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第五章 定态微扰论和变分法

陈陈陈童童童

像上一章那样可以精确求解而又重要的量子系统并不是随处可见。在

量子力学中，更多实际的系统都不可精确求解。这时候就需要发展近似计

算的方法。本章讨论两种重要的求解量子力学系统的方法，定态微扰论和

变分法。值得强调的是，它们不仅仅是数学上的方法，同时也是我们建立

物理图像的重要方法。而且，通过应用变分法，我们还介绍了相变和对称

性自发破缺的物理机制。

此外，本章还介绍了一种有效哈密顿量的方法，并用它讨论了与连续

谱耦合的离散态的衰变问题。
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第五章 定态微扰论和变分法 3

5.1 非简并定态微扰论

对于哈密顿量不显含时间的体系，最重要的就是求解定态薛定谔方程，

进而得到系统的能谱和能量本征态。但是，像线性谐振子和氢原子这样可

以精确求解的例子其实并不多见。大量的量子力学体系可能都要求助于数

值计算，比方说即使像氦原子这样的两个核外电子的体系都没有精确解，

而需要求助于计算机的帮助。但是数值求解常常有一个缺陷，那就是虽然

我们能求出一些可以和实验数据进行对比的值，但是背后隐藏的物理图像

却常常被掩盖了，这会使得我们对出现这些数值背后的物理机制缺乏了解，

这样我们就没有真正地解释实验现象，也没有真正地理解物理现象的本质。

当然，数值计算有时候也可以引导我们发现物理机制。但是在量子力学上，

还存在一大类物理图像比较清晰的求解定态薛定谔方程的方法。这就是我

们这里要介绍的定态微扰理论。

定态微扰理论之所以有比较清晰的物理图像，是因为它用来处理的是

这样一些问题。在这类问题中，我们可以把系统看成是一个相对简单的主

要部分加上一个比较复杂的微扰。其中这个相对简单的部分提供物理图像

的基础，也就是说，我们对于这个简单部分的了解是清楚的，我们已经通

过各种办法得到了这个部分的能谱和定态波函数，并在这个基础上发展了

我们的物理图像。复杂部分往往是阻碍我们发展物理图像的原因，但现在，

它只是对主要部分的一个微扰，因此我们就可以用微扰展开的办法逐级分

析这个微扰如何修正原来的能谱和定态波函数。由此我们也能进一步搞清

楚这个微扰的引入在微扰展开的每一级上给我们原来的物理图像带来了些

什么新的东西。这样我们就能以简单的主要部分的物理图像为基础得到整

个问题的一个相对清晰的物理图像。正因为如此，在量子力学中，定态微

扰论不仅仅是一个近似计算的方法，它同时也是一个建立物理图像的方法。

幸运的是，自然界中有大量物理体系都可以用类似这样的微扰论方法来得

到物理理解。不幸的是，微扰论的方法并不能处理所有的物理体系，的确

有一些系统是强耦合强关联的，这时候非微扰的方法将会变得很重要。然

而，在量子的世界中，目前人们还没有发展出一套像定态微扰论这样系统

的非微扰理论框架。可以说如何处理非微扰系统是许多物理学领域共同面

临的难题。
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5.1.1 未扰动的系统以及投影算符

假设我们有一个了解得很清楚的量子系统, 它的哈密顿算符我们记

作H0。所谓了解得很清楚，我们指的是，我们已经求出了H0的所有本征

值εm和相应的本征态|m⟩，

H0|m⟩ = εm|m⟩, (5.1)

不妨假定m = 1, 2, 3, .....。当然，我们可以将这些本征态取成是正交归一

的，即满足

⟨m|n⟩ = δmn. (5.2)

用这些正交归一的本征态我们可以构造一些被称为投影算符的特殊算符,

比方说我们可以定义

Pm = |m⟩⟨m|. (5.3)

很显然，Pm是一个厄米算符，而且P
2
m = |m⟩⟨m|m⟩⟨m| = |m⟩⟨m| = Pm，

即Pm满足

P 2
m = Pm, (5.4)

满足这种幂等关系的厄米算符就是投影算符。由于Pm|ϕ⟩ = |m⟩⟨m|ϕ⟩ =
⟨m|ϕ⟩|m⟩, 所以投影算符Pm的作用是，当它作用在任意态|ϕ⟩上时，都会
将这个态投影到|m⟩态上。由于正交性，我们很容易看出，当m ̸= n时，

PmPn = PnPm = 0, 这时候我们称这两个投影算符正交，并且这时候很容易

验证Pm + Pn也是一个投影算符。

一般的，对于正交归一本征态的任何一个子集S, 我们可以定义

PS =
∑
m∈S

Pm =
∑
m∈S

|m⟩⟨m|, (5.5)

很容易验证PS是一个投影算符(即满足P 2
S = PS)，它的作用就是将任意量

子态投影到由集合S里的所有本征态所张成的希尔伯特子空间里面，我们
常常简称这个子空间为PS子空间。假设我们记集合S⊥为集合S在所有正交
归一本征态全集中的补集，则很显然PS⊥也是一个投影算符，而且由于两

个集合中的态相互正交，所以PS⊥PS = PSPS⊥ = 0，并且由于S ∪ S⊥就是

所有本征态的全集，所以

PS⊥ + PS = 1, (5.6)
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这里的1 =
∑

m |m⟩⟨m|表示单位算符。正因为如此，我们常常将PS⊥记

作P⊥
S , 即P⊥

S = PS⊥，它的作用就是将量子态投影到PS希尔伯特子空间的正

交补空间。特别的，我们有投影算符P⊥
n ,

P⊥
n =

∑
m ̸=n

|m⟩⟨m|, (5.7)

它就是投影到除|n⟩态之外所有其余本征态所张成的希尔伯特子空间的投影
算符。由于涉及到的这些态都是H0的本征态，所以很显然

PnH0 = H0Pn, P
⊥
n H0 = H0P

⊥
n . (5.8)

5.1.2 布里渊-维格纳微扰论

现在，设想用一个所有矩阵元的取值都比较小的算符V扰动原来那个

系统H0，进而得到一个哈密顿算符为H = H0 + V的新系统。由于在很多情

况下V虽然是一个微扰，但是它可能是一个很复杂的算符，会在原来的系

统中引入很复杂的相互作用，因此精确求解H的本征谱和本征态可能就会

变得很困难。但鉴于我们已经了解清楚了原来的系统H0, 同时也鉴于V是

一个微扰，这时候我们往往可以用微扰展开的办法来处理新的系统H。

具体来说，假设在扰动之后，原来H0的本征态|n⟩变成了新系统的某个
相应本征态|ψn⟩，相应的本征值也变成En, 即

H|ψn⟩ = En|ψn⟩. (5.9)

假定原来的能量本征值εn和H0的其余本征谱之间存在着一个有限的谱隙，

即对于任何m ̸= n，|εn − εm| ≥ ∆ > 0。则，我们总是能够将|ψn⟩在分别
由Pn和P

⊥
n投影出来的两个正交且互补的空间中进行正交分解，通过合适地

调整量子态整体的未定系数，我们可以设

|ψn⟩ = |n⟩+ P⊥
n |ψn⟩. (5.10)

这个式子有很清楚的物理解释，|n⟩就是原来H0的第n个本征态，P
⊥
n |ψn⟩表

示由于V的引入而对这个态产生的扰动，|ψn⟩就是扰动之后新的H的相应本
征态，它由原来的|n⟩态加上扰动部分组成，当然，这种形式的|ψn⟩态是没
有归一化的。

为了从(5.10)式出发得到关于|ψn⟩态的微扰展开式，我们将本征态|ψn⟩所
满足的本征方程(5.9)重写为V |ψn⟩ = (En−H0)|ψn⟩,则P⊥

n V |ψn⟩ = P⊥
n (En−
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H0)|ψn⟩ = (En − H0)P
⊥
n |ψn⟩，由于H0在P

⊥
n子空间上的谱和En之间有一个

有限的谱隙，因此我们可以在这个子空间上求算符En −H0的逆算符
1，则

P⊥
n |ψn⟩ =

1

En −H0

P⊥
n V |ψn⟩. (5.11)

定义G⊥
0 (En) =

1
En−H0

P⊥
n =

∑
m̸=n

|m⟩⟨m|
En−εm = P⊥

n
1

En−H0
P⊥
n , 则将(5.11)代

入(5.10)式，我们可以得到关于|ψn⟩的一个方程

|ψn⟩ = |n⟩+G⊥
0 (En)V |ψn⟩. (5.12)

将这个方程进行迭代2，就可以得到

|ψn⟩ = |n⟩+G⊥
0 (En)V |n⟩+G⊥

0 (En)V G
⊥
0 (En)V |n⟩

+ G⊥
0 (En)V G

⊥
0 (En)V G

⊥
0 (En)V |n⟩+ .... (5.13)

这就是关于|ψn⟩按照微扰V进行级数展开的展开式。但是这个展开式依赖
于En，而到目前为止En的值还是未知的，所以下一步我们就是要给出计

算En的方程。

为此，将V |ψn⟩ = (En−H0)|ψn⟩左右两边分别和|n⟩作内积，利用⟨n|ψn⟩ =
⟨n|n⟩ = 1，就可以得到En − εn = ⟨n|V |ψn⟩, 进而代入|ψn⟩的微扰展开
式(5.13)就可以得到

En − εn = ⟨n|V |n⟩+ ⟨n|V G⊥
0 (En)V |n⟩+ ⟨n|V G⊥

0 (En)V G
⊥
0 (En)V |n⟩+ ...(5.14)

这当然是一个关于En的方程，通常可以通过将这个方程截断到有限项进而

求出En的一个近似解。

但是，我们也可以按照微扰迭代的办法不断逼近方程(5.14)的精确

解，具体来说即是：首先，每个V都是一个一阶小量。其次，我们设

想可以按照微扰小量的阶数逐渐逼近En的精确值。也就是，我们先算

出En的0阶近似E
(0)
n , 当然E

(0)
n = εn, 由E

(0)
n 加上一阶微扰，我们就能算

出En的包含一阶微扰的近似E
(1)
n , 忽略掉(5.14)式中的高阶微扰，很容易

看出E
(1)
n = εn + ⟨n|V |n⟩。由E(0)

n 和E
(1)
n 可以算出En的包含前二阶微扰的近

似E
(2)
n ，这时候我们要计算(5.14)式的二阶项⟨n|V G⊥

0 (En)V |n⟩, 但由于这一
项本身已经是微扰的二阶小量了，所以其中的En只需用0阶近似E

(0)
n 代入

1在整个希尔伯特空间上，算符En −H0可能有0本征值，从而不一定有逆算符
2即将公式(5.12) 理解成|ψn⟩i+1 = |n⟩ + G⊥

0 (En)V |ψn⟩i, i = 0, 1, 2, 3....., 并令|ψn⟩0 =

|n⟩
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即可，因此由(5.14)式忽略掉三阶以上的微扰，就有E
(2)
n = εn + ⟨n|V |n⟩ +

⟨n|V G⊥
0 (E

(0)
n )V |n⟩。同样的，由E(0)

n , E
(1)
n , E

(2)
n 又可以进一步算出En的包

含前三阶微扰的近似E
(3)
n ，为E

(3)
n = εn + ⟨n|V |n⟩ + ⟨n|V G⊥

0 (E
(1)
n )V |n⟩ +

⟨n|V G⊥
0 (E

(0)
n )V G⊥

0 (E
(0)
n )V |n⟩, 等等3，依此类推。很显然，假设这个过程收

敛的话，那么必有

lim
i→+∞

E(i)
n = En, (5.15)

En就是能量本征值的精确值。

即使没有算出En的精确值，得出这些En的近似值E
(i)
n 以后，代入|ψn⟩的

微扰展开式(5.13),我们也可以算出|ψn⟩的近似解，比如说|ψn⟩的包含前二阶
微扰的近似解|ψ(2)

n ⟩为，|ψ(2)
n ⟩ = |n⟩+G⊥

0 (E
(1)
n )V |n⟩+G⊥

0 (E
(0)
n )V G⊥

0 (E
(0)
n )V |n⟩。

当然，在实际中我们用得最多的是，能量本征值的直到二阶微扰为止

的近似E
(2)
n ，以及量子态的到一阶微扰为止的近似|ψ(1)

n ⟩, 由上面给出的微
扰展开方程以及G⊥

0 (En)的定义，我们可以得到

E(2)
n = εn + ⟨n|V |n⟩+

∑
m̸=n

⟨n|V |m⟩⟨m|V |n⟩
E

(0)
n − εm

= εn + ⟨n|V |n⟩+
∑
m̸=n

|⟨n|V |m⟩|2

εn − εm
. (5.16)

|ψ(1)
n ⟩ = |n⟩+

∑
m̸=n

|m⟩⟨m|V |n⟩
εn − εm

. (5.17)

