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第二章 最小作用量原理

陈陈陈童童童

本章是理论力学的核心章节之一。本章我们将引入相空间的最小作用

量原理，并证明它与哈密顿正则方程等价。我们也会从相空间的最小作用

量原理导出坐标空间的最小作用量原理，并引入拉格朗日量的概念。最后，

我们将通过引入广义坐标和广义动量，讲述如何将这两章发展起来的理论

框架应用于约束系统。

在数学方法上，本章将通过费马原理引入泛函和变分，讲述变分法和

泛函导数的基本思想，推导变分法中的欧拉-拉格朗日方程。
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第二章 最小作用量原理 3

2.1 物理学的局部视角与全局视角

上一章我们引入了相空间，我们说粒子在相空间中按照哈密顿正则方

程演化，对于单粒子这个方程是

dp

dt
= −∂H

∂x
,

dx

dt
=

∂H

∂p
. (2.1)

这一章我们将介绍一种表面看起来完全不同的观点，叫做最小作用量原

理(principle of least action)。按照最小作用量原理，粒子在相空间中不是

按照哈密顿正则方程这样的微分方程演化，粒子是按“代价”最小的相空

间路径演化。即是说，粒子的演化路径有无穷多种可能性，每一条可能的

演化路径都要付出一个相应的“代价”，而粒子的真实演化路径是所有可

能路径中“代价”最小的那条，严格一点说应该是“代价”取极值的那条。

每一条路径的“代价”就叫做这条路径的作用量，记为S, 它由下式给出

S[x(t),p(t)] =

∫ [
p · ẋ−H(x,p)

]
dt. (2.2)

式中时间t的函数(x(t),p(t))代表一条任意给定的相空间路径，注意，这条

路径无须满足哈密顿正则方程1，因为它只是一条可能路径，不一定是粒子

的真实演化路径。记号S[x(t),p(t)]是为了强调，作用量依赖于路径，每一

条路径都有一个相应的作用量值，我们可以把作用量看成是路径的函数，

路径是这种函数的自变量，很显然，路径这种自变量不同于通常微积分教

科书里的自变量，因为它本身是一个函数，是t的函数。这种以函数为自变

量的函数就称作泛泛泛函函函！所以作用量是路径的泛函，由(2.2)式给出。

很显然，最小作用量原理看起来与哈密顿正则方程完全不同，结果却

可以证明，这两种描述粒子在相空间中如何演化的方式物理上完全等价。

哈密顿正则方程是一种局部视角的描述方式，每一个时刻都只需用到当前

相点(相空间点)局部邻域内的信息，因为微分方程中的求导运算只涉及邻

域。而最小作用量原理是一种全局视角的描述方式，需要知道每一条可能

路径的作用量这种全局信息。奇妙的是，这两种不同视角在物理上却是等

价的。人们有时候将微分方程这样的局部视角称作蚂蚁视角(蚂蚁太小，每

一只蚂蚁都只能看到一个很小的邻域)，而将最小作用量原理这样的全局视

角称作上帝视角。看待物理的蚂蚁视角源自于牛顿，正是牛顿想到用微分

方程来描述物理规律。而上帝视角则源自于几何光学中的费马原理，然后

1因此，一般来说没有p = mẋ! 这个关系只在真实路径上成立。
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经过莫培督(Maupertuis)和哈密顿等人推广到力学里来。实际上，最小作

用量原理有时候也称作哈密顿原理。不可思议的是，我们可以用这样两种

完全不同的视角来看待同样的物理。

不仅如此，这种局部视角和全局视角也都可以延伸到量子物理中，在

量子力学中，局部视角大致会导致算符描述，而全局视角会导致路径积分

描述。

2.2 从费马原理到变分法

既然最小作用量原理源自费马原理的推广，不妨让我们先来回顾一下

费马原理。当然，这一节更主要的目的是引入变分法这种处理最小作用量

原理的数学方法。

2.2.1 费马原理

1657年，业余数学王子费马在古希腊数学家希罗(Hero of Alexandri-

a)的最短路径原理基础上提出，光走时间最短的路径，这就是几何光学的

费马原理。假设真空中的光速为c，介质的折射率为n(x), 相邻两点之间的

距离为dl = |dx|，则费马原理说的是，给定初末两点，光走时间t最小的路

径，

t =

∫
dl

v
=

1

c

∫
n(x)|dx|. (2.3)

式中v = c/n为介质中的光速，式中的积分沿着光的路径进行。可以证明，

从费马原理出发，能够导出几何光学的所有定律，包括光的反射定律、折

射定律，以及透镜成像的规律等等。具体的证明可以参见《费恩曼物理学

讲义》第一卷，第26，27章。由于c是(2.3)式中除以的一个整体常数，所以

费马原理也可以等价地说成是，光走光程最短的路径，光程S为

S =

∫
n(x)|dx|. (2.4)
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为了说明数学上该如何处理费马原理，不妨考虑一种特殊情况，设光

线在x− y平面内运动，再设折射率仅仅依赖于y坐标，则光程的表达式为

S =

∫
n(y)|dx| =

∫
n(y)

√
(dx)2 + (dy)2

=

∫
n(y)

√
1 + (

dy

dx
)2dx

=

∫
n(y)

√
1 + (y′)2dx. (2.5)

式中y′ = dy
dx
，在上式的最后两步中我们用函数y(x)来描写光在x − y平面

上的可能路径。另外，由于光线的起末两点是给定的，假设起点的x坐标

为a，y坐标为ya，终点的x坐标为b, y坐标为yb，则这意味着光的任何可能

路径y(x)都以这两点为端点，即满足

y(a) = ya, y(b) = yb fixed (2.6)

根据费马原理，光真实所走的路径yc(x)应该是所有满足(2.6)式的两端固

定的函数y(x)中，使得(2.5)式给出的光程S[y(x)]取极小值的那一个特定函

数，如图(2.1)所示。光程S依赖于可能路径y(x), 是路径y(x)的泛函，所以

记作S[y(x)]。问题是，怎么找到这个特定函数呢？

图 2.1: 光的路径

从(2.5)式可以看出，光程S的被积函数的表达式既依赖于y(x)，又依

赖于y′(x)。我们不妨抽象一步，将这个被积表达式写成L(y, y′)，在这个

特定问题中L(y, y′) = n(y)
√
1 + (y′)2，但是下文的讨论将不限于这一特定

的L函数。所以我们要做的就是在所有两端由(2.6)式给出的函数y(x)中，找
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出使得下面的表达式S[y(x)]取极值的那个特定函数，

