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第四章 两体问题和受限三体问题

陈陈陈童童童

前面几章初步发展了理论力学的理论框架，下面当然要用这个框架来

处理具体问题。因此这一章我们将研究如何求解两体问题以及一类特殊的

三体问题。需要说明的是，这一章的内容我想不出什么与众不同的讲述方

式。但是作为一本正经的理论力学书，不讲这些内容无论如何是不行的。

因此，这一章的处理可能和已有的理论力学书或讲义没有太大不同。

4.1 两体问题

太阳系的九大行星如何运动呢？这问题其实非常复杂，答案是未知的。

因为这是一个多体问题，而这样的多体问题并没有一般性的解析解。不过

我们知道，太阳的质量比行星大很多，任何行星主要是受太阳的万有引力，

其它行星的影响往往可以忽略。如此一来，行星的运动问题就变成了一个

只需考虑这颗行星本身和太阳的相互作用的两体问题。开普勒告诉我们，

行星相对太阳是在作椭圆轨道运动。几百年前的牛顿和我们一样也知道这

个结论，但是，牛顿面临的难题是，如何用理论推理得出行星必定作椭圆

轨道运动，这就是所谓的开普勒问题，本章的核心之一就是要解决这一问

题。

假设有两个质点，质量分别为m1,m2，位置矢量分别为x1,x2。两

质点间有相互作用势能，它仅仅依赖于两质点间的距离|x1 − x2|，记

2
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为V (|x1 − x2|), 则这个系统的拉格朗日量可以写成

L =
1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2 − V (|x1 − x2|). (4.1)

很显然，这个系统有空间平移不变性，因此总动量守恒，即是说系统的质

心作匀速直线运动。因此，我们可以在质心参考系中考察问题。不妨设x1,

x2为两质点在这个质心系中的位置矢量，从而有

m1x1 +m2x2 = 0, (4.2)

另外，我们再引入相对坐标x，

x1 − x2 = x. (4.3)

由这两个方程容易解出

x1 =
m2

m1 +m2

x =
m

m1

x, x2 = − m1

m1 +m2

x = − m

m2

x. (4.4)

式中m称为约化质量，其定义为

m =
m1m2

m1 +m2

⇔ 1

m
=

1

m1

+
1

m2

. (4.5)

将x1,x2的表达式代入系统的拉格朗日量(4.1)，就可以将这个拉格朗日量在

质心系中简化为

L(x, ẋ) =
1

2
mẋ2 − V (|x|). (4.6)

这样一来，就把原来的两体问题约化成了一个单体问题，不过，这个单体

的质量是约化质量m, 其位置矢量为原来两个质点的相对位置x。

很明显，(4.6)式不显含时间，从而必有能量守恒！另外，(4.6)式显然

在x的空间旋转之下保持不变，因此有角动量守恒，记这个守恒的角动量

为J, J = x × p。从矢量叉乘的性质容易知道，J必定始终和位置矢量x相

垂直。而J是守恒的，它指向三维空间的一个固定方向，因此x必定始终和

这个固定方向垂直，如此一来，x只能处于与这个方向垂直的平面上。即是

说，这个约化的单体运动必定是平面运动。

我们可以在这个运动平面上取极坐标，从而将dx2写成，dx2 = dr2 +

r2dϕ2，进而就可以将拉格朗日量(4.6)在极坐标中写成

L(r, ṙ, ϕ̇) =
1

2
m(ṙ2 + r2ϕ̇2)− V (r). (4.7)
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这个拉格朗日量显然不依赖于ϕ，即在ϕ → ϕ+ a下保持不变(由于ϕ是极角，

因此这其实就是旋转不变), 因此按照上一章关于对称性与守恒量的处理容

易知道， ∂L
∂ϕ̇
必定是守恒量。和旋转对称性对应的守恒量当然就是上面的角

动量，这里记为J，即

J =
∂L

∂ϕ̇
= mr2ϕ̇ (4.8)