人们通常用瑞利-薛定谔(Rayleigh–Schrodinger)微扰理论得到这两个结论，

但是瑞利-薛定谔微扰理论推广到更高阶会比较复杂，这里我们采用布里

渊-维格纳(Brillouin Wigner)的办法来处理，正如我们已经看到的，这种处

理办法的好处是，可以很容易地得到任意阶微扰论的一般公式。

为了进一步理解二阶微扰修正，我们注意到εn和其余所有能级之间存

在一个有限的能隙∆,即对于m ̸= n, |εn−εm| ≥ ∆。因此|
∑

m̸=n
|⟨n|V |m⟩|2
εn−εm | ≤

3注意E(1)中包含了一个因为微扰而来的一阶小量，但是E(1)出现在表达式G⊥
0 (E

(1)
n )的

分母上，因此式中的G⊥
0 (E

(1)
n )也应该按照这个微扰一阶小量的级数展开来理解，而且如

果我们还要继续计算更高阶的E
(i)
n , i > 3的话，那G⊥

0 (E
(1)
n )只能取到微扰级数的1阶为止，

更高阶小量应该舍去，因为否则的话我们就将本应归入更高阶微扰的贡献算进E
(3)
n 中了。

类似的，所有G⊥
0 (E

(i)
n )这样的表达式都应该理解成只取到微扰级数展开的第i阶小量为止，

更高阶小量要舍去。
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∑
m̸=n

|⟨n|V |m⟩|2
|εn−εm| ≤

1
∆
(
∑

m̸=n ⟨n|V |m⟩⟨m|V |n⟩) =
1
∆
[⟨n|V |(1− |n⟩⟨n|)|V |n⟩] =

1
∆
[⟨n|V 2|n⟩ − (⟨n|V |n⟩)2] = 1

∆
⟨n|(∆V )2|n⟩(注意分母中的∆表示能隙，而分

子中的∆V = V −⟨n|V |n⟩)。从上面推导过程最后的式子 1
∆
⟨n|(∆V )2|n⟩可以

看出，二阶微扰修正实际上和V的涨落⟨n|(∆V )2|n⟩密切相关，如果没有这
个V的涨落那就不会有二阶微扰修正。

另外，从上面关于波函数的一阶微扰修正中我们很容易看出来微扰论

适用的条件，那就是

| ⟨m|V |n⟩
εn − εm

|≪ 1. (5.18)

5.1.3 范德瓦尔斯力、万有引力、以及射电天文学

这一节我们举三个应用二阶微扰论的例子。第一个例子是用二阶微扰

论解释非极性分子之间的范德瓦尔斯力，顺带也解释了一下为什么万有引

力是一个吸引力，其道理其实和非极性分子之间的范德瓦尔斯力是一个吸

引力(当分子间的距离足够大时)有相通之处。在这个例子之后，利用一个

类似的偶极相互作用微扰项，我们还用一阶微扰论估算了氢原子超精细能

级分裂，进而简单解释了射电天文学中著名的21cm波长谱线。最后，我们

要举的第三个例子是有关非线性振子能级的一个二阶微扰论计算。

非极性分子之间的范德瓦尔斯力

当分子间距离合适时，范德瓦尔斯力是两个中性分子之间的吸引力。

两个中性分子之间存在吸引力有时候并不难理解，比方说，如果这两个分

子是极性分子，那么它们的电偶极矩之间就可能存在相互作用，这时候这

两个分子之间就会存在范德瓦尔斯力。不过极性分子之间相互作用势能和

它们的电偶极矩的相对取向有关系，而由于热运动，分子电偶极矩的空间

取向有一定的随机性，特别的，当温度无限高时，分子电偶极矩的空间取

向将会完全随机，因此两个分子各自电偶极矩的空间取向将完全无关，这

时候，这种由非0的电偶极矩间的相互作用所产生的范德瓦尔斯力就会趋

于0。

但是，令人觉得不可思议的是，即使是非极性分子之间也存在范德瓦

尔斯力，甚至大小并不比极性分子之间的范德瓦尔斯力弱。非极性分子之

间的范德瓦尔斯力是怎么来的呢？为什么在分子间的距离足够大时它是一

个吸引力呢？甚至为什么在距离足够大时，这个力也和距离的7次方成反比
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呢？后面这两个问题可以合并成一个问题，即为什么非极性分子之间在距

离足够大时，它们的相互作用能趋向于− A
R6呢？这里R是两个分子之间的

距离，A > 0是一个常数。要解释这里的物理规律就需要用到量子力学二阶

微扰论。

首先，在量子力学里面，电偶极矩当然也要表示成算符，对于任何多

个带电粒子的体系，这个算符总是能够定义的，所有的分子(即使是非极性

分子)都是有多个带电粒子的体系，因此当然都有一个电偶极矩算符。当我

们说一个分子是非极性分子时，指的是在分子所处的量子态上，其电偶极

矩算符的期望值等于0。但是这个算符总是存在的。因此在算符的意义上，

任何两个分子的电偶极矩之间都会有相互作用，并且给系统贡献一个电偶

极相互作用项V，很显然，V应该和每个分子的电偶极矩算符成正比。假设

我们记所考察的这两个分子的电偶极矩算符分别为dA和dB, 则它们的电偶

极相互作用算符V显然将具有V = Cijd
A
i d

B
j 这样的形式，这里Cij依赖于两

个分子之间的距离，并且显然只要分子间的距离足够大，它应该就是随着

距离衰减的, 同时这里的i, j = 1, 2, 3表示三个直角坐标分量, 并且我们默认

对重复的指标进行求和。

这样一来，当分子间的距离足够大时(也就是当两个分子间的距离大于

每个分子内部电子的德布罗意波长时)，它们的电偶极相互作用V就可以看

成是对这个双分子系统的微扰。如果忽略掉这个微扰相互作用，那么两个

分子将相互独立(注意我们假设了分子间距离足够大，从而两个分子内部电

子的波函数不会出现交叠)，各自有其哈密顿量HA
0和H

B
0 。由于能量最低原

理，这两个分子将分别处在HA
0的基态|ψA0 ⟩, 和HB

0 的基态|ψB0 ⟩, 它们的基态
能量分别记作εA0和ε

B
0。如果忽略V的扰动，这个双分子系统的哈密顿量将

是H0 = HA
0 +HB

0 。很显然H0的基态将是|ψ0⟩ = |ψA0 , ψB0 ⟩ = |ψA0 ⟩|ψB0 ⟩, 基态
能量ε0将是ε0 = εA0 + εB0。

考虑到微扰V，那这个双分子系统的完整哈密顿量应该是H = H0+V。

对基态能量的一阶微扰修正将是⟨ψ0|V |ψ0⟩ = ⟨ψB0 |⟨ψA0 |CijdAi dBj |ψA0 ⟩|ψB0 ⟩ =
Cij⟨ψA0 |dAi |ψA0 ⟩⟨ψB0 |dBj |ψB0 ⟩。但是我们前面已经说过，非极性分子电偶极矩
算符的期望值为0，因此⟨ψA0 |dAi |ψA0 ⟩ = ⟨ψB0 |dBj |ψB0 ⟩ = 0，从而⟨ψ0|V |ψ0⟩ =
0。因此对于非极性分子，V的一阶微扰对系统的能量没有贡献，要解释范

德瓦尔斯力我们需要进一步考虑二阶微扰。

根据二阶微扰论，对基态能量的二阶微扰将是(我们将把二阶微扰对基
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态能量的修正记为ε′)

ε′ =
∑

n ̸=0,m̸=0

|⟨ψA0 , ψB0 |V |ψAn , ψBm⟩|2

ε0 − (εAn + εBm)
, (5.19)

式中对于n ̸= 0,m ̸= 0, εAn表示H
A
0的激发态能级， |ψAn ⟩是相应的激发

态，εBm表示H
B
0 的激发态能级，|ψBm⟩同样是相应的激发态。因此|ψAn , ψBm⟩ =

|ψAn ⟩|ψBm⟩就是整个H0的激发态，ε
A
n + εBm是相应的激发态能量本征值。

很显然⟨ψA0 , ψB0 |V |ψAn , ψBm⟩ = Cij⟨ψA0 |dAi |ψAn ⟩⟨ψB0 |dBj |ψBm⟩。对于非极性
分子，虽然dAi 和d

B
j 在各自基态上的期望值都等于0，但是，由于每个分

子都有可能形变，从而都存在正负电荷中心不完全重合的激发态，因

此，一般来说，总存在一些激发态|ψAn ⟩和|ψBm⟩使得⟨ψA0 |dAi |ψAn ⟩ ̸= 0, 同

时⟨ψB0 |dBj |ψBm⟩ ̸= 0, 这时候就会出现⟨ψA0 , ψB0 |V |ψAn , ψBm⟩ ̸= 0。这也就是

说，二阶微扰修正总是非0的。并且由于|⟨ψA0 , ψB0 |V |ψAn , ψBm⟩|2 ∝ |Cij|2，所
以很显然ε′ ∝ |Cij|2。在物理上，这是因为非极性分子的偶极矩在基态上的
期望值虽然为0，但是根据不确定原理，偶极矩的涨落依然存在，由于这样

的涨落，每个分子可能发生瞬时的变形，产生瞬时的偶极矩，这些瞬时的

偶极矩会产生一个瞬时的电场作用在另一个分子上，并使得另一个分子出

现瞬时的极化，而极化以后的另一个分子的瞬时偶极矩又会产生一个瞬时

的电场反作用在第一个分子上。整个过程可以形象地说成是两个分子交换

了一个瞬时的偶极子电场，最后就表现为一个非0的二阶微扰相互作用。并

且正是因为这种相互作用涉及到偶极电场的交换，所以它的效应不是正比

于与偶极子电场密切相关的Cij，而是正比于它的模方。

但是，公式(5.19)最重要的一个结论是，ε′ < 0，即对这个两分子系统

基态能量的二阶微扰修正是负的。原因其实很简单，因为在公式(5.19)中，

分母上的εAn + εBm代表的是激发态的能量，而ε0 = εA0 + εB0代表的是未微扰

的基态能量，因此很显然εAn + εBm > ε0，从而公式(5.19)的分母一定是负

的，这显然意味着整个表达式必然是负的，即ε′ < 0。实际上，这是一个普

遍的结果，在量子力学中，不管什么系统，对基态的二阶微扰修正总是小

于0的，人们可以很容易地用二阶微扰论的公式一般性地证明这一点。

这里我们插入一个简短的其它话题。正因为二阶微扰对基态能量的修

正是负的，所以在粒子物理中任何两个粒子如果交换一个标量粒子，所产

生的相互作用力将一定是一个吸引力。这是因为，两个粒子交换一个标量

粒子的过程可以看成是对这个两粒子系统的一个二阶微扰，微扰之前系

统处在这个被交换的标量粒子的真空态(也就是基态)上，因此根据刚才的
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推导，交换标量粒子的这个二阶微扰给系统能量带来的修正ε′一定小于0，

即ε′ < 0。而另一方面，交换标量粒子所产生的相互作用强度当然随着两个

粒子的距离R单调递减，即相互作用能的绝对值|ε′|必然是R的减函数，因
此 ∂

∂R
|ε′(R)| < 0。同时，由于ε′ < 0, 所以−ε′ = |ε′|, 因此根据保守力的公

式，交换标量粒子所产生的相互作用力F = − ∂
∂R
ε′(R) = ∂

∂R
|ε′(R)| < 0，从

而必然是一个吸引力。在一定的意义上，万有引力之所以是一个吸引力也

是因为类似的原因，当然引力子并不是一个标量粒子，但是物质通过交换

引力子进行相互作用其道理和交换标量粒子其实有些类似。因此你也可以

说，二阶微扰修正的负号同样可以解释为什么万用引力势能是负的。

上一段的讨论当然也完全适用于范德瓦尔斯力的情形。我们已经看到，

这时候ε′ < 0, 并且由于在分子间距离足够大时，Cij随着距离衰减，所以二

阶微扰带来的非极性分子之间的相互作用能|ε′(R)| ∝ |Cij(R)|2必然也随着
距离衰减，因此根据上一段的讨论，这时候范德瓦尔斯力必定是一个吸引

力。

下面我们进一步来理解为什么ε′反比于分子间距离的6次方。为此我

们只需要研究ε′随着分子间距离是如何变化的(R足够大时)，由于|ε′(R)| ∝
|Cij(R)|2，所以我们又只需要确定Cij(R)的函数形式。下面的步骤其实就
和量子力学没有什么关系了，完全是电动力学的内容。如果你还记得两

个偶极子之间的相互作用势能反比于距离3次方的话，那你马上就知道，

Cij(R) ∝ 1/R3，从而|ε′(R)| ∝ |Cij(R)|2 ∝ 1/R6, 注意到ε′ < 0，那你马上

就能得到答案

ε′(R) = − A

R6
, (5.20)