S[y(x)] =

∫ b

a

dxL(y, y′). (2.7)

这就把费马原理变成了一个纯粹的数学问题，这个数学问题最早是欧拉和

拉格朗日解决的。欧拉和拉格朗日所发展的方法就是我们即将介绍的变分

法，它的本质其实就是多变量微分，只不过这个多变量是多到无穷个实变

数！

2.2.2 变分和泛函导数

为了更好地理解变分法，让我们回顾一下多变量求导和微分。假设有

多变量函数S(y1, y2, ....)，这里自变量yi就是普通的实变数。假设我们要求

这个函数的极值，显然这个极值由偏导等于零给出，即 ∂S
∂yi

= 0, i = 1, 2, ...。

函数的偏导如何定义呢？一种定义方法是通过微分，即将

dS = S(y1 + dy1, y2 + dy2, ....)− S(y1, y2, ...), (2.8)

展开到各无穷小量dyi, i = 1, 2, ...的一阶，一阶无穷小量前面的展开系数就

是 ∂S
∂yi
，即是说，我们有

dS(y1, y2, ...) =
∑
i

∂S

∂yi
dyi. (2.9)

因此多变量函数的极值条件是

dS = 0. (2.10)

也即是说，当且仅当在自变量的无穷小改变之下函数值保持不变时，函数

才取到极值。

下面我们做两个很平凡的操作：第一，考虑到自变量很多，我们把函

数S(y1, y2, ....)重记为S[yi], 当然这里的i不是一个固定的指标，而是要取遍

所有的自变量。第二，我们把各自变量的指标i改写成x，则按照刚才的记

号，这个多变量函数就应该记为S[yx], 而上面的两个方程(2.8)和(2.9)就应

该重写成

dS[yx] = S[yx + dyx]− S[yx], dS[yx] =
∑
x

∂S

∂yx
dyx. (2.11)
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以上还是多变量求导和微分，下面是关键的一步，我们设想自变量如

此之多，以至于将这些自变量放在一起它们布满了连续的x轴。换言之，我

们假设上面的指标x是一个连续指标。就微积分的实质而言连续指标和离

散指标并没有什么不同，但在数学形式上的确有些不同，比方说对离散变

量的求和过渡到连续情形那就应该变成积分。为了强调连续指标的不同，

我们将(2.11)式中所有的微分号(包括偏导符号)换一种写法，写成δ(其本质

含义依然是一阶无穷小), 然后将求和变成积分。这样一来，(2.11)式就变成

了

δS[yx] = S[yx + δyx]− S[yx], δS[yx] =

∫
dx

δS

δyx
δyx. (2.12)

下面是最后一步，既然x是连续指标，yx当然也可以看成是x的一个函

数，重写为y(x)。即是说，连续多个自变量刚好可以看成是以函数y(x)为

自变量，而刚才的记号S[yx]也就成了S[y(x)]，它表示S是依赖于未定函

数y(x)的，是以未定函数y(x)为自变量的某种“函数”，我们知道，这也就

是泛函。而(2.12)式中的第一个方程也就变成了，

δS[y(x)] = S[y(x) + δy(x)]− S[y(x)], (2.13)

这称作泛函的变分，按照定义它要展开到无穷小函数δy(x)的一阶项。这

个式子的含义就是，当作为自变量的函数y(x)发生无穷小改变δy(x)时，泛

函S[y(x)]的改变量。当然，通过上面的叙述过程我们也看到，变分和普通

的微分本质是一样的，只不过现在的自变量按照普通的实变数来理解有连

续统的无穷多个。当然，现在函数求极值的方程(2.10)也就变成了泛函取极

值的方程，

δS[y(x)] = 0. (2.14)

即是说，泛函取极值时，泛函的值在自变量函数的无穷小改变下保持不

变。

同样的，(2.12)式中的第二个方程现在就变成了

δS[y(x)] =

∫
dx

δS

δy(x)
δy(x). (2.15)

式中无穷小量δy(x)前面的系数 δS
δy(x)
就叫做泛函导数，很显然，它和普通导

数本质完全一样，只不过现在的自变量按照普通的实变数来理解有连续统

的无穷多个。而上面式子中对x的积分本质不过就是对所有的变量求和。
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既然变分的本质其实就是微分，那它当然也满足微分的那些规则，比

方说莱布尼兹法则，即假设f, g为两个关于y(x)的泛函，则

δ(fg) = (δf)g + f(δg). (2.16)

但是变分并不是普通的微分，普通的微分和积分是对变量x进行的，而x在

变分中不过是一个指标，真正的变量是y(x) = yx, 变分是对yx进行的。这就

产生了一些新的东西，因为我们当然可以同时对指标x进行普通的微分和

积分，由于这些操作是作用在指标上，它当然和对yx本身的“微分”(即变

分)操作可交换顺序。由此我们知道，变变变分分分可可可以以以和和和普普普通通通的的的微微微分分分与与与积积积分分分交交交换换换

顺顺顺序序序！！！

最简单的关于y(x)的泛函就是y(x)本身，具体来说，我们将y(x)理解为

函数y在某个特定x处的取值，它当然依赖于函数y本身，所以是一个泛函。

对这个泛函进行变分，即有

δy(x) =

∫
dx′δ(x− x′)δy(x′), (2.17)

式中δ(x − x′)为狄拉克的δ函数(参见数理方法的书)。将这个结果与泛函导

数的定义式(2.15)比较容易知道

δy(x)

δy(x′)
= δ(x− x′). (2.18)

我们想用这个例子说明泛函导数的计算都是怎么进行的，这个例子说明，

除了可以应用泛函导数对应的求导规则(比如链式法则)之外，往往都是通

过变分进行的。

2.2.3 欧拉-拉格朗日方程

下面回到我们在费马原理的例子中提出来的变分问题，我们要求的是

下面泛函的极值

S[y(x)] =

∫ b

a

dxL(y, y′). (2.19)