是守恒量。

4.2 中心力场

4.2.1 中心力场的一般讨论

上一节出现的力场V (r)就是中心力场，即是说，中心力场其实就是势

能函数仅仅依赖于径向坐标r，从而具有空间旋转不变性的力场，r = 0的

坐标原点就是力心。上一节其实就是将两体问题约化为了一个在中心力场

中运动的单体问题。我们已经看到，这样一个系统的角动量J = mr2ϕ̇是守

恒的，另外系统的能量也是守恒的，即

E =
1

2
m(ṙ2 + r2ϕ̇2) + V (r) =

1

2
mṙ2 + V (r) +

J2

2mr2
(4.9)

是一个常数。

中心力场的角动量守恒其实和著名的开普勒第二定律是一回事。根据

开普勒第二定律，行星的掠面速度(即行星在单位时间内扫过的面积)是一

个常数，记行星扫过的面积为A，即有

dA

dt
=

1

2
|x× dx|/dt = 1

2
|x× v| (4.10)

是一个常数。但是很显然，

dA

dt
=

1

2
|x× v| = 1

2
|x×mv|/m =

J

2m
, (4.11)

所以这正是角动量守恒。

所以中心力场真正需要仔细处理的其实是径向运动，即r如何随时

间t演化。从(4.9)式容易看出，假设我们定义

Veff(r) = V (r) +
J2

2mr2
, (4.12)
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(其中 J2

2mr2
称为离心势能)，那么这一径向运动问题其实就是在有效势

能Veff(r)中运动的一维问题。r就是这个一维运动的坐标，而这个“一维

运动”粒子的守恒能量为

E =
1

2
mṙ2 + Veff(r). (4.13)

从这个式子很容易得到

dr

dt
=

√
2

m

[
E − Veff(r)

]
, (4.14)

积分就可以得出r(t)。而由角动量守恒，我们又有

dϕ

dt
=

J

mr2
, (4.15)

进一步积分就能得出ϕ(t)，到此为止，原则上我们就可以完全解出中心力

场问题了。

但是，很多时候我们更关心的其实是粒子的运动轨道。为此我们消

去(4.14)式和(4.15)式中的dt，进而可以知道中心力场中粒子的轨道r(ϕ)由

下面的积分给出

ϕ = ϕ0 +

∫ r

dr′
(J/r′2)√

2m[E − Veff(r′)]
. (4.16)

很显然，只要知道了Veff(r)，就能求出粒子的运动轨道。

为此我们来研究一下(4.12)式定义的有效势能Veff(r)。首先很明显，由

于离心势能在r → 0时趋于+∞, 因此只要V (r)在r → 0时不趋于−∞或者趋
于−∞的速度不够快，那Veff(r)就会满足

r → 0 : Veff(r) → +∞. (4.17)

另外，合理的势能当然会随着r → +∞而衰减为零，所以Veff(r)也应该满

足，

r → +∞ : Veff(r) → 0. (4.18)

满足这两个要求的典型Veff(r)曲线如图(4.1)所示。 图中能量水平线E和势

能曲线的交点rmin和rmax对应ṙ = 0，粒子的运动束缚在r ∈ [rmin, rmax]的区

间上。rmin和rmax分别对应中心势场中粒子运动的近心点和远心点。但是
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图 4.1: 有效势能曲线。

从图中也可以看到，如果粒子的能量E过大，那rmax点就不存在了，这时

候粒子就不再做束缚运动，而是可以跑到无穷远处去了。

即使对于图(4.1)中所示的束缚运动，粒子的运动轨道一般也不闭合，

而是如图(4.2)所示的那样，在半径区间为[rmin, rmax]的一个环形区域内不

断进动。从公式(4.16)可以知道，粒子半径每次从rmax变到rmin然后再回

到rmax, 它的矢径都会扫过一个∆ϕ角，

∆ϕ = 2

∫ rmax

rmin

dr
(J/r2)√

2m[E − Veff(r)]
. (4.19)