在原则上，A是某个可以根据上面描述的二阶微扰论算出来的大于0的常

数，不过，对于两个比较复杂的分子，具体计算出A当然并不是一件容易

的事情，但这是原子分子物理学家要做的事情，我们这里暂时忽略它。

假设你想知道得更具体一些，那么我们可以将两个分子的偶极相互

作用描述成，一个分子的偶极子产生一个电场，这个电场作用在另一个

分子的偶极矩上。电动力学里是这样描述的：首先，一个偶极子dAi 在距离

为R处(R足够大)产生的电势为

φ = − 1

4πϵ0
dAi ∂i(

1

R
), (5.21)

这里∂i =
∂
∂xi

(xi是离分子A的位置为x处的坐标分量，因此R2 = xixi), 并

且我们默认对重复的指标进行求和。其次，x位置的偶极子dBj 处在A的电
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场φ中，与电场φ的相互作用势能为

V = dBj ∂jφ. (5.22)

将结果(5.21)和结果(5.22)结合起来，我们就能够算出偶极子A与偶极子B之

间的偶极相互作用势能为

V = − 1

4πϵ0
dAi d

B
j ∂i∂j(

1

R
) =

1

4πϵ0
dAi d

B
j

(
δij − 3eiej

R3

)
, (5.23)

式中ei =
xi
R
是从分子A指向分子B的单位矢量。从这个偶极相互作用表达

式，我们可以读出

Cij =
δij − 3eiej
4πϵ0R3

, (5.24)

显然，它的确反比于距离3次方。(这一段的讨论请读者参考电动力学里关

于电多极矩展开的相关内容)

超精细能级

完全类似的，读者很容易明白，两个磁偶极子也会有非常类似的偶极

相互作用，它也可以写成V = Cijµ
A
i µ

B
j 的形式，式中µ

A
i 和µ

B
j 分别是A,B两

个磁偶极子的磁矩，不过由于是磁场，所以这时候

Cij =
µ0

4π

δij − 3eiej
R3

. (5.25)

比如对于氢原子来说，电子是在质子所产生的场中运动，但是电子本身有

自旋从而有磁矩，同样质子也有自旋因此也有磁矩，所以电子和质子的磁

矩之间就会发生这种偶极相互作用(实际上电子与质子的磁矩相互作用比这

要略微复杂一些，由于电子可能有非0的概率出现在质子所在的坐标原点，

所以两者的磁矩相互作用中其实还要包含一个接触项)。不过这时候这种偶

极相互作用常常会有非0的一阶微扰效应，实际上，它是造成氢原子能级超

精细分裂的原因之一。比方说，它会引起氢原子的基态产生超精细分裂。

注意到这是一个一阶微扰效应，所以我们很容易估算这种超精细分裂的大

小。首先，它正比于电子磁矩和质子磁矩的乘积，根据玻尔磁子的数值我

们很容易估算，电子磁矩大约是10−23(单位A ·m2，即安培乘以米的平方)，

由于质子质量比电子重1000多倍，所以质子磁矩大约是电子磁矩的1/1000,

也就是大约10−26A ·m2，将这两者乘起来再乘以µ0/(4π) = 10−7N/A2，就
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得到10−56N ·m4。由于Cij反比于电子与质子距离的3次方，而对于基态上

的氢原子R ∼ a0 ∼ 0.5 × 10−10m(a0是玻尔半径)，所以1/R3 ∼ 1031m−3。

将10−56N ·m4和1/R3 ∼ 1031m−3乘起来就是能级超精细分裂的量级，显然

结果是

10−25N ·m ∼ 10−6eV. (5.26)

将这个结果除以普朗克常数h ∼ 6.62607015 × 10−34J · s, 得到109Hz =

1000MHz，这就是对氢原子超精细能级跃迁发出来的光频率的估算。

更仔细的计算可以得出氢原子基态的超精细分裂所发出来的光频率

为1420MHz, 波长在21cm。

这个21cm谱线在射电天文学中有很重要的应用。因为星系中的氢原子

会发射或吸收这一波长的辐射，所以用调谐到1420MHz的射电望远镜，我

们就能观察星系中氢原子气体密集处的位置和速度，进而就能了解星系的

位置和运动情况。射电望远镜利用的这个21cm谱线，波长在微波波段，这

个波长的好处在于，它远比无线电波要短，因此有很好的定向性。同时它

的波长又远比可见光的几百个纳米要长，因此也不像可见光那样容易被散

射，因此射电望远镜能够看到很多光学望远镜看不到的天文事物。例如，

通过射电望远镜，人们发现了天鹅座A的射电星系，它每秒钟发出的射电

能量要比太阳每秒钟发出的能量强1亿亿倍以上，是迄今发现的最大射电星

系，而光学望远镜对它却是一无所知。尤其是，宇宙微波背景辐射也是用

射电望远镜发现的，因为微波背景辐射的波长当然在微波波段。目前世界

上最大的射电望远镜，就是中国的位于贵州平塘的500米口径球面射电望远

镜，简称FAST，俗称中国天眼。

非线性振子的能级

我们要考察的第二个例子是一个非线性振子。具体来说就是给单自由

度线性谐振子H0 =
P 2

2m
+ 1

2
mω2X2 加上一个非线性微扰

V = λ~ω(
~
mω

)−2X4, (5.27)

式中我们已经注意到( ~
mω

)
1
2具有长度量纲，~ω具有能量量纲，因此将V写

成这种形式是为了使得式中的λ ≪ 1是一个无量纲的常数。因此，在作

了~ = m = ω = 1的无量纲化处理以后，我们的微扰相互作用就是简单的

V = λX4. (5.28)
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下面我们就是要用二阶微扰论来计算这个微扰给谐振子的能级造成的影

响。

为此我们引入产生湮灭算符a = 1√
2
(X + iP ), a† = 1√

2
(X − iP )。则

无量纲化的H0就可以表示成H0 = a†a + 1
2
, 其本征值为n + 1

2
(n ≥ 0), 相

应的本征态我们记作|n⟩。并且我们有代数关系a†|n⟩ =
√
n+ 1|n + 1⟩,

a|n⟩ =
√
n|n− 1⟩, 以及[a, a†] = 1。

很显然，由产生湮灭算符的定义我们有X = 1√
2
(a + a†), 代入(5.28)并

不断地利用产生湮灭算符的代数关系[a, a†] = 1，我们就可以将微扰相互作

用重写成

V =
λ

4
(a+ a†)4 = λ[a†a†(a†a) + (a†a)aa] +

3λ

2
[a†a† + aa]

+
λ

4
[a4 + (a†)4] +

3λ

2
[(a†a)2 + (a†a) +

1

2
]. (5.29)

从这个表达式我们很容易得到V的非0矩阵元，

⟨n+ 4|V |n⟩ = ⟨n|V |n+ 4⟩ = λ
1

4

√
(n+ 1)(n+ 2)(n+ 3)(n+ 4)

⟨n+ 2|V |n⟩ = ⟨n|V |n+ 2⟩ = λ(n+
3

2
)
√
(n+ 1)(n+ 2)

⟨n|V |n⟩ = λ
3

2
(n2 + n+

1

2
). (5.30)

为了得到这些结果，我们要不断地使用(a†a)|n⟩ = n|n⟩以及a†|n⟩ =
√
n+ 1|n+

1⟩, a|n⟩ =
√
n|n − 1⟩这样的关系式。除了这些矩阵元之外，V的其它矩阵

元都是0。

利用二阶微扰论的公式(5.16), 并代入(5.30)式给出来的V的矩阵元，注

意到对于第n能级的二阶微扰修正只有n ± 2能级和n ± 4能级有贡献，进而

我们就能够得到能级En直到二阶微扰的结果，

En/(~ω) = λ2
1

64
[(n− 3)(n− 2)(n− 1)n− (n+ 1)(n+ 2)(n+ 3)(n+ 4)]

+ λ2
1

2
[(n− 1

2
)2(n− 1)n− (n+

3

2
)2(n+ 1)(n+ 2)]

+ n+
1

2
+ λ

3

2
(n2 + n+

1

2
)

= n+
1

2
+ λ

3

2
(n(n+ 1) +

1

2
)− λ21

8
(2n+ 1)(17n(n+ 1) + 21).

这里我们已经恢复了量纲。很显然，这个结果有其适用范围，它只对比较

低的能级适用，具体来说就是要求n2λ ≪ 1。也即是说，对于非常高的激
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发态，微扰论的计算其实是失效的。原因在于对于高激发态，振子的能量

很高，因此振幅就会比较大，也即是说波函数在X取值很大的地方也会有

非0值。而当X很大的时候，λX4就会变得很重要，这时候它就不再能当作

微扰来看了，事实上，这时候这一项比标准的X2项更重要。因此，前面的

微扰论处理当然就失效了。

5.1.4 习题

1. 假设某两态系统的哈密顿量可以写成

H =

(
ε1 + aϵ bϵ

bϵ ε2

)
. (5.31)

式中ε1 ̸= ε2，a, b为实数，ϵ非常小。(1).请用二阶微扰算出系统的两个能量

本征值。(2). 请求出以上哈密顿量的精确本征值，然后将它们按照ϵ进行级

数展开，并将结果与二阶微扰的结果进行比较。

2. 两个全同的零自旋玻色子放在一个无限深的方势阱中，阱内势能为

零，阱外势能为正无穷，势阱的宽度为a。假设这两个粒子之间存在相互作

用V (x1, x2) = −V0aδ(x1 − x2)。(1). 忽略两粒子间的相互作用，请求出系

统的基态和第一激发态(包括能量本征值和相应的本征波函数)。(2). 请用

一阶微扰论计算相互作用对基态和对第一激发态的能量修正。

3. 一个刚性转子绕着固定的z轴转动，转动惯量为I。现在用一个x方

向的均匀电场E来扰动此系统，假设转子的电偶极矩大小为D，请用二阶

微扰论计算转动的能量本征值和相应的本征波函数。

5.2 *有效哈密顿量、简并微扰论以及不稳定态

上一节我们推导定态微扰论的相关公式时有一个关键性的假设，即假

设我们考察的能级n非简并，我们假设|n⟩态和其余所有能态之间有一个有
限的能隙∆。但其实有时候我们也会碰到这种情况，即作为H0的本征态，

我们所关心的这个能态|n⟩其实是简并的，那这个时候微扰论该怎么处理
呢？这就是我们这一节要探讨的内容之一，通常称作简并定态微扰理论。

简并定态微扰理论的核心思想是，消去量子态在简并子空间之外的分

量，将问题约化到简并子空间里来处理。这种降低希尔伯特空间的维数，
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将物理问题约化到物理上更相关的希尔伯特子空间里来处理的思想其实很

重要，它本身有很广泛的用途。在这一节中我们将首先用有效哈密顿量的

概念来介绍这一思想。然后将简并定态微扰理论作为有效哈密顿量方法的

一个应用。最后，作为有效哈密顿量方法的另一个应用，我们还将用它来

讨论与连续谱耦合的态的不稳定性。

5.2.1 有效哈密顿量

在讨论简并微扰论之前，我们先来讨论一下所谓的有效哈密顿量方法。

所谓的有效哈密顿量就是在求解量子力学问题时，我们可以先把一部分我

们不关心的量子态信息消去，进而将系统约化到某个希尔伯特子空间上所

得到的对系统的有效描述。

具体来说，假设我们要求解定态薛定谔方程

H|ψ⟩ = E|ψ⟩. (5.32)

假设系统的整个希尔伯特空间可以分解成两个正交补空间，分别对应投影

算子P和P⊥，它们满足

P + P⊥ = 1, (5.33)

此外还满足PP⊥ = P⊥P = 0。因此我们可以将|ψ⟩态正交分解成|ψ⟩ =
P |ψ⟩+P⊥|ψ⟩，其中P⊥|ψ⟩的信息是我们不关心的，我们想推导的就是，消
去P⊥|ψ⟩以后，P |ψ⟩满足的方程是什么？
为此，我们注意到，我们所要求解的定态薛定谔方程(5.32)可以重写

为H(P |ψ⟩) + H(P⊥|ψ⟩) = E|ψ⟩, 分别用投影算符P和P⊥作用在这个方程

上，就可以得到

HPP (P |ψ⟩) +HPP⊥(P⊥|ψ⟩) = E(P |ψ⟩)
, HP⊥P (P |ψ⟩) +HP⊥P⊥(P⊥|ψ⟩) = E(P⊥|ψ⟩), (5.34)