当然，这里有一个额外的限制条件，即所有可能函数y(x)在a, b两端都是固

定的，也即是说，当我们对y(x)进行变分时，这两端要固定不变，即

δy(a) = δy(b) = 0. (2.20)
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上面我们说过，泛函取极值的条件是变分等于零，由此我们就可以解出费

马原理提出的变分问题。下面我们来看这个过程具体如何进行。

首先我们注意到L(y, y′)关于y和y′是普通的函数关系，因此按照变分的

定义，我们有

δL(y, y′) = L(y + δy, y′ + δy′)− L(y, y′)

=
∂L

∂y
δy +

∂L

∂y′
δy′

=
∂L

∂y
δy +

∂L

∂y′
(δy)′. (2.21)

最后一个等号我们利用了变分可以和普通的求导交换顺序。由此我们有

δS[y(x)] =

∫ b

a

dxδL(y, y′)

=

∫ b

a

dx
[∂L
∂y

δy +
∂L

∂y′
(δy)′

]
=

∫ b

a

dx
[∂L
∂y

δy +
d

dx

(∂L
∂y′

δy
)
− d

dx

(∂L
∂y′

)
δy
]

=

∫ b

a

dx
d

dx

(∂L
∂y′

δy
)
+

∫ b

a

dx
[∂L
∂y

− d

dx

(∂L
∂y′

)]
δy

=
∂L

∂y′
δy|ba +

∫ b

a

dx
[∂L
∂y

− d

dx

(∂L
∂y′

)]
δy

=

∫ b

a

dx
[∂L
∂y

− d

dx

(∂L
∂y′

)]
δy. (2.22)

式中第三个等号我们利用了通常的分部积分，最后一个等号我们利用

了y(x)的两端固定，即利用了(2.20)式。所以由泛函取极值的条件δS = 0，

我们可以导出

δS =

∫ b

a

dx
[∂L
∂y

− d

dx

(∂L
∂y′

)]
δy = 0. (2.23)

但是，变分δy(x)作为一个普通函数来看的话是一个取无穷小函数值但是函

数形式任意的函数，对于任意函数都有上式成立的话，那当且仅当

δS

δy(x)
=

∂L

∂y
− d

dx

(∂L
∂y′

)
= 0. (2.24)

这就是著名的欧拉-拉格朗日方程。通过上面的推导我们知道，使得泛函取

极值的那个特定函数yc(x)必然要满足这个欧拉-拉格朗日方程，反过来也一

样，满足欧拉-拉格朗日方程的函数必然使得泛函S[y(x)]取极值。
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比方说，对于前面费马原理中提到的特定函数L(y, y′) = n(y)
√
1 + (y′)2，

我们代入欧拉-拉格朗日方程，就可以导出光的路径所要满足的方程，即

dn

dy

√
1 + (y′)2 − d

dx

(
n(y)

y′√
1 + (y′)2

)
= 0.

⇒ (1 + (y′)2)
dn

dy
− n(y)y′′ = 0. (2.25)

进而容易验证必有(不要试图去推导，反过来验证比较简单)

d

dx

( n(y)√
1 + (y′)2

)
= 0 ⇔ n(y)√

1 + (y′)2
= C. (2.26)

其中C为常数。剩下的就是求解最后这个一阶微分方程，不过这不是我们

这里关心的问题。考察一个最简单的特殊情况吧，假设光线是在真空中传

播，从而n(y) = 1。这时候上面最后的方程告诉我们

y′ = k ⇔ y = kx+ a, (2.27)

式中k, a均为常数。可见，这时候光走的正是一条直线！不仅如此，随着折

射率函数n(y)的不同，我们还可以得到最速降线和悬链线等等。

但是，我们刚才处理的是一个特殊的费马原理问题，对于一般的费马

原理问题，光程函数由(2.4)式给出。为了将这一问题转化为一个变分问题，

我们引入参数s来将光的路径参数化，从而得到光程泛函S[x(s)],

S[x(s)] =

∫ sf

si

n(x)|dx
ds

|ds. (2.28)

我们要做的就是用变分法求解这个泛函的极值，同样，这里要求所有可能

路径的端点是固定的，即在起末两端有

δx(si) = δx(sf ) = 0. (2.29)

我们发现，上面这个极值问题的泛函S[x(s)]具有如下结构

S[x(s)] =

∫ sf

si

dsL(x, ẋ), (2.30)

式中ẋ = dx
ds
, 函数L(x, ẋ) = n(x)|ẋ|。很显然，这个泛函和我们刚才在推导

欧拉-拉格朗日方程时处理的泛函具有完全类似的结构，只要将刚才的x替

换成这里的s，将之前的y(x)替换成这里的x(s)就可以了。所以我们有完全

类似的欧拉-拉格朗日方程，

∂L

∂x
− d

ds

(∂L
∂ẋ

)
= 0. (2.31)
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2.3 相空间的最小作用量原理

我们知道所谓的相空间，就是粒子的位置坐标和动量放在一起所构成

的空间，对于单粒子体系，相空间就是(x,p)空间，粒子在相空间中按照

哈密顿正则方程演化。然而最小作用量原理提供了一种看起来完全不同

的观点，它说，粒子在相空间的真实演化路径是所有可能路径中使得作用

量S取极值的那条路径，作用量S由下式给出

S[x(t),p(t)] =

∫ tf

ti

[
p · ẋ−H(x,p)

]
dt. (2.32)

读者很容易看到，这个泛函极值问题具有S[x(t),p(t)] =
∫ tf
ti

dtL(x,p, ẋ)

的结构，看起来这正好是欧拉-拉格朗日方程能够处理的泛函极值问题。

当然，需要我们将前面推导欧拉-拉格朗日方程时的x替换成这里的t，

将y(x)替换成这里的(x(t),p(t))。事实上，如果直接代欧拉-拉格朗日方

程的话的确也能得到正确结果，我们会发现这时候欧拉-拉格朗日方程正好

给出了哈密顿正则方程。但这样做实际上掩盖了一个微妙的问题。

问题就是，最小作用量原理的这个泛函极值问题实际上和费马原理那

一类泛函极值问题有一点微妙的区别，那就是，在这里可能的相空间路

径(x(t),p(t))的两个端点不能完全固定！实际上，如果我们任意固定ti处的

起端和tf处的末端，任意指定这两端的x和p，那这个泛函极值问题将是无

解的。基本原因在于，前面欧拉-拉格朗日方程给出的都是二阶微分方程，

而在这里这个泛函极值路径所要满足的哈密顿正则方程则是一组一阶微分

方程，要确定这样的一阶微分方程的解我们只能要么给定它在起端(即初始

时)的值，要么给定它在末端的值，而不能同时任意指定它的初始值和末尾

值！当然，在这里，完全固定起端或者完全固定末端都不是我们的正确选

择，正确的做法是固定起末两端的x坐标，但是，完全不限制这两端的p坐

标，也就是只要求

δx(ti) = δx(tf ) = 0. (2.33)

