变环面被扰动破坏的相空间区域，随着不变环面的破坏可能

发生两件事情：第一，系统的相空间轨迹可能会与邻近轨迹发生剧烈的甚

至随时间指数增长的偏离，从而导致对初始条件的极端敏感性和混沌行为。

第二，它可能使得系统演化缺乏可预测性。即使我们处理的是严格的确定
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性系统，它也可能产生有效的随机输出，从而使得系统丧失可预测性。

太阳系是否稳定呢？这个大问题曾经引发大量的工作，直到KAM定理

提供一个也许肯定的回答。太阳系是一个多体问题，具有明显的层次性，

其行星与行星之间的相互作用比行星与太阳之间的相互作用要弱得多，可

以看成是一个微扰。而行星与太阳的相互作用则是一个可积系统，其解就

是开普勒的椭圆轨道。因此太阳系是一个近可积系统，KAM定理可以适

用，由于这个原因，该系统的大体结构是稳健的！但是，我们并不能非常

确定目前的太阳系处在相空间的稳定区域。

混沌系统

假设我们考察的既不是可积系统，又不是近可积系统，而是一个一般

性的哈密顿系统，其泊松对易的守恒量的数目少于自由度数目n，甚至当

自由度数目n很大时大大少于n，比方说只有一个守恒量，即能量。那这时

候系统的动力学行为往往不再规则，而是常常会表现出混沌。

前面的章节中，我们讨论过不少这样的系统，这里不妨简单回顾一下。

首先，第二章的最后，我们讨论过双摆系统，那是一个两自由度的系统，

但是它只有一个守恒量，即能量。我们说过，当能量足够大时这个系统会

表现出混沌行为。其次，第四章我们讨论过受限三体问题，我们说过庞加

莱正是在研究受限三体问题时发现混沌的。具体到第四章中对受限三体问

题的那个简化模型，它显然是一个两自由度系统，但是只有能量这一个守

恒量，因此出现混沌行为也不奇怪。至于一般性的三体问题，显然它有9个

自由度，但是守恒量只有能量、总动量(三个分量)、还有总角动量(三个分

量)，共7个守恒量，而且相互泊松对易的守恒量实际上只有四个，所以当

然一般会展现出混沌行为。最后，第五章中我们考察过两维平面上的涡旋

系统，我们只找到3个相互泊松对易的守恒量，所以对于3个涡旋的情形，

那是一个可积系统，但是4个和4个以上涡旋的运动则通常是混沌的。