从图(4.2)中可以看出，这个角度通常并不等于2π，它和2π的差值就是所谓

的近心点在一周之内的进动角。通常来说这个进动角并不等于零。关于进

动角的近似计算，请读者参看朗道《力学》第三章的习题。

公式(4.16)中的平方根在近心点和远心点处改变符号，因此，如果将

力心到近心点(或者远心点)的方向选为极轴，ϕ角从这里开始算起，则很显

然，在这个极轴的两侧，对于同一r值，ϕ角的区别仅仅在于正负号不同。

也即是说，有心力场中粒子的轨道关于这一从力心到近心点的轴是对称

的。

什么情况下会出现闭合轨道呢？有一个伯特兰定理(Bertrand Theo-

rem)说：只有两类中心力场，其中一一一切切切束束束缚缚缚运运运动动动都是闭合轨道，第一类

是V (r) = −k
r
，第二类是V (r) = kr2，这里系数k > 0。第二类其实就是所

谓的三维谐振子，而很幸运的是，万有引力属于第一类，正因为如此行星

绕太阳才是一个闭合轨道。(注意，伯特兰定理并没有排除其它势能函数在

某些特定情况下也可能出现闭合轨道。)



第四章 两体问题和受限三体问题 7

图 4.2: 不闭合的轨道。图片来自朗道《力学》。

实际上，对于万有引力情形，行星的轨道不仅是闭合轨道，而且开普

勒第一定律告诉我们，它还是椭圆轨道。怎么证明这是一个椭圆轨道呢？

这就是我们下面要求解的开普勒问题。

4.2.2 开普勒问题

吸引力

求解开普勒问题的关键就在于对于V (r) = −k
r
的引力势能计算出公

式(4.16)中的积分。这时候有效势能Veff(r)为，

Veff(r) = −k

r
+

J2

2mr2
, (4.20)

这正好属于前面讨论过的典型势能曲线。而我们要计算的就是

ϕ = ϕ0 +

∫ r

dr′
(J/r′2)√

2m[E + k
r′
− J2

2mr′2
]
, (4.21)

为此, 进行r′ = 1
u
的变量代换，得积分

ϕ = ϕ0 −
∫ 1/r

du
1√

2mE/J2 + u2mk/J2 − u2

= ϕ0 −
∫ 1/r

du
1√

m2k2e2/J4 − (u−mk/J2)2

= ϕ0 + arccos
[1
e
(
p

r
− 1)

]
(4.22)
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式中

e =

√
1 +

2EJ2

mk2
, p =

J2

mk
. (4.23)

由此即有

p

r
= 1 + e cos(ϕ− ϕ0). (4.24)

这是以力心为焦点的二次曲线的极坐标方程，e就是所谓的离心率。

从(4.23)式可知，这个离心率依赖于粒子的总能量E, 当E > 0时，e > 1, 这

时候(4.24)描述的是一条双曲线，它说明粒子沿着双曲线的一支运动，这显

然不是束缚运动。当E = 0时，e = 1, (4.24)描述的是一条抛物线，这也不

是束缚运动。有意思的是E < 0情形，这时候e < 1，(4.24)描述的是椭圆，

很明显这是束缚轨道，它也正是我们想要证明的，行星绕太阳做椭圆轨道

运动。

如果以力心到近日点的方向为极坐标的极轴，则方程(4.24)可以进一步

简化成

p

r
= 1 + e cos(ϕ). (4.25)

对于椭圆轨道，从(4.25)式很容易看出，近心点和远心点分别为

rmin =
p

1 + e
, rmax =

p

1− e
. (4.26)

由rmin + rmax = 2a, 可以求出椭圆的半长轴a，为

a =
p

1− e2
=

k

2|E|
. (4.27)

可见，半长轴仅仅依赖于系统的总能量E和角动量J无关。由b =
√
a2 − c2 =

a
√
1− e2可以进一步求出半短轴，和a不同，它既依赖于E又依赖于J。

下面我们来证明开普勒第三定律。为此我们首先计算椭圆的面积

A = πab = πa2
√
1− e2 = πp2(1− e2)−3/2

= πp
1
2 (

p

1− e2
)3/2 = π

J

(mk)
1
2

a3/2. (4.28)

另一方面，行星的掠面速度等于1
2
r2ϕ̇ = J

2m
。将椭圆面积除以掠面速度，就

得到行星运动的周期T

T = 2π

√
m

k
a3/2. (4.29)
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注意到对于万有引力，k = GMm(M为太阳质量)，代入上式即得T =