即是说，在现在的泛函极值问题中，可能的相空间路径如图(2.2)所示。
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图 2.2: 可能的相空间路径。注意时间t我们没有画出。

为了说明以上处理的确能解决问题，我们不妨按照变分法的步骤具体

推导一下，由变分法

δS[x(t),p(t)] =

∫ tf

ti

[
δp · ẋ+ p · δẋ− δH(x,p)

]
dt.

=

∫ tf

ti

[
δp · ẋ+

d

dt

(
p · δx

)
− ṗ · δx− δH(x,p)

]
dt

= p · δx|tfti +
∫ tf

ti

[
δp · ẋ− ṗ · δx− δH(x,p)

]
dt

=

∫ tf

ti

[
δp · ẋ− ṗ · δx− ∂H

∂x
· δx− ∂H

∂p
· δp

]
dt

=

∫ tf

ti

[(
ẋ− ∂H

∂p

)
· δp−

(
ṗ+

∂H

∂x

)
· δx

]
dt (2.34)

最后由泛函极值方程δS = 0，就能得到

δS

δp(t)
= ẋ− ∂H

∂p
= 0,

δS

δx(t)
= −

(
ṗ+

∂H

∂x

)
= 0. (2.35)

当然，这正是哈密顿正则方程，即是说，使得作用量取极值的相空间路径

正是满足哈密顿正则方程的路径。由此我们就证明了，最小作用量原理这

种看起来完全不同的全局视角，其结果和力学规律的微分方程视角完全等

价！值得提醒读者的是，对于一般的哈密顿系统，动量p与速度ẋ之间的关

系将不一定是p = mẋ，两者的关系应该由以上哈密顿正则方程的第一个方

程ẋ = ∂H
∂p
去确定。
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人们很容易将上面的最小作用量原理推广到多粒子情形。假设

有N个粒子，每个粒子3个坐标，因此共有3N个坐标，我们可以用指

标µ = 1, 2, ...., 3N来区分它们，相应的位置坐标就标记为xµ，动量坐标

就标记为pµ (注意动量是下指标，位置是上指标)，利用上下指标的求和约

定，就可以把多粒子的相空间作用量写成

S[x(t), p(t)] =

∫ tf

ti

dt
[
pµẋ

µ −H(x, p)
]
. (2.36)

式中H(x, p)是H(x1, ..., x3N , p1, ..., p3N)的简记符号，S[x(t), p(t)]也是作类似

理解。

完全类似的变分，就能得出多粒子情形的哈密顿正则方程，如下

ẋµ =
∂H

∂pµ
, ṗµ = − ∂H

∂xµ
. (2.37)

注意这两个式子等号左右两边的指标对应关系，即，对一个上指标的量求

导，其结果相当于一个下指标的量，而对一个下指标的量求导，其结果则

相当于一个上指标的量。

所以，只要写出相空间作用量，我们就能得到哈密顿正则方程，但是

从相空间作用量的一般表达式可以知道，写出具体的作用量关键在于写出

具体的哈密顿量，一个系统的哈密顿量怎么写呢？简单来说就是所有对系

统能量有贡献的都要包括进哈密顿量。不过，也有很多系统，人们甚至无

法判断有哪些项对系统能量有贡献，这时候想写出哈密顿量并不容易，因

此写出相空间作用量的具体形式当然也不容易。好在，马上我们会介绍一

个坐标空间(或者说位形空间)的最小作用量原理，它里面用到的作用量是

表达在坐标空间的作用量，这时候，人们往往可以根据系统所满足的对称

性直接写出它的具体表达式(即是说，对对对称称称性性性限限限制制制作作作用用用量量量)，有了这个作用

量在坐标空间的表达式，随之就能得到运动微分方程，甚至还能反过来得

到系统哈密顿量的表达式。关于这些内容，我们会在后面有关对称性的章

节中具体讨论。

下面的一个问题是，作为一个物理量，作用量的量纲是什么？回答很

简单，作作作用用用量量量的的的量量量纲纲纲等等等于于于能能能量量量量量量纲纲纲乘乘乘以以以时时时间间间量量量纲纲纲，，，或或或者者者也也也可可可以以以说说说等等等于于于动动动

量量量量量量纲纲纲乘乘乘以以以长长长度度度量量量纲纲纲。。。 简言之，作用量与角动量同量纲。为了看清楚这

一点，只需注意到作用量等于pẋ −H对时间的积分，pẋ和能量同量纲，而

哈密顿量当然是能量量纲，所以pẋ −H也是能量量纲，再对时间积分，就

是能量量纲乘以时间量纲。
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推广到显含t情形

到此为止，我们所有的讨论都限于封闭系统，它的总能量是守恒的。

但是，我们也很容易将相关的讨论推广到非封闭系统，这时候总可以把所

关心的系统和与它相互作用着的其它部分看成一个整体，而这个整体当然

是一个封闭系统，因此前面所有的讨论对这个整体都成立。现在，假设我

们已经了解了其它部分的运动情况，而将注意力集中在所关心的系统上，

这时候那些其它部分的力学变量就可以看成是一些已知的随时间变化的参

数。由于有了这些含时参数，我们就需要假设哈密顿量H可能显含时间，

即是说，系统之外其它部分的运动使得系统的能量随时间变化了！

但非封闭系统除了使得哈密顿量显含时间之外，它并不会改变相空间

作用量的一般结构，从而由最小作用量原理，我们依然有哈密顿正则方程。

当然，这时候dH
dt

= ∂H
∂t

̸= 0，因此一般来说系统的能量是不守恒的。

2.4 坐标空间的最小作用量原理

前面我们介绍了相空间的最小作用量原理，但是，通常人们在谈最小

作用量原理时，指的其实是坐标空间的最小作用量原理！现在让我们来介

绍它。值得强调的是，坐标空间的最小作用量原理并不是一个新的假定，

实际上，它可以从相空间的最小作用量原理推导出来。

2.4.1 最小作用量原理与拉格朗日方程

为了理解如何从相空间的最小作用量原理走向坐标空间的最小作用

量原理，我们来看一个二元函数求极值问题。假设我们要求一个二元函

数S(x, y)的极值，则需要求解下面两个方程

∂S

∂x
= 0,

∂S

∂y
= 0. (2.38)