式中HPP = PHP为哈密顿算符在P子空间里的作用，HP⊥P⊥ = P⊥HP⊥为

哈密顿算符在P⊥子空间里的作用，而HPP⊥ = (HP⊥P )
† = PHP⊥将两个正

交的子空间耦合了起来。

由(5.34)的第二个方程可以得到HP⊥P (P |ψ⟩) = (E − HP⊥P⊥)(P⊥|ψ⟩),
由于我们关心的是P子空间里的物理，所以可以假设能量E和HP⊥P⊥的所
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有本征值都不同，则我们就有 1
E−H

P⊥P⊥
HP⊥P (P |ψ⟩) = (P⊥|ψ⟩)。将这个结

果代入(5.34)的第一个方程消去(P⊥|ψ⟩)就可以得到(
HPP +HPP⊥

1

E −HP⊥P⊥
HP⊥P

)
(P |ψ⟩) = E(P |ψ⟩). (5.35)

换言之，假设对于任意探测能量z = ~ω我们定义作用在P子空间里的有效
哈密顿量Heff(z)

Heff(z) = HPP +HPP⊥
1

z −HP⊥P⊥
HP⊥P . (5.36)

那么满足这个有效哈密顿量本征方程Heff(E)|φ⟩ = E|φ⟩的本征值E就是原
哈密顿量H的本征值，而|φ⟩就是H的相应本征态|ψ⟩在P子空间里的投影，
即|φ⟩ = P |ψ⟩。换言之，对于探测能量z = ~ω，P子空间里所有量子态的动
力学都完全由有效哈密顿量Heff(z)决定。

实际上，可以证明，

P
1

z −H
P =

1

z −Heff(z)
. (5.37)

证明方法是: 在P和P⊥两个正交子空间中，分别将哈密顿量H和投影算

符P表示成如下分块矩阵(
HPP HPP⊥

HP⊥P HP⊥P⊥

)
,

(
1 0

0 0

)
. (5.38)

则P 1
z−HP就相当于(

1 0

0 0

)(
z −HPP −HPP⊥

−HP⊥P z −HP⊥P⊥

)−1(
1 0

0 0

)
. (5.39)

最后，利用矩阵代数里分块矩阵求逆矩阵的方法就可以得到上式的结果是(
1

z−Heff(z)
0

0 0

)
. (5.40)

这就已经证明了我们需要的结果(5.37)。

一一一个个个简简简单单单的的的例例例子子子
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让我们来考察一个最简单的例子，假设某系统的哈密顿量H可以写成

一个2× 2的矩阵，

H =

(
U t

t 0

)
. (5.41)

我们可以消去这个系统的第1行和第1列，从而得到一个作用在第2行第2列

的子空间里的有效哈密顿量Heff(z)。由(5.36)式，我们有

Heff(z) =
t2

z − U
. (5.42)

如果我们要求原哈密顿量H的本征值E，那根据有效哈密顿量方法，我们

可以在约化后的子空间里解方程Heff(E)|ψ⟩ = E|ψ⟩, 由于现在只有一行一
列，所以本征值E必定满足

E = Heff(E) =
t2

E − U
, (5.43)

很显然，这个方程的确是原哈密顿量H的本征值方程。

就我们这个简单例子来说，方程(5.43)很容易精确求解。但这里我们

想描述一种更具一般性的求解方法，为此我们假设t ≪ U。这时候我们可

以这样来求解(5.43), 简单来说即是迭代，首先，我们把t看成是一个微扰，

很显然如果忽略这个微扰，那第2行第2列子空间里的本征值将是E = 0。

因此我们将E = 0代入方程(5.43)右边，这样就会得到E = − t2

U
，接着再

将E = − t2

U
代入方程(5.43)右边, 近似就会得到E = − t2

U
+ t4

U3，如此不断迭

代下去，就可以得到一个关于t/U的无穷级数，如果这个级数收敛，那它

最终就会收敛到真正的能量本征值。

5.2.2 简并微扰论

下面我们将上一小节的有效哈密顿量理论用于简并微扰论。为此我们

取投影算符P对应于H0的某个简并度为d的简并能级所对应的简并子空间。

不妨将这d个简并的能态记为|1⟩, |2⟩, ...|d⟩, 我们以D = {i = 1, 2, 3, ..., d}来
表示这d个简并态的集合，我们记这d个态所对应的H0本征值为ε。那么投

影算符P就可以写成

P =
d∑
i=1

|i⟩⟨i|. (5.44)
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同样，我们以P⊥来表示H0的所有正交归一本征态中除了我们正在关心的

这d个简并态之外，其余所有本征态(即{|m⟩,m ∈ D⊥})共同张成的希尔
伯特子空间的投影算符，我们记这些非简并本征态的H0本征值为εm。如

果按照我们在正文中所引入的记号，那显然有P = PD，P⊥ = PD⊥。当

然，P⊥和P之间就不再有任何简并了，而是有有限的能隙∆。另外，由

于P和P⊥都是用H0的本征态定义的，所以很显然，P和P
⊥均与H0对易。

现在我们加入微扰V，因此完整的哈密顿量应该是H = H0 + V。假设

考虑到微扰以后，原来H0的那个d重简并子空间分裂成了H的d个不同本征

态{|ψl⟩, l = 1, 2, 3..., d}, 它们分别满足本征方程

H|ψl⟩ = El|ψl⟩. (5.45)

我们将要做的，就是要研究如何用微扰展开的办法计算El和|ψl⟩。
很显然，我们可以利用上一小节的有效哈密顿量方法先求解出P |ψl⟩,

为此我们需要先计算有效哈密顿量Heff(z)。由于HPP = PH0P + PV P =

ε+VPP , HPP⊥ = PH0P
⊥+PV P⊥ = H0PP

⊥+VPP⊥ = VPP⊥，同理HP⊥P =

P⊥V P = VP⊥P。因此我们很容易得到有效哈密顿量Heff(z)为

Heff(z) = ε+ VPP + VPP⊥
1

z −HP⊥P⊥
VP⊥P . (5.46)

式中HP⊥P⊥ = H⊥
0 + VP⊥P⊥，其中H⊥

0 = P⊥H0P
⊥。从而P |ψl⟩满足的方程

即是

Heff(El)(P |ψl⟩) = El(P |ψl⟩). (5.47)

假设我们定义一个有效的“未微扰”哈密顿量Heff,0, 和一个有效的微

扰Veff(El), 它们的定义分别是

Heff,0 = ε+ VPP , Veff(El) = VPP⊥
1

El −HP⊥P⊥
VP⊥P . (5.48)

从而，Heff(El) = Heff,0 + Veff(El)。那么关于P |ψl⟩的方程(5.47)显然就可以

根据标准的非简并定态微扰论来求解。也即是说，我们可以首先在P子空

间中求出Heff,0的d个本征态|ϕl⟩,

Heff,0|ϕl⟩ = ε̃l|ϕl⟩. (5.49)

一般来说，因为定义中包含了V , 所以Heff,0的d个本征态通常就不再简并了,

那么下面我们就可以将Veff(El)当成微扰，然后照搬上一节中发展的非简并

微扰论的办法来求解方程(5.47)了。
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比方说，如果保留到微扰小量V的二阶(由于Veff(El)本身是V的二阶项，

因此当然就只需要算到Veff(El)的一阶微扰修正⟨ϕl|Veff(El)|ϕl⟩)，按照上面
的方法我们可以得到

El = ε̃l +
∑

i,j∈D, m∈D⊥

⟨ϕl|i⟩⟨i|V |m⟩⟨m|V |j⟩⟨j|ϕl⟩
ε− εm

. (5.50)

注意，上式右边的第二项我们代入了El的零阶近似，而ε̃l中是包含了V的一

阶修正的，El的0阶近似应该是ε。另外，这个式子中的⟨i|ϕl⟩是|ϕl⟩在原来
的简并基{|i⟩, i = 1, 2, 3, ..., d}中的分量形式。其实在关于简并微扰论的实
际应用中，最有用也是用得最多的就是这个结果。

以上就是一般性的简并微扰理论，我们最终是把它转变为非简并微扰

的情形来处理的。上面讨论的简并微扰理论有一种特别简单的情形，那就

是一开始的时候H0的所有本征态都简并，那这种情况很简单，即有P = 1，

P⊥ = 0, 由(5.48)式可以看出，这时候Veff(El) = 0, Heff,0 = ε+ V , 所以这时

候只需要直接求V的本征态和本征值就可以了。

当然，前面还留有一个小问题，那就是逆算符 1
El−H⊥

0 −V
P⊥P⊥

如何处理。

一般来说，我们可以将它按照VP⊥P⊥进行级数展开，从而得到

1

El −H⊥
0 − VP⊥P⊥

=
1

El −H⊥
0

+
1

El −H⊥
0

VP⊥P⊥
1

El −H⊥
0

+
1

El −H⊥
0

VP⊥P⊥
1

El −H⊥
0

VP⊥P⊥
1

El −H⊥
0

+ ....

这里我们利用了关于可逆算符A的恒等式(
1

A
+

1

A
B

1

A
+

1

A
B

1

A
B

1

A
+ ...

)
(A−B) = 1

(A−B)

(
1

A
+

1

A
B

1

A
+

1

A
B

1

A
B

1

A
+ ...

)
= 1.

在形式上，读者可以通过直接将这两个等式左边乘出来进而验证它们。不

过，严格一点来说，这两个等式仅在括号里的那个无穷级数收敛时才有意

义，因此通常只在B是一个微扰时才能这么做。很显然，这两个恒等式意

味着

1

A−B
=

1

A
+

1

A
B

1

A
+

1

A
B

1

A
B

1

A
+ ... (5.51)
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5.2.3 不稳定离散态

这一节我们将利用有效哈密顿量的方法处理一类普遍存在而又重要的

物理现象，那就是不稳定离散态。这类现象之所以普遍，首先是因为，由

于和环境耦合，基本上所有束缚系统的激发态都不稳定，都会衰变，从而

都属于不稳定离散态。比方说，原子的激发态能级就不稳定，会向低能级

跃迁。其次，无论是粒子物理中，还是凝聚态物理中，都有大量不稳定的

粒子，比方说著名的上帝粒子(Higgs)粒子就是不稳定粒子，比方说凝聚态

物理里面大量的准粒子其实也都是不稳定粒子。这些不稳定的，会衰变成

其它粒子的粒子其实也都属于不稳定离散态。不过，对于这种不稳定粒子

的情形，我们得稍微解释一下离散的含义。虽然不稳定粒子的动量是连续

的，但是，在单个这样的不稳定粒子的衰变过程中，动量是守恒的，因此

我们完全可以在一个总动量固定不变的子空间里来考察问题，而在保持动

量不变的前提下，单个不稳定粒子当然也是离散态。

离散态的衰变不稳定性其实有一个共同的本质，那就是它们和一个较

宽的连续谱有耦合。比方说原子向低能级跃迁放出光子，由于能量守恒，

放出的这个光子的频率当然是分立的，但是它从属于一个连续谱。一个静

止的不稳定粒子衰变成多个粒子，比方说衰变成两个粒子，这两个粒子的

总动量保持是0，但是它们各自的动量和能量分配都连续可变，因此衰变的

末态也是一个连续谱。总之，离散态之所以不稳定，都是因为它们可以衰

变到一个较宽的连续谱。

为了用有效哈密顿量的方法分析与连续谱耦合的离散态的不稳定性，

我们记这些正交归一离散态为{|i⟩, i = 1, 2, 3, .., N}, 记这些离散态张成的
希尔伯特子空间为投影算符P , P =

∑N
i=1 |i⟩⟨i|。假设与这些离散态耦合的

连续谱态张成了P的正交补空间P⊥。假设在P⊥子空间上，有效哈密顿量中

的HP⊥P⊥可以表示成

HP⊥P⊥ =

∫
dαEα|α⟩⟨α|. (5.52)

从而|α⟩构成P⊥的正交基，满足正交归一关系

⟨α|α′⟩ = δ(α− α′). (5.53)

这里指标α是用来标记这组连续谱态的抽象记号，它必须包含一个或多个

连续指标，当然，α里面也可以包含离散指标，对于α里面有离散指标的情

形，人们只需将正交归一关系中相应的狄拉克δ函数理解成克龙内克δ符号，

同时将相应的指标积分理解成离散求和就可以了！
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由于|α⟩是连续谱态，Eα当然是连续变量。很多时候，我们常常选能
量本身作为|α⟩态的指标之一，这时候我们重新标记|α⟩态为，|α⟩ = |E, χ⟩,
E在数值上就等于Eα，χ是用来进一步区分|α⟩态的其它指标。作了这样的
指标变换以后，态空间微元dα一般就会变换成

dα = ρ(E, χ)dEdχ, (5.54)

式中ρ(E, χ)是指标变换的雅可比行列式，也叫做态密度，因为它表示单位

能量区间单位χ微元之内|α⟩态的数目。
由于离散态和连续谱态之间有耦合，所以(HP⊥P )