2π
√

1
GM

a3/2，这正是开普勒第三定律1。

排斥力

但是，如果两个质点之间的中心力场不是一个吸引力，而是排斥力(比

如同性带电粒子之间的库伦排斥力)，即V (r) = k
r
(k > 0), 那情况会略微有

些不同。这时候有效势能为

Veff(r) =
k

r
+

J2

2mr2
, (4.30)

这个势能恒大于零，从而必有系统总能量E > 0。另外，与前面吸引力情

形同样的算积分，现在将会有

p

r
= −1 + e cos(ϕ). (4.31)

式中e, p依然由(4.23)式给出。由于现在E必定大于零，从而必有e > 1，从

而(4.31)描述的必定是双曲线，粒子沿着双曲线的一支运动，只不过，现在

力心位于这一支的外焦点上。当然，这种情况粒子的运动必定是无界的，

不可能是束缚运动。近心点rmin为

rmin =
p

e− 1
= a+ c = a(1 + e). (4.32)

拉普拉斯-龙格-楞次矢量

前面说过，闭合轨道是非常特殊的，那么为什么行星绕太阳运动的

轨道是一个闭合的椭圆轨道呢？伯特兰定理告诉我们，这是因为V (r) =

−k/r这种形式的势能的特殊性。那这种势能特殊在哪儿呢？回答是，这

种1/r形式的势能不仅有空间旋转对称性，它还有更高的隐藏的对称性，通

常称作动力学对称性。这种动力学对称性的存在意味着除了角动量守恒以

外，系统还有额外的守恒量。这个额外的守恒量就是所谓的拉普拉斯-龙

格-楞次矢量，记为R，它的定义是

R = v × J− k
x

r
. (4.33)

1实际比这要稍微复杂一点，其实我们的m是约化质量，假设记太阳质量为M =

m1，行星质量为m2, 那么其实k = Gm1m2, 而m = m1m2

m1+m2
, 所以结果其实应该是T =

2π
√

1
G(m1+m2)

a3/2。但是，注意到m1 ≫ m2，所以近似有T = 2π
√

1
GM a3/2。
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为了证明R的确是守恒量，我们进行如下计算(注意角动量是守恒的)

d

dt
(v × J) = v̇ × J = −k

1

m

x

r3
× J = −k

1

r3
x× (x× v)

= −k
1

r3
[
(x · ẋ)x− (x2)ẋ

]
= −k

1

r3
[
(rṙ)x− r2ẋ

]
= k

[
− x

r2
ṙ +

ẋ

r

]
= k

d

dt

(x
r

)
. (4.34)

从计算结果很明显可以看出R是守恒量。

实际上，R始终从力心指向近心点。为了看出这一点，我们选取R方

向为极轴，从而

x ·R = r|R| cosϕ. (4.35)

另一方面，x ·R = x · (v × J)− k x2

r
= (x× v) · J− kr = J2

m
− kr。结合上

面的式子，就可以得到

J2

m
− kr = r|R| cos(ϕ) ⇔ J2

mk
/r = 1 +

|R|
k

cos(ϕ). (4.36)

很显然，最后这个式子正是椭圆轨道的(4.25)式。这个推导过程说明了两件

事情：第一，由于(4.25)式正是以力心到近心点的方向为极轴，所以这说明

了R的确指向近心点。第二，它说明了闭合的椭圆轨道的确来源于额外的

这个守恒量。

4.2.3 散射问题

开普勒问题更关心的是束缚轨道，散射问题则关心的是散射运动。

这时候我们以一个粒子为散射粒子，另外一个粒子为靶粒子，我们要考

察的是散射粒子相对于靶粒子的运动。我们知道，对于这一相对运动而

言，只需要取质心参考系并将散射粒子质量取成约化质量m，则两体散

射问题就约化成了一个单体问题。这时候可以将靶粒子的位置看成是

“固定不动”的力心，初始时散射粒子从无穷远处朝着靶粒子入射，受

靶粒子产生的中心力场作用以后，最后又以一个偏转角θ飞到无穷远处

去(设r → +∞时V (r) → 0)，如图(4.3)所示。和所有的中心力场问题一样，

散射过程当然也有能量守恒和角动量守恒，不过人们通常用粒子在无穷远

处的速度v0以及入射粒子的瞄准距离b来刻画这两个守恒量。所谓的瞄准距
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离，就是力心O到入射粒子初动量v0方向的垂直距离，如图(4.3)所示。很