我们当然可以同时求解这两个方程，但是，等价的，也可以先求解∂S
∂y

=

0，得到一个关系式y = ϕ(x)，然后将这个关系式代入原来的二元函

数S(x, y)中，得到一个一元函数S(x, ϕ(x))，然后再求解这个一元函数的

极值，

dS

dx
=

∂S

∂x
+

∂S

∂y

∂ϕ

∂x
= 0. (2.39)
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读者很容易证明，也很容易理解，这两种不同方法得出来的结果是一样

的。

下面我们以单粒子情形为例，说明以上思路如何可以导出坐标空间

的最小作用量原理。我们的出发点是相空间的最小作用量原理，即求泛

函S[x(t),p(t)]的极值，我们知道，这其实就是要求解下面两个方程

δS

δx(t)
= 0,

δS

δp(t)
= 0. (2.40)

前面处理相空间最小作用量原理时[(2.35)式]，我们是同时给出这两个方程，

设想人们会同时求解它们。现在，按照上一段的思路，我们先求解第二个

方程，即

δS

δp(t)
= ẋ− ∂H

∂p
= 0. (2.41)

假设由这个方程解出了一个p(t)关于x(t)的泛函表达式(注意ẋ(t)也是一

个x(t)的泛函)，比方说p(t) = ϕ[x(t)], 则当将这个泛函关系代入原来的

相空间作用量S[x(t),p(t)]时，得到的S[x(t), ϕ[x(t)]]就是所谓的坐标空间

作用量泛函。剩下只要将这个坐标空间作用量泛函对坐标x(t)变分求极

值就可以了！这个求解坐标空间作用量泛函的极值问题，就叫做坐标空

间的最小作用量原理。值得说明的是，通常我们将这个坐标空间作用量

泛函S[x(t), ϕ[x(t)]]记为S[x(t)]，希望读者不要和原来的相空间作用量泛

函S[x(t),p(t)]混淆。

为了将问题看得更清楚一点，我们注意到，原来的相空间作用量泛函

具有S[x(t),p(t)] =
∫
dtL(x,p, ẋ)的结构，其中

L(x,p, ẋ) = p · ẋ−H(x,p). (2.42)

我们注意到，方程(2.41)实际上就是求这个函数L(x,p, ẋ)关于变量p的极

值，不妨定义一个新的函数，记为L(x, ẋ)(希望读者不要和原来的L(x,p, ẋ)

混淆)

L(x, ẋ) = extrempL(x,p, ẋ) = extremp

[
p · ẋ−H(x,p)

]
. (2.43)

则很明显，新的坐标空间作用量泛函S[x(t)]其实就是

S[x(t)] =

∫ tf

ti

L(x, ẋ)dt. (2.44)
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式中L(x, ẋ)由(2.43)式给出，它有一个专门的名称，叫做拉拉拉格格格朗朗朗日日日量量量。所

谓坐标空间最小作用量原理，其实就是求泛函S[x(t)]在坐标空间的极值路

径，当然在变分时我们要求

δx(ti) = δx(tf ) = 0. (2.45)

从前面关于二元函数极值问题的讨论中容易知道，这这这个个个坐坐坐标标标空空空间间间的的的最最最小小小作作作

用用用量量量原原原理理理和和和原原原来来来的的的相相相空空空间间间最最最小小小作作作用用用量量量原原原理理理是是是等等等价价价的的的！！！

(2.43)式给出的这个从哈密顿量H(x,p)得出拉格朗日量L(x, ẋ)的过程

称之为勒让德变换，反过来可以证明，哈密顿量H(x,p)也是拉格朗日

量L(x, ẋ)的勒让德变换，即

extremẋ

[
p · ẋ− L(x, ẋ)

]
= H(x,p). (2.46)

证明过程如下，

extremẋ

[
p · ẋ− L(x, ẋ)

]
= extremẋ

[
p · ẋ− extremp′

[
p′ · ẋ−H(x,p′)

]]
= extremẋextremp′

[
(p− p′) · ẋ+H(x,p′)

]
= extremp′,ẋ

[
(p− p′) · ẋ+H(x,p′)

]
= H(x,p). (2.47)

所以，拉格朗日量和哈密顿量互为对方的勒让德变换。

比方说，对于我们熟知的最简单的单粒子哈密顿量H(x,p) = p2

2m
+

V (x)，由ẋ = ∂H
∂p

= p/m, 我们容易解出p = mẋ，从而根据勒让德变

换(2.43)，容易得到单粒子的拉格朗日量

L(x, ẋ) = extremp

[
p · ẋ− p2

2m
− V (x)

]
=

1

2
mẋ2 − V (x). (2.48)

我们发现这个拉格朗日量碰巧等于动能减去势能(这个结论也可以推广到多

粒子情形)。因此相应的坐标空间作用量泛函就是

S[x(t)] =

∫ tf

ti

dt
[1
2
mẋ2 − V (x)

]
. (2.49)



第二章 最小作用量原理 17

很显然的是，坐标空间的最小作用量原理完全可以用前面导出来的欧

拉-拉格朗日方程来处理，从而有

∂L

∂x
− d

dt

(∂L
∂ẋ

)
= 0. (2.50)

这就是所谓的拉格朗日力学的欧拉-拉格朗日方程，式中的L就是拉格朗日

量L(x, ẋ), 因此这个方程通常也也也称称称为为为拉拉拉格格格朗朗朗日日日方方方程程程！比方说，对于单粒子

拉格朗日量L(x, ẋ) = 1
2
mẋ2 − V (x), 拉格朗日方程给出来的是

m
d2x

dt2
= −∂V

∂x
. (2.51)