† = HPP⊥ ̸= 0。

不妨记⟨i|HPP⊥ |α⟩ = ⟨i|H|α⟩ = Aiα, 式中我们用到了|α⟩在P⊥中的投影

是它本身，同样|i⟩在P中的投影也是它本身的事实。并且，我们常常
记
∑N

i=1 |i⟩Aiα = Aα。因此
∑N

i=1⟨α|HP⊥P |i⟩⟨i| =
∑N

i=1A
∗
iα⟨i| = A†

α。如此

一来，根据(5.36)式，离散态子空间P上的有效哈密顿量Heff(z)就可以写成

Heff(z) = HPP +

∫
dα

AαA
†
α

z − Eα

= HPP +

∫
dEdχρ(E, χ)

AE,χA
†
E,χ

z − E
. (5.55)

很显然，如果探测能量z = ~ω落在连续能谱之外，那上面的(5.55)式

定义良好。但是，如果探测能量z = ~ω落在连续能谱的区间之内，那
在E = z处，上面(5.55)的两个式子右边的第二项都将没有定义。为了避免

这种没有定义的困难，我们可以给探测能量~ω加一个无穷小的正虚部，即
取z = ~ω+ = ~ω + iϵ (至于为什么要这样处理我们稍后再解释)，最后再

取ϵ→ 0。利用数学公式(式中P表示取主值部分)

lim
ϵ→0

1

x+ iϵ
= P 1

x
− iπδ(x), (5.56)

我们就可以将Heff(~ω)重写成

Heff(~ω) = HPP +∆(~ω)− ~
i

2
Γ(~ω), (5.57)

式中，∆(~ω)和Γ(~ω)均为作用在离散态子空间P上的厄米算符，它们分别
是

∆(~ω) = P
∫
dEdχρ(E, χ)

AE,χA
†
E,χ

~ω − E
= P

∫
dα

AαA
†
α

~ω − Eα
, (5.58)

Γ(~ω) =
2π

~

∫
dχAE,χA

†
E,χρ(E, χ)|E=~ω. (5.59)
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可见，由于和连续谱的耦合，有效哈密顿量Heff(~ω)不再是一个厄米算符！
尤其是，它有了一个负虚部−~ i

2
Γ(~ω), 下面我们将看到，这个负虚部的存

在将意味着P子空间里的态是不稳定的，会随着时间指数衰减，从而表现

出衰变行为。

值得提及的是，在一些场合中，人们也常常将结果(5.57)中的∆(~ω)−
~ i
2
Γ(~ω)记作Σ(~ω), 即Σ(~ω) = ∆(~ω)− ~ i

2
Γ(~ω)，称为自能。

在清楚地看到自能的负虚部会导致量子态的指数衰变之前，让我们先

来理解前面碰到(5.55)式时，为什么要作z = ~ω + iϵ的处理，这个无穷小的

正虚部从何而来。为此，我们注意到，对于任何不显含时间的哈密顿量H，

当时间t > 0时，时间演化算符e−iHt/~可以表示成，

e−iHt/~ =
i

2π

∫ +∞

−∞
~dω

e−iωt

~ω + iϵ−H
. (5.60)

为了证明这个式子，我们将它作用在H的任意一个本征值为E的本征

态|E⟩上，这时候方程(5.60)左边将给出时间演化因子e−iEt/~,而方程(5.60)右

边的时间演化因子是积分 i
2π

∫ +∞
−∞ ~dω e−iωt

~ω+iϵ−E。我们将这个积分的被积函数

延拓到整个ω复平面上，注意到t > 0, 所以被积函数在ω的下半平面指数

衰减，这是因为在复下半平面ω有一个负虚数，从而指数因子e−iωt呈现

出指数衰减，特别是，在下半平面无穷远处的半圆上，e−iωt将衰减为0。

因此，沿着实轴的积分 i
2π

∫ +∞
−∞ ~dω e−iωt

~ω+iϵ−E其实等于沿着实轴然后再加下

半平面无穷远处的半圆这样一个闭合围道C上的积分，如图(5.1)所示。

图 5.1: ω复平面上的围道积分，最终要取极点E − iϵ的虚部ϵ→ 0。

从图(5.1)也可以清楚地看到，当将ω加上一个无穷小正虚部以后，围道

积分 i
2π

∮
C
~dω e−iωt

~ω+iϵ−E 将包含极点E − iϵ, 从而根据留数定理我们可以得

到 i
2π

∫ +∞
−∞ ~dω e−iωt

~ω+iϵ−E = e−iEt/~，刚好与方程(5.60)左边的结果相同。由于

方程(5.60)作用在任意一个能量本征态|E⟩上都成立，而任意量子态一定能
够写成能量本征态的线性叠加，从而方程(5.60)作用在任意量子态上都将成

立，从而方程本身成立。
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从上面对方程(5.60)的证明过程中我们清楚地看到，为了从 1
~ω−E这样

的表达式中得到正确的量子态随时间的演化，我们必须给~ω加上一个无穷
小的正虚部。这也就是我们前面碰到(5.55)式时那样处理的原因。

现在我们来考察离散态子空间P之内的量子态如何随时间演化，这时

候决定时间演化的当然是有效哈密顿量Heff(~ω)。实际上，将量子态的时间
演化方程(5.60)投影到P子空间上，那么等式(5.60)左边就变成Pe−iHt/~P，

而等式右边就是要算 i
2π

∫ +∞
−∞ ~dωP e−iωt

~ω+iϵ−HP，利用算符恒等式(5.37)，这个

式子的最终结果就是将哈密顿量H替换成有效哈密顿量Heff(~ω + iϵ)，从而

也就是计算积分

i

2π

∫ +∞

−∞
~dω

e−iωt

~ω −Heff(~ω + iϵ) + iϵ

=
i

2π

∫ +∞

−∞
~dω

e−iωt

~ω −HPP − Σ(~ω) + iϵ

=
i

2π

∫ +∞

−∞
~dω

e−iωt

~ω − (HPP +∆(~ω)) + ~ i
2
Γ(~ω) + iϵ

. (5.61)

对于这个积分，我们可以采用和上面一样的围道来处理。但是现在，由于

自能Σ(~ω)有了一个负虚部−~ i
2
Γ(~ω)，情况就有了根本性的不同。为了看

清楚这个不同，我们不妨假设Γ(~ω)随着探测能量~ω的变化足够平缓，以
致于近似可以看成与ω无关，记作Γ。这时候对ω的围道积分所包围的极

点将有一个有限大的负虚部− i
2
Γ, 根据留数定理，这个负虚部最终将在积

分(5.61)中贡献出如下因子

e−
1
2
Γt. (5.62)

很显然，这个因子就意味着，P子空间里的这些态将随着时间指数衰减，

典型的衰减时间(称之为态的寿命)τ为

τ =
1

|Γ|
. (5.63)

式中|Γ|表示算符Γ的某个本征值的大小。

以上就清楚地说明了，与连续谱的耦合的确将导致离散态发生衰变。

在上面结果的实际应用中，系统H往往可以分解成微扰之前的部分H0和微

扰部分V之和。这时候我们可以选P由H0的离散本征态张成，而P
⊥由H0的

连续谱本征态张成，因此HPP⊥ = PH0P
⊥ + PV P⊥ = H0PP

⊥ + PV P⊥ =

VPP⊥，即HPP⊥ = VPP⊥。因此，正是微扰V产生了H0的两种不同谱态之间
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的耦合。同时，在这种情况下，为了保证(5.52)式依然成立，我们还常常假

定VP⊥P⊥ = 0。

5.2.4 习题

1. 假设某系统的哈密顿量H可以写成如下矩阵，

H =


U 0 t t

0 U t t

t t 0 0

t t 0 0

 . (5.64)

(1). 请求出这个系统约化到右下角的2× 2子空间里的有效哈密顿量Heff(z)。

(2). 假设t ≪ U , 请求出系统在0附近的两个本征值(计算到t2/U2阶为止)。

(这个题目来自Physics StackExchange上的提问。提示：不能直接代简并微

扰论一节最终给出的二阶微扰公式，得回到有效哈密顿量上想办法。)

2. 一个质量为m的粒子在势场V (x, y) = 1
2
mω2(x2 + y2)中运动，其

中ω是常数。假设给粒子加上一个小的微扰V ′ = λxy。请证明这个微扰会

使得系统第一激发态的两个简并能态产生能级劈裂，请用二阶微扰论计算

劈裂以后的能级分别为多少。

5.3 变分法在量子力学中的应用

5.3.1 变分法求基态能量

在量子力学中，求解一个系统的基态尤其是求解基态能量，有最为重

要的作用。因为一个系统的基态和低激发态常常决定了系统的宏观行为。

但是，能够精确求解的量子力学系统少之又少。因此人们发展了一些对基

态能量和基态波函数的近似计算方法，变分法就是这些近似计算方法中最

为重要的方法之一。

用变分法计算基态能量基于下面这个简单的定理。即对于任意量子

态|ψ⟩，我们有

E[ψ] =
⟨ψ|H|ψ⟩
⟨ψ|ψ⟩

≥ E0, (5.65)
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式中，H是系统的哈密顿量(要求这个哈密顿量有下界，否则将不存在基

态)，E0就是系统的基态能量，E[ψ]表示依赖于量子态|ψ⟩的一个能量泛函，
式中的等号当且仅当|ψ⟩是系统基态时才能取到。

这个定理的证明非常简单。假设我们记|n⟩(n ≥ 0)为H的本征态，本征

值为En，n = 0对应的就是基态。则我们可以将|ψ⟩展开为|ψ⟩ =
∑

n ψn|n⟩,
ψn为展开系数。很显然E[ψ] =

∑
n En|ψn|2∑
m |ψm|2 , 注意到En ≥ E0就有，E[ψ] ≥

E0

∑
n |ψn|2∑
m |ψm|2 = E0, 定理因此成立。很明显，等于号成立的充要条件是ψn =

0, n ̸= 0, 这时候|ψ⟩本身就是基态。
变分法的基本思想是，合理地猜测一组试探波函数，然后选取这组试

探波函数中使得能量泛函E[ψ]取值最低的一个，将之作为对基态波函数的

近似，相应的能量泛函的值就作为对基态能量的近似。很显然，根据刚才

的定理，这样算出来的基态能量一定是偏高的，因此为了得到更好的近似

结果，人们通常是在一个逐步扩大的试探波函数集合中选取对基态的近似，

因此得到的基态能量近似值也将是逐步降低的，当这种降低趋向于收敛的

时候，我们就可以认为已经得到对基态和基态能量的很好近似了。在实际

操作中，我们常常是让试探波函数依赖于一些参数λ1, λ2, ..., 用这个带参数

的试探波函数计算能量泛函E[ψ]，算出来的当然就是一个依赖于这些参数

的能量表达式E(λ1, λ2, ...)，求这个表达式的最小值，并得出最小值所对应

的参数，则与最小值参数相应的试探波函数就可以看成是近似的基态波函

数，能量泛函的最小值就可以看成是近似的基态能量。同样，为了保证得

到足够好的近似，我们可以不断地增加参数，然后接着求新参数所对应的

能量泛函最小值，直到这些最小值趋于收敛。

求出足够好的近似基态以后，我们可以接着在与这个近似基态正交的

子空间里按照同样的办法求第一激发态波函数以及能量的近似。因为很显

然，在与基态正交的子空间里有一个和上面的定理完全类似的定理，只不

过这时候不等号右边的下界是第一激发态的能量E1。当然，按照这样的办

法人们还可以逐步地对各个激发态都进行近似求解。不过，相比较来说，

近似求解基态是变分法用得最多的地方。

下面我们用变分法来近似求解氦原子的基态能级。我们假设氦原子核

是不动的，位于坐标原点，因此氦原子的哈密顿量是

H = − ~2

2m
(∇2

1 +∇2
2)−

2e2

4πϵ0r1
− 2e2

4πϵ0r2
+

e2

4πϵ0r12
, (5.66)

式中x1,x2是两个电子的位置矢量，r1 = |x1|, r2 = |x2|，r12 = |x1 − x2|。很
显然氦原子的哈密顿量可以看成是在两个相互独立的He+离子的哈密顿量
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的基础上加上一个电子与电子的相互作用项 e2

4πϵ0r12
。He+离子是一个类氢系

统，其基态波函数在归一化以后是
(
Z3

πa30

)1/2
e−Zr/a0 , 式中Z就是原子序数，

对于He+离子当然Z = 2, a0就是玻尔半径。因此，两个He
+离子(共用同一

个核)的基态波函数当然就是

ψ(r1, r2) =
Z3

πa30
e−Z(r1+r2)/a0 . (5.67)