明显，能量E以及角动量J与v0, b的关系为

E =
1

2
mv20, J = mv0b. (4.37)

图 4.3: 散射

前面说过，对于这样的中心力场问题，粒子的运动轨道关于从力心到

近心点的轴线(即图(4.3)中的OA线)对称。如果记散射粒子轨道的两条渐近

线与此轴线的夹角为ϕ0，则很显然，粒子散射后的偏转角(也叫散射角)θ满

足

θ = π − 2ϕ0. (4.38)

从前面关于中心力场的一般讨论容易知道，ϕ0可以由下式算出

ϕ0 =

∫ ∞

rmin

dr
(J/r2)√

2m[E − Veff(r)]
=

∫ ∞

rmin

(b/r2)dr√
1− 2V (r)/(mv20)− b2/r2

. (4.39)

由这两个式子原则上就能算出散射角θ 对入射粒子速度v0以及瞄准距离b的

依赖关系。通过实验测量验证这个依赖关系就能验证我们的理论，特别是

能得到很多关于中心力场V (r)的信息。

卢瑟福通过他的α粒子散射实验最早表明了散射问题的重要性，卢瑟

福的工作不仅是建立正确的原子模型的基础，而且在一定意义上它也是整

个粒子物理的开端。不过，卢瑟福不是直接去测量θ与v0, b的关系，而是引

入了一个全新的更容易测量的量，这就是散射截面。
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具体来说，就是考虑一束(而不是单独的一个)同样速度的入射粒子，

它们的瞄准距离不同且均匀分布，然后测量单位时间有多少粒子被散射

到θ方向的单位立体角内。很显然，如果入射粒子越多，那散射的就会

越多，散射粒子数一定正比于入射粒子流强I (也就是单位时间单位横

截面积上的入射粒子数)，因此为了抓住真正物理的信息，实验上测的

是散射粒子数与入射流强I的比值。如果记单位时间散射到θ方向的立体

角dΩ = 2π sin θdθ之内(整个立体角形成一个环绕水平方向的空心圆锥) 的

粒子数为dN，那实验上测的就是下面这个量

dσ =
dN

I
. (4.40)

很容易看出，这个量有面积的量纲，所以叫微分散射截面。

散射角θ是瞄准距离b的函数，两者一一对应。假设空心圆锥立体

角dΩ = 2π sin θdθ对应瞄准距离[b, b + db]，即是说瞄准距离在这个区间

之内的入射粒子都被散射到圆锥立体角dΩ = 2π sin θdθ中了。则很显然，

这样的入射粒子构成一个以b为内径b+ db为外径的面积为2πbdb的圆环，从

而dN = I(2πbdb)，从而

dσ = 2πbdb = 2πb(θ)|db
dθ

|dθ =
b(θ)

sin θ
|db
dθ

|dΩ, (4.41)

式中的绝对值符号来源于b(θ)通常是一个减函数，而我们定义的微分散射

截面始终是正的。很显然，只要知道了b和θ之间的函数关系，就能算出微

分散射截面。反过来，测量微分散射截面就可以间接验证b和θ之间的函数

关系。

卢瑟福公式

假设散射粒子和靶粒子之间的力场为库伦排斥力场，V (r) = k
r
(k > 0)，

α粒子和原子核的散射正是这种情形。则我们容易算出公式(4.39)中的积

分，为

ϕ0 = arccos

 k
mv20b√

1 + ( k
mv20b

)2

 . (4.42)

从而即有

b2 =
( k

mv20

)2
tan2 ϕ0. (4.43)



第四章 两体问题和受限三体问题 13

根据(4.38)式，即有

b2 =
( k

mv20

)2
cot2

(θ
2

)
. (4.44)

将这个式子两边微分，并代入微分散射截面的公式(4.41)，就可以得到

dσ =
( k

2mv20

)2 1

sin4
(
θ
2

)dΩ. (4.45)