这正是牛顿运动定律！所以我们看到，坐标空间的最小作用量原理能够正

确地给出牛顿运动定律。

最后，读者容易明白的是，只要像以前一样适当地引入指标，那上面

关于单粒子情形的所有讨论都可以容易地推广到多粒子情形，我们将这个

推广留给读者自己去操作。

2.4.2 发现洛伦兹力

既然坐标空间的最小作用量原理和相空间的最小作用量原理等价，我

们为什么还要专门讨论它呢？而且某种意义上甚至它的重要性还要超过相

空间的最小作用量原理。这是因为，有时候推广拉格朗日量比直接写哈密

顿量要简单，下面举一个例子说明。

我们知道，单粒子最简单的拉格朗日量是L = 1
2
mẋ2 − V (x), 它关于速

度是一个二次型，人们禁不止想问，如果在拉格朗日量中加上一个速度的

一次方项会怎么样呢？最简单的尝试是设这一项为
∫
dtA · ẋ, 其中A为一个

常矢量，但事实上，这一项不会产生任何结果，原因在于它显然是一个全

微分项，积分以后就成了A · (x(tf )−x(ti))，但是x(t)在两个端点是固定的，

所以变分的时候多出来的这一项贡献实际为零，因此不会产生任何影响。

那么，如果假设A依赖于x会怎么样呢？这时候拉格朗日量就是

L =
1

2
mẋ2 +A(x) · ẋ− V (x). (2.52)

当然，我们可以使用拉格朗日方程来看清中间这一项的影响。但在最小作

用量原理的使用中，有时候直接求作用量的变分并令其等于零，这和利用
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拉格朗日方程是一样方便的，这里我们想用这个例子说明这一点。这时候

作用量S[x(t)]为

S[x(t)] =

∫ tf

ti

dt
[1
2
mẋ2 +A(x) · ẋ− V (x)

]
=

∫ tf

ti

dt
[1
2
mẋ2 − V (x)

]
+

∫
Aj(x) · dxj. (2.53)

这里我们使用了矢量的分量形式，也使用了求和约定。下面要做的就是对

这个作用量进行变分，前两项的变分是通常的，我们直接写出结果(用分量

形式)，我们将注意力集中在新加的这一项上，从而有(令∂i =
∂
∂xi )

δS = −
∫ tf

ti

dt
[
mẍi + ∂iV (x)

]
δxi + δ

∫
Aj · dxj

= −
∫ tf

ti

dt
[
mẍi + ∂iV (x)

]
δxi +

∫ (
∂iAjδx

idxj + Aidδx
i
)

= −
∫ tf

ti

dt
[
mẍi + ∂iV (x)

]
δxi +

∫
d(Aiδx

i) +

∫ (
∂iAjδx

idxj − dAiδx
i
)

= −
∫ tf

ti

dt
[
mẍi + ∂iV (x)

]
δxi +

∫ (
∂iAj − ∂jAi

)
dxjδxi

= −
∫ tf

ti

dt
[
mẍi + ∂iV (x)− Fijẋ

j
]
δxi. (2.54)

式中Fij = ∂iAj − ∂jAi, 式中第4个等号利用了路径两端固定从而全微分项

积出来实际为零。最小作用量原理告诉我们，δS = 0，由此可以得到

δS

δxi(t)
= −

[
mẍi + ∂iV (x)− Fijẋ

j
]
= 0

⇒ mẍi = −∂iV (x) + Fijẋ
j. (2.55)

我们看到，在拉格朗日量中多加上这一项，其效果就是，牛顿定律

右边多了一个力Fijẋ
j, 这个力初看起来很陌生，实际上，它正可以代表洛

伦兹力！为了看清楚这一点，我们注意到Fij = ∂iAj − ∂jAi, 很容易看出，

它实际上就是对矢量场A求旋度的分量式写法，比如∂xAy − ∂yAx其实就

是(∇×A)z。因此，Fij和磁场强度B的分量形式是一一对应的，人们可以使

用所谓的列维-席维塔符号ϵijk，将这两者之间的对应关系写成Fij = ϵijkB
k。

这里ϵijk关于三个指标是全反对称的，即任意两个指标交换顺序都会出一个
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负号(因此当三个指标中有两个取值一样时就会得到0)，比如说ϵjik = −ϵijk，

并且ϵ123 = 1。

利用Fij = ϵijkB
k，我们就可以将(2.55)式重写成

mẍi = −∂iV (x) + ϵijkẋ
jBk. (2.56)

读者容易验证，这个式子的矢量形式正是

mẍ = −∇V + ẋ×B. (2.57)

这和洛伦兹力的表达式已经几乎一样了。为了得到完全正确的洛伦兹力，

只需将拉格朗日量中的A替换成qA(q是粒子的电荷), 并将这个A理解为所

谓的矢量势就可以了。矢量势和磁场B的关系是B = ∇×A。

所以，只要在拉格朗日量中做一点小小的动作，那么最小作用量原理

就能自动导出洛伦兹力，我们就这样“发现”了洛伦兹力！描述洛伦兹力

的正确拉格朗日量是

L(x, ẋ) =
1

2
mẋ2 + qA(x) · ẋ− V (x). (2.58)

为了将它勒让德变换得到哈密顿量，我们需要求

∂

∂ẋ

[
p · ẋ− L(x, ẋ)

]
= 0 ⇔ p =

∂L

∂ẋ
(2.59)

将拉格朗日量(2.58)代进去, 可以得到

p =
∂L

∂ẋ
= mẋ+ qA. (2.60)

(注意，对于一般的力学系统，动量p与速度ẋ之间的关系并不天然是p =

mẋ，这里就是一个例子。) 由此可以反解出ẋ = (p− qA)/m，进而可以算

出

H(x,p) = extremẋ

[
p · ẋ− L(x, ẋ)

]
=

(p− qA)2

2m
+ V (x). (2.61)

这就是带电粒子在磁场中的哈密顿量。很明显，直接猜这个哈密顿量的表

达式要比刚才对拉格朗日量进行的小动作难多了！这个例子清楚地说明了，

有时候从拉格朗日量以及坐标空间的最小作用量原理出发，比从哈密顿量

出发要容易一些！
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2.4.3 最小作用量原理能够导出任何方程吗？