但是现在，由于电子与电子之间的库伦排斥相互作用，上面的ψ(r1, r2)当

然不可能是氦原子真正的基态波函数，但是我们不妨将它作为对氦原子基

态的一个试探波函数。同时，考虑到由于第二个电子的屏蔽效应，每个电

子不再能感受到一个裸的氦原子核的库伦场了，我们可以设想每个电子将

感受到一个有效的原子序数Z ̸= 2, 并通过变分法来确定这个有效的Z值。

也就是说，我们不妨将公式(5.67)中的Z变成一个参数，从而得到一组试探

波函数ψ(r1, r2, Z)。计算相应的能量泛函

E(Z) =

∫
dτ1dτ2ψ(r1, r2, Z)

[
− ~2

2m
(∇2

1 +∇2
2)−

2e2

4πϵ0r1
− 2e2

4πϵ0r2

]
ψ(r1, r2, Z)

+

∫
dτ1dτ2ψ(r1, r2, Z)

[
e2

4πϵ0r12

]
ψ(r1, r2, Z)

= −2(1
2
mα2c2)[4Z − Z2 − 5

8
Z]. (5.68)

式中dτ表示三维体积元，α = e2

4πϵ0~c ≃ 1/137是精细结构常数，因此1
2
mα2c2 =

13.6eV是里德堡能量。式中的计算只有
∫
dτ1dτ2ψ(r1, r2, Z)

[
e2

4πϵ0r12

]
ψ(r1, r2, Z)

稍微难一点点，不过也无需用到任何特殊函数之类的东西，算是一道高数

习题吧。

求表达式E(Z)的最小值得到Z = 27
16
,代入得到E(Z)的最小值约为−77.5eV，

这就是我们用变分法求出来的氦原子基态能量。这个值比真实值−78.6eV略
大，但是误差很小。考虑到氦原子基态并没有精确解，因此我们能如此迅

速地得到这样的近似结果，这已经足以说明变分法的威力了。

5.3.2 定态作为能量泛函的极值状态

从上一节关于变分法的讨论中其实我们已经能够想见，能量本征态

一定是能量泛函E[ψ]的极值状态，基态更是整体的极小值状态。这里我

们首先用数学推导来确认一下这一点。假设|ψ⟩态发生了一个无穷小变动，
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|ψ⟩ → |ψ⟩+ |δψ⟩, 式中|δψ⟩表示一个正比于无穷小量的任意状态。则能量泛
函的改变量为

δ(E[ψ]) =
⟨ψ|H|ψ⟩+ ⟨δψ|H|ψ⟩+ ⟨ψ|H|δψ⟩+O((δψ)2)

⟨ψ|ψ⟩+ ⟨δψ|ψ⟩+ ⟨ψ|δψ⟩+O((δψ)2)
− ⟨ψ|H|ψ⟩
⟨ψ|ψ⟩

=
⟨δψ|H|ψ⟩+ ⟨ψ|H|δψ⟩ − E[ψ](⟨δψ|ψ⟩+ ⟨ψ|δψ⟩)

⟨ψ|ψ⟩
+O((δψ)2)

=
⟨δψ|(H − E[ψ])|ψ⟩+ ⟨ψ|(H − E[ψ])|δψ⟩

⟨ψ|ψ⟩
+O((δψ)2). (5.69)

式中O((δψ)2)代表高阶无穷小量。能量泛函的极值条件等价于δ(E[ψ])表

达式中的一阶小量等于0，从上面的表达式容易看出这又等价于⟨δψ|(H −
E[ψ])|ψ⟩ + ⟨ψ|(H − E[ψ])|δψ⟩ = 0对于任意的无穷小变动|δψ⟩都成立。不
妨令|φ⟩ = (H − E[ψ])|ψ⟩, 因此一阶小量等于0的充要条件就变成⟨δψ|φ⟩ +
⟨φ|δψ⟩ = 0对于任意的|δψ⟩成立。取|δψ⟩ = ϵ|φ⟩, 其中ϵ为一个实无穷小
量，则这个一阶小量等于0的条件又意味着，ϵ⟨φ|φ⟩ = 0，而这又意味

着⟨φ|φ⟩ = 0, 从而|φ⟩ = 0。也即是说，|ψ⟩是能量泛函的极值状态的充要条
件是下式成立

(H − E[ψ])|ψ⟩ = 0, (5.70)

由于E[ψ]是一个数，所以这一方程其实就是哈密顿算符的本征方程。因此，

能量泛函取极值的充要条件是|ψ⟩是哈密顿算符的本征态，这时候能量泛函
的值E[ψ]显然就等于相应的本征值。

上面的这个结论通常也称之为里兹定理。它当然是对变分法的一个确

认和补充。有时候用拉格朗日乘子法来表述里兹定理也是很方便的，即能

量本征态是下面的能量泛函E[ψ]在归一化约束⟨ψ|ψ⟩ = 1下的极值状态，

E[ψ] = ⟨ψ|H|ψ⟩. (5.71)

这样表述以后人们就可以用标准的约束下取极值的拉格朗日乘子法来处理

这一极值问题。当然，这样的处理和我们之前的处理完全等价。

有时候将能量泛函的表达式在坐标表象中用波函数的形式具体写出

来也非常有用。我们以哈密顿量H = − ~2
2m
∇2 + V (x)为例来进行说明。很

显然这时候E[ψ] =
∫
dτψ∗(x)

[
− ~2

2m
∇2 + V (x)

]
ψ(x)/(

∫
dτ |ψ(x)|2)。对这个

式子进行分部积分就可以得到E[ψ] = {
∫
dτ
[

~2
2m
|∇ψ(x)|2 + V (x)|ψ(x)|2

]
−

~2
2m

∫
S(∞)

dS⃗ ·ψ∗(x)∇ψ(x)}/(
∫
dτ |ψ(x)|2)(式中S(∞)表示空间的边界)。对于
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表达式中的边界项 ~2
2m

∫
S(∞)

dS⃗ · ψ∗(x)∇ψ(x)，假如我们考虑的是束缚态情
形，或者是周期性边界条件的情形(这相当于没有边界)，那这个边界项其

实就等于0。在这种情况下我们就有

E[ψ] =

∫
dτ
[

~2
2m
|∇ψ(x)|2 + V (x)|ψ(x)|2

]
∫
dτ |ψ(x)|2

. (5.72)

当然，人们也可以将这个能量泛函用拉格朗日乘子法来表述，这时候根据

里兹定理，将能量泛函在归一化约束之下对波函数ψ(x)进行变分求极值，

我们就会反过来得到坐标表象下的定态薛定谔方程。实际上，在某些比较

复杂的坐标系中(比如球坐标)，人们常常可以先在这种坐标系下写出能量

泛函(5.72)(取波函数归一化约束), 然后再用拉格朗日乘子法对波函数变分

求出这种坐标下相应的定态薛定谔方程。相比于直接写这样的复杂坐标下

的定态薛定谔方程，这样处理的简捷之处在于，能量泛函(5.72)中只涉及到

一阶偏导，而一阶偏导在复杂坐标系中的表达形式远比直接写定态薛定谔

方程时涉及的拉普拉斯算符∇2这样的二阶偏导要好处理。

5.3.3 有关基态的几个定理

这一节，我们利用变分原理讨论几个有关于系统基态的一般性定理。

首先我们证明对于一大类量子力学系统，定态波函数总能取成实函数。这

些系统就是具有如下形式定态薛定谔方程的系统，[
− ~2

2m

∂2

∂x2
+ V (x)

]
ψ(x) = Eψ(x). (5.73)

很显然对于任意满足上面方程的ψ(x)，其复共轭ψ∗(x)也满足同样的方程，

所以对于这样的系统我们总是能重新将定态波函数选成ψ(x) + ψ∗(x)或

者−i(ψ(x) − ψ∗(x)), 显然，这样重新选择以后的定态波函数是实函数。特

别的，这一类系统的基态波函数总能取成实函数。

因此结合变分原理，系统(5.73)的基态就是使得下面的能量泛函取最小

值的态。

E[ϕ] =

∫
dx
[

~2
2m

(
∂ϕ
∂x

)2
+ V ϕ2

]
∫
ϕ2dx

, (5.74)

其中ϕ(x)是一个任意的实波函数。
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从这里我们能够得出一个定理，那就是系统(5.73)的基态波函数不能有

节点，也就是说，除了在空间边界处之外，基态波函数必定恒大于0。因

为假设基态波函数有像图(5.2)所示的节点的话，那就必定有一部分波函数

的值是负的，根据能量泛函的表达式，这时候我们完全可以把波函数的负

值部分沿着自变量的x轴对折为正，就像图(5.3)所示的那样，由于能量泛

函E[ϕ]对波函数以及波函数的导数的依赖都是平方型的，所以很显然这样

做对E[ϕ]的值不会有任何影响。但是，一个类似于图(5.3)那样的波函数不

可能对应能量泛函的最小值，因为很显然图(5.3)中波函数的导数在节点处

有突变，而这就意味着我们可以将波函数作一个微小的改变，从而使得它

在节点附近变得光滑，就像图(5.4)所示的那样，很显然这种光滑化的小手

续会明显地降低能量泛函中与导数相关的部分
(
∂ϕ
∂x

)2
在节点附近的值，并保

持对能量泛函的所有其它贡献不变，因此通过这样的光滑化小手续我们就

可以进一步降低能量泛函的值。这也即是说，图(5.3)那样的波函数不可能

对应能量泛函的最小值，根据变分原理，从而它也就不可能是系统的基态，

当然这也意味着，任何像图(5.2)那样的波函数也不可能是系统的基态。因

此，系统(5.73)的基态波函数必定不能有节点。

上一段的定理有一个重要的推论。那就是系统(5.73)的基态不可能简

并。因为否则的话，假设ϕ0(x)和ϕ
′
0(x)都是系统(5.73)的基态，则根据线性

叠加原理aϕ0(x) + bϕ′
0(x)也将是系统(5.73)的基态，这里a, b是两个任意的

非0实数。很显然，由于ϕ0(x)和ϕ
′
0(x)是两个不同的态，因此我们只要合适

地选取叠加系数a, b就能让aϕ0(x) + bϕ′
0(x)出现节点。但根据上一段的定

理，这将与aϕ0(x) + bϕ′
0(x)是系统(5.73)的基态相矛盾。从而这就证明了系

统(5.73)的基态不可能简并。

另外，假设ϕn(x)是系统(5.73)的某个取成实函数的激发态波函数。则

由于激发态和基态ϕ0(x)必定要正交，从而我们可以知道，激发态波函

数ϕn(x)必定存在节点。因为否则的话
∫
dxϕn(x)ϕ0(x)的被积函数将恒大

于0或者恒小于0，那积分结果将不可能为0，从而与正交性相矛盾。

此外还有一个推论也值得一提，那就是假设我们所考虑的系统(5.73)是

宇称守恒的，即假设在空间反射x→ −x之下有V (−x) = V (x), 那系统的基

态波函数ϕ0(x)将必定是偶宇称的，即必定满足ϕ0(−x) = ϕ0(x)。这是因为，

如果V (−x) = V (x)，那ϕ0(−x)也必定满足基态的本征方程，但由于基态不
简并，所以必有ϕ0(−x) = αϕ0(x)。由于空间反射两次等于不做任何操作，

所以α2 = 1，α = ±1。但是由于ϕ0(x)没有节点，所以它在空间反射之下也

不能改变符号，因此只可能是α = 1，也即是说，ϕ0(−x) = ϕ0(x)。
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图 5.2: 假设波函数有节点. 图片来源：费曼统计力学

图 5.3: 把波函数的负部分反射成正. 图片来源：费曼统计力学

图 5.4: 把反射后的波函数作微小的光滑化. 图片来源：费曼统计力学

以上所有的结论我们都是以单自由度系统为例来得到的，但显然这些

结论全都可以推广到类似下面那样的多自由度多粒子体系。[
−

N∑
i=1

~2

2mi

∇2
i +

∑
i<j

V (rij)

]
ψ(x1,x2, ...,xN) = Eψ(x1,x2, ...,xN), (5.75)

这里我们假设的是一个N粒子系统，xi是其中第i个粒子的位置矢量，

V (rij)是两体相互作用势能，其中rij = |xi − xj|是两个粒子的空间距离。
另外，如果我们考虑的是N个完全相同粒子的全同多粒子体系，如果

这时候系统的哈密顿量依然具有(5.75)这样的形式的话(当然这时候所有全

同粒子的质量都是相同的，即mi = m), 那我们还可以得出这种哈密顿量的
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基态波函数必定是一个全对称波函数，即在不同粒子的位置作任意置换之