这就是著名的卢瑟福公式。

然而，我们知道，对于α粒子这样的微观粒子，正确的描述应该是用

量子力学。因此上面用经典物理推导出来的卢瑟福公式并不能保证一定对。

但是，这里碰巧的是，量子力学推导出来的结果和上面经典物理的结果完

全一样。这种巧合正是因为1/r这种类型的势场是特殊的，有隐藏着的更高

对称性。

4.3 受限三体问题和拉格朗日点

前两节通过将两体问题约化为单体问题，再通过能量守恒和角动量守

恒，我们已经完全求解出了两体问题。按照道理来说，下面要研究的自然

应该是三体问题，即三个质量分别为m1,m2,m3的质点通过万有引力相互

作用的问题。但是三体问题是数学和天文学中著名的难题，庞加莱等人曾

经证明过，一般性的三体问题不存在解析解。所以人们自然想到研究某种

极端简化后的三体问题，具体来说即是研究三体中的某一体质量相比来说

非常小(因此其引力场可以忽略)的情形，即

m1 ≫ m3, m2 ≫ m3. (4.46)

这就是所谓的受限三体问题，或者有时候也称作限制性三体问题。

在实际应用中，受限三体问题非常重要，因为比方说，太阳-地球-月

亮就可以看成这样的一个受限三体系统，因为月亮的质量相对很小。另外，

人们常常将航天器发射到日地系统或者地月系统中，这时候航天器和日地

系统或者和地月系统一起也构成了受限三体系统。然而，即使对于受限三

体问题，一般性的求解也非常困难，事实上，1889年庞加莱正是在研究受

限三体问题时，首次发现了动力系统中的混沌。所以下面我们也不是要一

般性地求解受限三体问题，而是将注意力集中于受限三体问题的一个重要

概念，叫做拉格朗日点。
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从上面的论述可以知道，受限三体问题就是m1和m2这两个大质量的物

体形成两体运动，然后m3在这个两体的引力场中运动的问题。m3质量很

小，因此对m1,m2的反作用可以忽略。这里进一步考虑一种简单情形，我

们假设，m1,m2绕着它们的质心做匀速率圆轨道运动，两者的旋转角速度

为ω，很显然它满足

mω2R = G
m1m2

R2
, (4.47)

式中m为约化质量，R为m1,m2两者之间的距离。由上式即有

ω2 =
G(m1 +m2)

R3
. (4.48)

另外，由前面关于两体问题的分析可以知道，m1,m2与质心的距离r1, r2分

别为

r1 =
m

m1

R, r2 =
m

m2

R. (4.49)

下面进一步简化问题，假设m3的运动限制在m1,m2的旋转平面上。为

了分析m3的具体运动，我们取m1,m2的质心为原点，取旋转平面为x− y平

面，取参考系(坐标系)在这个平面上以角速度ω旋转，并让m1,m2位于这

个旋转参考系的x轴上，如图(4.4)所示。 记m3相对这个旋转参考系的速度

图 4.4: m1,m2所构成的旋转参考系。

为v′ = (ẋ, ẏ)，它在这个旋转参考系中的坐标为x = (x, y)，则m3相对静止

惯性系的速度v应该等于v′ 再加上参考系旋转的速度ω × x，即

v = v′ + ω × x. (4.50)
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从而m3的拉格朗日量L为

L =
1

2
m3

(
v′ + ω × x

)2 − V

=
1

2
m3v

′2 +m3v
′ · (ω × x)−

[
V − 1

2
m3(ω × x)2

]
=

1

2
m3(ẋ

2 + ẏ2) +m3ω(xẏ − yẋ)− Veff. (4.51)

式中有效势能Veff的定义为

Veff = V − 1

2
m3(ω × x)2 = V − 1

2
m3ω

2(x2 + y2), (4.52)

其中的第二项代表的是离心势能。而V代表的是m3受m1,m2的万有引力势

能，即

V = −G
m1m3

r13
−G

m2m3

r23
, (4.53)

式中

r213 = (x+
m

m1

R)2 + y2, r223 = (x− m

m2

R)2 + y2. (4.54)