一个自然的疑问是，是否只要合适地选取拉格朗日量，最小作用量原

理就能导出任何方程？如果是这样的话，那最小作用量原理本身就不包含

任何信息，那我们还不如直接关心运动微分方程。好在，答案是否定的，

实际上最小作用量原理能够导出来的方程相当特殊，而经典物理系统的一

个特殊之处正在于，它的运动微分方程可以由最小作用量原理导出。

最小作用量原理导不出什么呢？以一维运动为例，可以证明没有作用

量能使下式成立

δS

δx(t)
= ẋ(t). (2.62)

读者不妨取不同的作用量泛函S[x(t)]试验一下，就能说服自己这个结论是

成立的。证明也很简单，我们对上面这个式子再求一次泛函导数，有

δ2S

δx(t′)δx(t)
=

δẋ(t)

δx(t′)
=

d

dt

( δx(t)
δx(t′)

)
=

d

dt
δ(t− t′). (2.63)

上式最左边不过就是二阶导数，二阶导数可以交换求导顺序，因此它关

于t, t′对称。但是，上式最右边的 d
dt
δ(t− t′)当交换t和t′时将成为

d

dt′
δ(t′ − t) = − d

dt
δ(t′ − t) = − d

dt
δ(t− t′). (2.64)

即是说，最右边的式子关于t, t′是反对称的。这就相互矛盾了，这就说

明(2.62)不可能成立。

2.5 广义坐标和广义动量

前面我们看到了，最小作用量原理(无论是相空间的还是坐标空间

的)以及与之等价的哈密顿正则方程或者拉格朗日方程，均可以统一处理单

粒子情形和多粒子情形，形式上唯一的改动无非是指标的取值范围在单粒

子情形是1,2,3，而在多粒子情形是1, 2, ..., 3N。但统一处理单粒子和多粒子

仅仅只是我们这两章介绍的力学框架的优点之一，这一框架的另一个重要

优点是使得我们不限于直角坐标，而可以使用任何坐标。这种对坐标的使

用自由也使得我们可以方便地处理一大类约束系统。
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理想约束与广义坐标

所谓的约束系统，就是这样的N粒子系统，它的3N个坐标之间并不相

互独立，而是要满足一定的约束条件2。比方说，两维平面内一个约束在圆

环x2 + y2 = R2上的粒子，它的x, y坐标就不相互独立。由于这些变量不相

互独立，所以当我们利用最小作用量原理进行变分的时候，各变量的变分

也就不相互独立，从而就无法直接得出通常的哈密顿正则方程或者拉格朗

日方程。

因此，一般来说，约束系统的处理很复杂，但是有一大类约束系统，

称之为理想约束系统，处理起来却很方便。值得说明的是，当对系统的约

束光滑，从而不存在摩擦力时，很多约束系统都是理想约束系统。一般地，

理想约束系统就是这样的约束系统，它的约束力对系统所有可能的满足约

束条件的运动(不管它是否真实发生)均不做功！从而只要不破坏约束条件，

那约束力对这一系统的能量就没有贡献，也就是对哈密顿量没有贡献，从

而我们就可以根本不去管约束力。这时候就可以使用这两章所发展起来的

力学处理框架。

不仅如此，对于理想约束系统，我们还可以不使用直角坐标，而是使

用一些描述系统的独立变量为坐标，比方说，对于约束在圆环x2 + y2 =

R2上的粒子，我们可以不使用直角坐标，而是使用角度θ作为独立坐标。描

述理想约束系统的这些独立变量就叫做广广广义义义坐坐坐标标标！独立变量的个数就叫做

系统的自自自由由由度度度数数数。使用广义坐标的好处就在于，它们是自动满足约束条件

的独立变量，这样就无需在问题的求解中额外再把约束条件强加进来。如

此一来，在处理最小作用量原理时，对这些独立变量的变分就是相互独立

的，这样就能够根据最小作用量原理写出哈密顿正则方程或者拉格朗日方

程了。

与广义坐标对应的概念叫广义动量，它的定义要复杂一些，下面我们

首先从相空间出发来给出定义，然后再讨论如何从位形空间以及拉格朗日

量出发定义它。

直接从相空间出发

为了定义广义动量，我们首先注意到一个N粒子系统的相空间作用量

2这实际上只包括了所谓的完整约束(holonomic constriant)系统，实际的约束系统比这

还要复杂。
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为

S =

∫
dt
[
pµẋ

µ −H(x, p)
]

=

∫
pµdx

µ −
∫

Hdt. (2.65)

注意第二行这个表达式，它的第二项很简单，就是哈密顿量对时间的积分，

我们主要关心前一项，它是一个1-形式pµdx
µ 沿着相空间路径的积分。这

个1-形式对于决定哈密顿正则方程无疑是至关重要的，因此它有一个专门

的名称，叫做辛势，记作Θ,

Θ = pµdx
µ. (2.66)

以上是用通常的坐标表达问题，因此µ = 1, 2, ..., 3N。但是通常坐标

的坏处是，它们可能不相互独立。为此，我们转用广义坐标，假设这个系

统有s个独立的广义坐标(自由度数是s)，记作qa, a = 1, 2, ...s。则，为了保

证哈密顿正则方程在广义坐标中看起来形式也一样(注意，当存在约束时，

由于通常坐标的各变量不相互独立，所以其实并没有对于它们的哈密顿正

则方程)，我们要要要求求求辛辛辛势势势Θ在在在广广广义义义坐坐坐标标标中中中也也也有有有和和和通通通常常常坐坐坐标标标完完完全全全类类类似似似的的的形形形式式式，

具体来说，我们要求

Θ = pµdx
µ = padq

a. (2.67)

上面表达式中的pa(虽然我们用的是与pµ几乎相同的符合，但请读者不要把

这两者搞混)就是广广广义义义动动动量量量。即是说，广义动量可以通过通常的动量pµ经由

下面的坐标变换得来

pa = pµ
∂xµ

∂qa
. (2.68)

很明显，利用广义坐标和广义动量，我们可以将相空间的作用量写成

S =

∫
dt
[
paq̇

a −H(q, p)
]
. (2.69)