下，波函数都保持不变。这是因为对于全同粒子，其哈密顿量在不同粒子

位置矢量的任意置换σ下都必定是不变的。因此假设ψ0(x1,x2, ...,xN)是哈

密顿量(5.75)的基态波函数，则ψ0(xσ(1),xσ(2), ...,xσ(N))(式中σ(i)表示i在置

换σ作用之后的结果)必然也是哈密顿量(5.75)的一个基态波函数。但是，由

于哈密顿量(5.75)的基态必定不简并，所以必有ψ0(xσ(1),xσ(2), ...,xσ(N)) =

ασψ0(x1,x2, ...,xN), 本来根据全同性原理
4这样的ασ可能等于±1，但是由

于基态波函数不能有节点，因此在坐标置换前后不能改变符号，从而必

有ασ = 1 (这也告诉我们，反对称的空间波函数必定是有节点的)。也即是

说，对于任意置换σ，哈密顿量(5.75)的基态波函数必定满足

ψ0(xσ(1),xσ(2), ...,xσ(N)) = ψ0(x1,x2, ...,xN), (5.76)

从而必定是一个全对称波函数。

强调一下以上这些定理的适用范围：1. 它们只适用于空间波函数，因

此不能包括自旋自由度。比方说，考虑到自旋自由度，一个理想的非相

对论性氢原子的基态波函数也是二重简并的。2. 一般来说不能有磁场，

因为否则哈密顿量(5.75)中出现的空间梯度∇就应该替换成∇ − iq
~ A⃗(x)(式

中A⃗(x)是矢量势，q是粒子的电荷)，因此相应的定态波函数就无法取成实

函数。3. 不适用于粒子数目超过一定限度的全同费米子体系。比方说对于

三个1/2自旋的全同费米子体系，由于它们的自旋波函数无法完全反对称

化，从而为了满足全同性原理，这种体系的空间波函数也不能做到全对称

化，即使对于基态波函数也一样，因此这种体系当然是不满足以上定理的。

一般的，对于多费米子体系，即使有时候可以完全将自旋自由度和空间自

由度分离开来，但由于半整数自旋的自旋波函数一般来说不能做到完全反

对称化(当粒子数目超过一定数量时)，因此它的空间波函数也不能是全对

称的，从而这就违反了上面证明的定理。或者你也可以说，对于这样的体

4根据全同性原理，所有的电子都完全不可区分，因而是全同的。类似的，所有的光子

也是全同的，所有的质子同样是全同的。全同粒子可以分成两类，像光子这样的自旋为整

数的粒子是全同玻色子，像电子这样的自旋为半整数的粒子是全同费米子。对于全同玻色

子体系，全同性原理要求系统的总波函数(同时包括空间变量和自旋变量的波函数) 在这

些全同粒子的任意置换下保持不变，人们称这样的波函数为全对称波函数。对于全同费米

子体系，全同性原理要求系统的总波函数在这些全同费米子的奇置换下出负号，在偶置换

下保持不变，人们称这样的波函数为全反对称波函数。有时候人们可以用全反对称的空间

波函数乘上全对称的自旋波函数，或者用全对称的空间波函数乘上全反对称的自旋波函数

来构造全同费米子的总波函数。
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系，人们的确能求出哈密顿量(5.75)的一个全对称能量最低态波函数，但是

由于这一波函数不能满足全同性原理，从而实际上是非物理的。4. 以上定

理只适用于有限自由度的系统，在N → +∞时可能不成立。5. 最后，严格

来说，由于我们使用的能量泛函的表达形式没有包含边界项，因此这些定

理只适用于束缚态，或者通过周期性边界条件将空间边界去除的情形。

两两两个个个例例例子子子

氢分子的基态波函数能很清楚地说明上面的这些定理。假设我们分别

称氢分子的两个质子为a和b，由于质子比电子重很多，我们不妨假设这两

个质子是不动的，两者之间的距离为R。两个电子，电子1和2，绕着这两

个质子运动，这就构成了一个氢分子系统。很明显，这个氢分子系统的哈

密顿量就属于(5.75)这样的类型，现在我们来分析这个系统的基态。由于质

子对电子的库伦吸引力(质子与电子间的库伦势能为负)，为了保持最低的

能量，电子1和2应该尽量靠近质子a和b。但是，如果两个电子同时靠近一

个质子的话，那这两个电子之间就离得太近了，这时候由于电子与电子之

间的库伦排斥力(电子与电子间的库伦势能为正)，系统的能量反而会比较

高。所以为了尽量降低系统的能量，最后的情况一定是，每一个电子分别

围绕一个质子。但这样一来，系统好像就变成两个独立的氢原子放在一起

了，问题就在于，为什么这两个氢原子能进一步降低能量，进而结合成氢

分子呢？

原因在于，两个电子在两个质子上的配置有两个可能性：电子1围绕

质子a电子2围绕质子b，以及电子1围绕质子b电子2围绕质子a(如图(5.5)所

示), 相应的波函数我们分别记为|A⟩ = ψab(x1,x2)和|B⟩ = ψab(x2,x1)，式

中x1和x2分别是电子1和电子2的位置矢量。 很显然，由于两个质子之间以

图 5.5: 氢分子的两种可能性

及两个电子之间都没有什么区别，所以这两种可能性的地位完全平等，它

们对应的系统能量可以记为E0，当两个质子之间的距离足够大时，E0就

等于两个独立的氢原子的能量之和。但是，|A⟩和|B⟩都是一种过于简化的
描述，它们都不是氢分子系统的基态，E0也不是基态的能量，不过系统的
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基态可以用一个以|A⟩和|B⟩为基的有效哈密顿量来描述。在这个有效描述
中，HAA = HBB = E0可以看作有效哈密顿量的对角项，但是，这个有效

哈密顿量还有两个非0的非对角项HAB和HBA。这是由于，每个电子除了要

受到其围绕的质子的库伦吸引之外，它还要受到另一个距离较远的质子的

库伦吸引，因此尽管电子与电子之间的库伦排斥力造成了一个不小的势垒，

|A⟩和|B⟩这两种可能性之间依然有一定的概率幅通过量子隧穿效应相互转
变。和任何典型的隧穿效应一样，这种隧穿效应也会产生一个负的非对角

有效哈密顿量，这就是HAB和HBA，我们不妨记HAB = HBA = −J(J > 0)。

因此氢分子系统真正的基态可以通过求解下面的有效哈密顿量来得到，(
E0 −J
−J E0

)
, (5.77)

这个哈密顿量的两个能量本征值分别为Eg = E0− J ,Ee = E0 + J , 相应的两

个本征态分别为|g⟩ = 1√
2
(|A⟩+ |B⟩), |e⟩ = 1√

2
(|A⟩ − |B⟩)。或者也可以写成

|g⟩ = 1√
2
[ψab(x1,x2) + ψab(x2,x1)], |e⟩ =

1√
2
[ψab(x1,x2)− ψab(x2,x1)].(5.78)

上面的分析告诉我们两个结论：第一，两个氢原子可以通过交换电

子(即上面描述的量子隧穿)进一步将能量降低−J，从而结合成一个氢分
子。第二，氢分子的基态波函数|g⟩ = 1√

2
[ψab(x1,x2) + ψab(x2,x1)], 很显然

是一个对称波函数。正是在这里，这个结论和我们前面证明的一般性定理

完全吻合。并且从这个基态波函数很容易看出，基态上的这两个电子实际

上都是被两个质子共享的。

但是，由于电子是费米子，所以我们还得验证刚才得到的基态空间波

函数|g⟩是否能满足全同性原理。答案是可以，因为现在只涉及到两个电
子，所以对于对称的空间波函数，我们完全可以通过将自旋波函数构造成

反对称的自旋单态来满足全同性原理。因此上面的分析其实是告诉我们，

氢分子基态上的两个电子其实处于自旋单态，并且由于它们被两个质子

共享，所以就在两个质子间形成了一个典型的共价键(如图(5.6)所示)，前

面的−J就是这个共价键的键能。而对于另外一个能量为E0 + J的态|e⟩, 很
显然它的空间波函数是反对称的，因此为了满足全同性原理，相应的电子

自旋波函数就只能取自旋平行的对称三重态。因此，如果从电子自旋的视

角来看待之前的有效哈密顿量，那它告诉我们的显然是，两电子自旋反平

行(自旋单态)时能量较低，而自旋平行时能量较高。换言之，这个有效哈

密顿量描述的是两电子自旋的反铁磁相互作用。
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图 5.6: 氢分子

与氢分子这个例子略微有些相关的，我们举一个前面的那些定理不适

用的例子，那就是铁磁体的基态。对于铁磁体而言，当它处于基态时，任

意两个相邻格点上的电子自旋都是平行的(为简单起见我们假设每一个格点

上只有一个电子围绕着格点上的这个原子运动)，但这就是铁磁体难以理解

的地方。因为根据我们上面对氢分子的分析，通常而言相邻两个电子自旋

反平行才会使得系统能量比较低，为什么铁磁体的自旋反而会平行呢?有一

种物理上的解释是这样的：注意到铁磁体都是导体，所以除了围绕各自原

子运动的电子之外，整个铁磁体中一定还存在传导电子，由于传导电子在

整个铁磁体中运动，所以应该看成是被所有格点共享的。现在，由于泡利

不相容原理，每个格点上的电子自旋会趋向于与传导电子的自旋反平行，

但传导电子被所有格点共享了，因此这就意味着所有格点上的电子要自旋

平行(如图(5.7)所示)，这就导致了铁磁体的出现。这种自旋平行化的出现

显然意味着相邻格点上的电子的空间波函数不可能是对称的，这正好是不

满足我们前面证明的那些定理的一个例子。但这完全是因为我们现在处理

的体系涉及到的电子(费米子)数目太多(多于三个电子)，超出了定理的适用

范围，属于我们前面已经注明过了的定理不适用的情形。

图 5.7: 铁磁体通过共享的传导电子而自旋平行
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5.3.4 相变与对称性自发破缺

这一节我们将在变分法的近似下发展一个关于量子相变的物理图像。

这一节的处理方式和例子基本上来自于文小刚老师关于拓扑序的一门在线

课程的PPT。

通常来说，一个量子系统总会依赖于一些外界参数，不妨象征性地将

这些参数记为g，比方说它可能是某个与系统耦合的外场等等。因此，这个

量子系统的哈密顿量就将是g的光滑函数，不妨记为Hg。之所以强调是光

滑函数是因为任何物理上合理的哈密顿量都会有比较良好的数学性质，因

此它们对物理参数的依赖都应该是光滑的。

现在假设我们用一组合理的试探波函数|Ψϕ⟩来近似求解Hg的基态能

量，这里ϕ表示试探波函数里的未定参数。假设|Ψϕ⟩已经归一化好了，那么
我们将得到一组能量泛函Eg(ϕ)，

Eg(ϕ) = ⟨Ψϕ|Hg|Ψϕ⟩. (5.79)

作为合理的试探波函数，它们的数学性质当然也应该比较良好，因

此|Ψϕ⟩对参数ϕ的依赖也将是光滑的。因此，Eg(ϕ)将同时是系统参数g和试
探参数ϕ的光滑函数。

但是，Eg(ϕ)还不是系统的基态能量。按照变分法，为了得到系统基

态能量的近似值，我们还需要求Eg(ϕ)关于ϕ的最小值，假设这个最小值

在ϕ = ϕm(g)时取到，那基态能量的近似值E(g)实际上是

E(g) = Eg(ϕm(g)). (5.80)

注意到ϕm(g)一般来说也依赖于系统参数g(在物理上这就相当于在不同

物理条件g之下系统的基态会不一样), 所以最后我们得到的基态能量近似

值E(g)作为g的函数就可能完全不同于原来的Eg(ϕ)。特别的，经过变分法

的最终手续以后会产生这样一种可能性，即E(g)作为g的函数不再是光滑

的了，比方说它的某阶导数可能在某个参数点gc变得不连续。在物理上，

这就相当于说，随着外界物理参数的变化，系统的基态能量在gc处出现了

某种奇异性(即使系统的哈密顿量Hg关于g光滑)，物理学家常常称这种奇异

性的出现为系统发生了相变。

为了帮助读者看清这种可能性是如何发生的，我们不妨举一个简单的

例子。假设有某个量子系统，我们用一组合理的试探波函数|Ψϕ⟩计算得出
能量泛函为Eg(ϕ) = (ϕ2 + g)2。很显然这个函数对于系统参数g和试探参
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数ϕ来说都光滑。现在让我们求Eg(ϕ)关于ϕ的最小值，很显然当g ≥ 0时，