利用拉格朗日方程容易得出m3在旋转参考系中的运动微分方程，为

m3ẍ− 2m3ωẏ = −∂Veff

∂x

m3ÿ + 2m3ωẋ = −∂Veff

∂y
. (4.55)

上述方程左边的第二项代表的就是所谓的科里奥利力。这组方程的一般性

求解不是一件容易的事情，下面我们考虑它的平衡解，即ẋ = ẏ = ẍ = ÿ =

0的解。相应的解就是所谓的拉格朗日点，显然它们相应于有效势能的极值

点，满足如下方程

0 =
∂Veff

∂x
= Gm1m3

x+Rm/m1

r313
+Gm2m3

x−Rm/m2

r323
−m3ω

2x

0 =
∂Veff

∂y
= Gm1m3

y

r313
+Gm2m3

y

r323
−m3ω

2y. (4.56)

下面要做的就是求解方程(4.56)。首先求y = 0的解，这时候(4.56)式的

第二个方程自动满足，而第一个方程相当于

ω2x = Gm1
x+Rm/m1

|x+Rm/m1|3
+Gm2

x−Rm/m2

|x−Rm/m2|3
. (4.57)
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图 4.5: y = 0对应的x的三个解。图片来自David Tong的在线讲义classical

dynamics.

这个方程有三个解，图(4.5)分别画出了这个方程左边和右边的函数曲线，

从交点可以清楚地看到这三个解。 也即是说，在m1,m2的连线上有三

个拉格朗日点，分别位于m1的左侧、m2的右侧、以及m1,m2的中间，记

为L3, L2, L1。这三个拉格朗日点最早是欧拉发现的。

下面求方程(4.56)y ̸= 0的解。这时候由(4.56)的第二个方程可以得到

G
m2

r323
= ω2 −G

m1

r313
. (4.58)

代入(4.56)的第一个方程，就可以得到

ω2 =
G(m1 +m2)

r313
=

G(m1 +m2)

r323
. (4.59)

与前面的(4.48)式比较，即有

r13 = r23 = R. (4.60)

即m3要和m1,m2构成等边三角形，显然，有两个点满足这样的要求，分别

记为L4, L5。这就是拉格朗日发现的两个拉格朗日点。

所以，总共有五个不同的拉格朗日点，其分布如图(4.6)所示。 研究表

明，L1, L2, L3这三个拉格朗日点是不稳定平衡点，而只要m2远远小于m1，

那么由于科里奥利力的存在，L4, L5这两个拉格朗日点将是稳定平衡点。

所有的拉格朗日点都很有用。比如，L1, L2, L3这三个拉格朗日点虽

然不稳定，但是在它们附近的航天器只需要很小的能量消耗就能回复到

平衡点附近。在日地系统中(地球为m2)，由于距离地球比较近，L1这个

拉格朗日点常被用来放置太阳观测卫星，例如NASA(美国国家航空航天
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图 4.6: 五个不同的拉格朗日点。

局)1997年发射的先进成分探测器(Advanced Composition Explorer，ACE)，

就在L1点运行。NASA 和ESA(欧洲空间局)联合发射的太阳和日光层探测

器(Solar and Heliospheric Observatory，SOHO)同样在日地系统的L1处运

行。日地系统的L2点同样离地球比较近，因此也被NASA 和ESA 用来放

置太空天文台。宇宙学领域两颗著名的用于探测微波背景辐射的探测器，

WMAP 和PLANCK 就被放置在日地系统的L2处。类似的，地月系统的这

三个拉格朗日点也很有用，比如，2018年中国发射的登月探测器玉兔二号

就利用了地月系统中(月球为m2，地球为m1)的L2点来实现其在月背时和地

球的中继通信。

太阳和行星系统的L4, L5点天然是稳定平衡点，因此可以想见，这两个

位置会吸引很多小行星。这些小行星通常被称为特洛伊星体。据统计，日

木系统的L4, L5位置有几千颗这样的小行星。同样，地月系统的L4, L5点也

是稳定平衡点，不令人意外，这两个位置被观测到吸引有星际尘埃。
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