利用相空间的最小作用量原理，对广义坐标q和广义动量p进行变分，就能

得到最一般的哈密顿正则方程

dqa

dt
=

∂H

∂pa
,

dpa
dt

= −∂H

∂qa
. (2.70)
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显然，它和通常坐标中的哈密顿正则方程有完全类似的形式，区别在于，

如果存在约束的话，那这时候实际上没有通常坐标的哈密顿正则方程。

如果没有约束，那广义坐标和广义动量不过是相空间的一组不同坐标

系。但是如果有约束，那通常的坐标和通常的动量由于不相互独立，它们

就不够成系统的相空间，相反，这时候系统的相空间是指广义坐标和广义

动量的空间。显然，系统在相空间中依然按照哈密顿正则方程进行演化。

不妨举一个例子，还是那个约束在圆环x2 + y2 = R2上的粒子。取广义

坐标为角度θ, 它和直接坐标的关系是

x = R cos(θ), y = R sin(θ). (2.71)

将辛势Θ分别在两种坐标中表达，即有

Θ = pxdx+ pydy = pθdθ

⇒ pθ = [−px sin(θ) + py cos(θ)]R

⇒ p2 = p2θ/R
2.

读者容易验证pθ其实刚好是粒子环绕圆环的角动量(所以广义动量不一定是

通常的动量，它甚至可以是角动量)。我们也容易将粒子的哈密顿量用广义

坐标和广义动量表达出来，

H =
p2

2m
+ V =

p2θ
2mR2

+ V (θ). (2.72)

进而可以写出这个例子的哈密顿正则方程

θ̇ =
∂H

∂pθ
=

pθ
mR2

ṗθ = −∂H

∂θ
= −∂V

∂θ
. (2.73)

θ和pθ的空间就是这个例子的相空间。θ的取值范围是一个圆周，构成

这个例子的广义坐标空间，记为S1，pθ的取值范围是−∞到+∞，也就是取
遍实数轴，记为R1。通常我们把广义坐标空间S1画在平面上，再把广义动

量空间R1画在垂直于这个平面的轴上。很显然，如此一来，上面这个例子

的相空间就是以S1为底，以R1为高的一个无穷长圆柱面，记为S1 ×R1。数

学家常常称这个相空间为S1的余切丛，并记为T ∗S1，当然T ∗S1 = S1 × R1，

不过，我们不用管数学家们引入的这些奇怪名词。值得注意的是，这个例

子告诉我们，一个哈密顿系统的相空间不一定是通常的欧几里德空间。
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从位形空间出发

如果我们是从拉格朗日量以及坐标空间最小作用量原理出发处理问题，

那情况就更简单，这时候只要先写出直角坐标中的拉格朗日量(通常是动能

减去势能)，然后再坐标变换成广义坐标就可以了。用广义坐标来表达的

拉格朗日量通常记作L(q, q̇), 这里q这样的符号只是一个抽象的记号，实际

上它代表所有作为独立变量的广义坐标qa。广义坐标的空间也叫做系统的

位形空间，而函数组{qa(t), a = 1, 2, ..., s}就代表位形空间的一条路径。相
应的坐标空间的最小作用量原理就成了位形空间的最小作用量原理，作用

量S[q(t)]为

S[q(t)] =

∫
dtL(q, q̇). (2.74)

对位形空间的路径q(t)进行变分，就能够得到熟知的拉格朗日方程

∂L

∂qa
− d

dt

( ∂L

∂q̇a

)
= 0. (2.75)

同样，我们可以对拉格朗日量L(q, q̇)进行勒让德变换，进而得到哈密

顿量H(q, p)。具体来说，

H(q, p) = extrem{q̇a}
[
pbq̇

b − L(q, q̇)
]
. (2.76)

显然，为了进行这个勒让德变换，需要求解

∂

∂q̇a
[
pbq̇

b − L(q, q̇)
]
= 0 ⇒ pa =

∂L

∂q̇a
. (2.77)

我们正是把后面这个式子当作从拉格朗日量出发对广义动量的定义。

下面以双摆为例来说明广义坐标表达下的拉格朗日方程如何方便我们

求解力学问题的。所谓的双摆，就是两个质量分别为m1,m2的质点，用长

度分别为l1, l2的轻杆连起来所组成的系统，如图(2.3)所示。假设连接处光

滑且可自由活动，那这就是一个理想约束系统。 这个系统如果直接用受力

分析来处理，那还是比较复杂的。但用广义坐标和拉格朗日方程处理起来

就很方便。

为此，我们引入图(2.3)中的两个广义坐标θ1, θ2。很显然，第一个质点

的动能T1和势能V1(重力势能)分别为

T1 =
1

2
m1l

2
1θ̇

2
1, V1 = −m1gl1 cos(θ1). (2.78)



第二章 最小作用量原理 25

图 2.3: 双摆

为了求出第二个质点的动能，我们假设系统在x − y平面内摆动，x轴水平

向右，y轴竖直向下。则第二个质点的坐标(x2, y2)可以表示为

x2 = l1 sin(θ1) + l2 sin(θ2), y2 = l1 cos(θ1) + l2 cos(θ2). (2.79)

则容易求出质点2的动能T2为

T2 =
1

2
m2(ẋ

2
2 + ẏ22)

=
1

2
m2

(
l21θ̇

2
1 + l22θ̇

2
2 + 2l1l2 cos(θ1 − θ2)θ̇1θ̇2

)
. (2.80)

质点2的重力势能V2为

V2 = −m2gy2 = −m2g(l1 cos(θ1) + l2 cos(θ2)). (2.81)

由此可以写出整个系统的拉格朗日量(等于总动能减去总势能)

L =
1

2
(m1 +m2)l

2
1θ̇

2
1 +

1

2
m2l

2
2θ̇

2
2 +m2l1l2 cos(θ1 − θ2)θ̇1θ̇2

+ (m1 +m2)gl1 cos(θ1) +m2gl2 cos(θ2). (2.82)

代入下面的拉格朗日方程，就可以得到系统的运动微分方程

∂L

∂θ1
− d

dt

( ∂L

∂θ̇1

)
= 0,

∂L

∂θ2
− d

dt

( ∂L

∂θ̇2

)
= 0. (2.83)

不过，这是一个相当复杂的系统，实际上，当能量大到一定程度时，这个

系统的运动是混沌的！