ϕm = 0, 因此这时候有E(g) = g2，而当g < 0时，ϕm = ±
√
−g, 很明显

这时候E(g) = 0。因此最终我们得到的基态能量函数E(g)是关于g的一个

分段光滑函数，很显然这个分段函数整体上是不光滑的，它的二阶导数

在g = gc = 0处不连续。对于这样一个系统，我们就说它在gc = 0处发生了

相变，由于是基态能量的二阶导数出现了不连续，所以这样的相变也被称

为二级相变。

仔细观察上面这个例子出现奇异性(即相变)的基本机制。我们就会

发现，关键点就在于随着参数g由大于0变为小于0，Eg(ϕ)关于ϕ的极小

结构出现了突变。具体来说就是，当g ≥ 0时，Eg(ϕ)关于ϕ只有一个极

小点，即ϕm = 0, 但是当g < 0时，Eg(ϕ)关于ϕ的极小点劈裂成了两个，

即ϕm = +
√
−g和ϕm = −

√
−g。正是这种极小结构的突变导致了二级相

变。

不妨再举一个一级相变的例子，看看和二级相变有什么不同。比方说

对于某个量子系统我们算出来Eg(ϕ) = ϕ4/4 + gϕ3/3 − ϕ2/2, 很显然这个

函数既是g的光滑函数又是ϕ的光滑函数。但其实这个系统在g = gc = 0处

也有相变。为了看清楚这一点，我们不妨考察g在0附近时的情况，这时

候，Eg(ϕ)的两个极小点近似为(保留到一阶小量) ϕm1 ≈ −g
2
− 1和ϕm2 ≈

−g
2
+ 1, 相应的两个极小值约为(保留到一阶小量)Eg(ϕm1) ≈ −1

4
− 1

3
g,

Eg(ϕm2) ≈ −1
4
+ 1

3
g。显然，当g > 0时，ϕm1对应真正的最小值，因此这

时E(g) ≈ −1
4
− 1

3
g，反过来，当g < 0时，ϕm2对应真正的最小值，因此这

时E(g) ≈ −1
4
+ 1

3
g。很显然，这样算出来的基态能量E(g)也是一个分段

光滑函数，它在g = 0处不光滑，因为它的一阶导数在g = 0处不连续。人

们常常把这样的一阶导数不连续的相变称作一级相变。观察这种相变发

生的原因，我们会发现是因为Eg(ϕ)关于ϕ有多个极小值点，而随着系统参

数g的变化(由g > 0变到g < 0)，整体的最小值点在不同的极小之间发生了

切换(由ϕm1切换到了ϕm2)。这种极小切换就会导致一级相变。

但是，我们刚才给出来的两个例子都不是真正算出来的例子。也即是

说，我们并没有给出实现这些例子的量子系统，而只是直接给出了两个能

够说明相变现象的函数Eg(ϕ)。对真正量子系统的具体计算研究发现，对于

有限的系统，比方说自由度数目有限的系统，只要试探波函数真正合理，

最后得到的E(g)实际上通常都是整体光滑的，通常不会有真正的量子相变。

人们真正感兴趣的E(g)的奇异性和量子相变其实都是发生在无限大的量子

系统中。当然，对于无限大的量子系统，其基态能量E(g)会正比于系统的
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体积V，因此也是趋于无穷的，所以这时候更合适的研究对象其实应该是

能量密度, 因为即使系统体积趋于无穷，其能量密度总还是有限的。也就

是说，我们要定义一个能量密度泛函εg(ϕ),

εg(ϕ) = Eg(ϕ)/V, (5.81)

然后用εg(ϕ)来进行我们刚才所做过的那些分析。相应的基态能量密

度ε(g)就是

ε(g) = εg(ϕm(g)), (5.82)

ε(g)关于参数g的奇异性就意味着相变。当然，我们之前通过例子发现的相

变机制依然可以照搬过来，只要将能量换成能量密度就可以了。值得说明

的是，无限大系统并不是物理学家凭空构想出来的，实际上，任何一块宏

观材料由于包含了巨量的原子分子，因此都可以近似地看成是无限大系统，

要研究材料的宏观性质就必须研究无限大系统，这其实就是物理学家为什

么对无限大系统感兴趣的基本原因。

下面我们举一个真正量子系统的例子。假设有N个1/2自旋等间距地

排布在一个圆周上(因此第N + 1个自旋其实就是第1个自旋)。假设相邻两

个自旋之间的相互作用为−σxi σxi+1, 其中σ
x
i , σ

y
i , σ

z
i是第i个自旋的三个泡利算

符。假设整个系统处在一个z方向的磁场中，因此这个磁场和每一个自旋的

相互作用能可以写成−gσzi，参数g正比于磁场强度，不妨假设g > 0。因此，

整个系统的哈密顿量Hg可以写成

Hg = −
∑
i

(σxi σ
x
i+1 + gσzi ). (5.83)

这样一个系统通常被称为横场伊辛模型，它实际上是一个可以精确求解的

模型，不过我们这里是想用它来讨论变分法的应用，而不是要讨论它的精

确求解。注意到在绕着z轴的180度旋转之下，σzi → σzi , σ
x
i → −σxi , σ

y
i →

−σyi。很显然(5.83)式给出的哈密顿量在这个180度旋转之下是不变的，因

此这个操作是系统的一个对称性。实际上，这个绕z轴180度旋转的对称性

可以用幺正变换U =
∏

i exp(iπ
1
2
σzi )来表示。

注意到g → ∞时系统的状态完全由z方向的磁场决定，因此这时候的
基态为

∏
i(| ↑i⟩), 而g = 0时，系统有两个简并的基态

∏
i(| →i⟩)和

∏
i(| ←i⟩)

(这里| →i⟩ = 1√
2
(| ↑i⟩ + | ↓i⟩)，| ←i⟩ = 1√

2
(| ↑i⟩ − | ↓i⟩)为σxi的两个本征

态)。所以对于一般情形的基态，我们可以取归一化的试探波函数|Ψϕ⟩ =
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∏
i |ψi⟩, |ψi⟩ = cos ϕ

2
| ↑i⟩ + sin ϕ

2
| ↓i⟩。注意到σz| ↑⟩ = | ↑⟩, σz| ↓⟩ = −| ↓⟩,

σx| ↑⟩ = | ↓⟩, σx| ↓⟩ = | ↑⟩, 易有⟨ψi|σzi |ψi⟩ = cos2 ϕ
2
− sin2 ϕ

2
= cosϕ,

⟨ψi|σxi |ψi⟩ = 2 sin ϕ
2
cos ϕ

2
= sinϕ。进而可以得到能量密度泛函，

εg(ϕ) = ⟨Ψϕ|Hg|Ψϕ⟩/N
= −

∑
i

[
⟨ψi|σxi |ψi⟩⟨ψi+1|σxi+1|ψi+1⟩+ g⟨ψi|σzi |ψi⟩

]
/N

= −(sin2 ϕ+ g cosϕ). (5.84)

我们按照g从大到小的顺序画了几幅εg(ϕ) = −(sin2 ϕ+ g cosϕ)作为ϕ的

函数图像(如图(5.8)、(5.9)、(5.10)所示)。 很显然，当g ≥ 2时，εg(ϕ)只
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3

图 5.8: Fig of −(sin2 ϕ+ 3 cosϕ)
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-2
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2

图 5.9: Fig of −(sin2 ϕ+ 2 cosϕ)
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-1.0

-0.5

0.5

图 5.10: Fig of −(sin2 ϕ+ 0.7 cosϕ)

有一个极小值点，即ϕ = 0, 因此这时候基态能量密度ε(g) = −g。但
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是当g < 2时，εg(ϕ)的极小值点劈裂成了两个ϕ = ϕm = arccos(g
2
), 以

及ϕ = −ϕm = − arccos(g
2
), 这时候ε(g) = −(1 + g2

4
)。这种极小劈裂的情况

正符合我们前面关于二级相变机制的讨论。从基态能量密度的表达式也可

以直接看出ε(g)在g = 2处的二阶导数不连续，因此正是一个二级相变。

这个例子其实揭示了由朗道发现的关于连续相变(二级以上的相变)的

一个一般性机制，那就是，连续相变所需要的能量泛函极小结构的突变

常常都是由于对称性自发破缺带来的。在我们这个例子中，在g > 2的相，

变分法求出来的系统基态为|Ψ0⟩ =
∏

i(| ↑i⟩), 这个态在绕着z轴的180度旋

转下变换为|Ψ0⟩ → U |Ψ0⟩ =
∏

i(i| ↑i⟩) = iN |Ψ0⟩(非指标的那个i为虚数单
位), 可见变换前后的基态只差一个相位，在物理上它们描述的是同一个

量子态，因此这也就是说，在g > 2相中，基态保持了绕z轴的180度旋转

对称性。但是，对于g < 2的相，变分法求出来的基态是简并的两个(这

里严格来说要取N → ∞的无限大系统极限)，分别是|Ψϕm⟩和|Ψ−ϕm⟩, 而
且人们很容易计算出这两个态在绕z轴的180度旋转之下是如何变换的，

|Ψϕm⟩ → U |Ψϕm⟩ = iN |Ψ−ϕm⟩, |Ψ−ϕm⟩ → U |Ψ−ϕm⟩ = iN |Ψϕm⟩。可见，这两
个基态单独都不保持绕z轴的180度旋转对称性，而是在这个旋转操作下互

相变为对方。但是，一个真实的系统只可能处在两个简并基态中的某一个，

但是不管真实系统是处在|Ψϕm⟩还是|Ψ−ϕm⟩，它都破缺了这个绕z轴的180度

旋转对称性。因此这就是一个典型的，哈密顿量有一个对称性，但是系统

基态却破缺了这个对称性的例子，这就叫做对称性自发破缺。我们这个例

子正好演示了二级相变和对称性自发破缺的密切联系，这种联系正是朗道

首先指出的，朗道的这个理论后来成为了理解凝聚态系统不同相和相变的

基础，因此成为凝聚态物理的一块基石，并且还给粒子物理学家带来了极

大的启发，间接促成了基本粒子标准模型中的希格斯机制的提出。

上面例子中对称相和对称破缺相的不同还可以通过一个物理量直接显

示出来，那就是通过σxi在基态上的期望值。利用⟨Ψϕ|σxi |Ψϕ⟩ = ⟨ψi|σxi |ψi⟩ =
sinϕ人们很容易得到，在对称相， ⟨Ψ0|σxi |Ψ0⟩ = 0，而在对称破缺相

⟨Ψ±ϕm|σxi |Ψ±ϕm⟩ = ± sinϕm = ±
√

1− g2

4
̸= 0。在凝聚态物理中，通常

把这样的能够区分对称相和对称破缺相的物理量称之为序参量。

最后我们简单提一下，横场伊辛模型的精确求解发现，真正的相变点

其实在g = 1处，而不是变分法发现的g = 2处，而且这实际上是一个量子

临界点。很显然，我们的变分法近似没有发现这一点。这主要是因为，在

我们用变分法求横场伊辛模型基态的时候，我们是将所有的量子效应用

一个整体的参数ϕ来平均了，而并没有将各种量子涨落包括进来，但是对
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于g = 1的量子临界点来说，各个尺度上的量子涨落都很重要，因此我们的

变分法近似不能发现它也并不奇怪。这也清楚地说明了变分法毕竟只是一

种近似方法，它并不能解释所有的量子现象。

5.3.5 习题

1. 请用试探波函数ψλ = e−λr估算氢原子基态的能量，并和精确结果比

较。

2. 假设在中心力场中运动的粒子受汤川势的相互作用，势能为

V (r) = −Ae
−µr

r
, (5.85)

式中A > 0，从而这是一个吸引势。请通过取试探波函数ψλ = e−λr确定这

系统存在束缚态的一个充分条件。

3. 两个离子可以通过共享一个电子进而降低能量形成共价键。最简单

的例子是氢分子离子H+
2 ，它是两个质子共享一个电子。假设质子静止不

动，则系统的哈密顿量可以写成

H =
p2

2m
− e2

4πϵ0

[ 1

|x|
+

1

|x−R|
− 1

R

]
. (5.86)

式中p是电子的动量，x是电子的位置矢量，R是两个质子之间的距离。假

设取试探波函数

ΨR = ψ(x) + ψ(x−R), with ψ(x) =

√
1

πa30
e−r/a0 . (5.87)

并注意到下面的积分

u(R) =

∫
d3xψ(x)ψ(x−R) =

(
1 +

R

a0
+
R2

3a20

)
e−R/a0

v(R) =

∫
d3x

ψ(x)ψ(x−R)

|x|
=

1

a0

(
1 +

R

a0

)
e−R/a0

w(R) =

∫
d3x

ψ2(x)

|x−R|
=

1

R
− 1

R

(
1 +

R

a0

)
e−2R/a0 . (5.88)

请利用这些结果证明，哈密顿量在试探波函数上的平均能量E(R)与氢原子

基态的能量E0之间的差可以写成

E(R)− E0 =
e2

4πϵ0

( 1
R
− v(R) + w(R)

1 + u(R)

)
. (5.89)
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请画出E(R)− E0作为横坐标R的函数的数值曲线，并以此估算氢分子离子

的键能。[这个题目来自David Tong的课程习题]


