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第十一章 *再论势散射

陈陈陈童童童

本章将详细地讨论一维和三维定态散射理论，并用来处理入射粒子在

一个固定势场中的散射问题，称为势散射问题。我们讨论了如何从势散射

的散射振幅中提取束缚态和共振态的信息。对于中心势场，我们也详细讨

论了分波法。
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在含时问题和散射问题这一章所发展的关于散射的一般理论中，我们

说过，非微扰地分析散射幅和散射概率的关键在于求解哈密顿量H的散射

定态。这里H是包含相互作用V的完整哈密顿量，散射定态是它的一组特

殊本征态，这些散射定态的渐近形式中包含有我们需要的散射T矩阵信息。

我们是在最一般的意义上达致这一结论的，因此这一理论框架的适用范围

非常广，比方说，它适用于多粒子的散射，甚至适用于量子场论的分析，

但这种一般性也使得它有些抽象。但是，如果限制于单个入射粒子在一个

固定势场中的散射问题，那情况就会简化很多，这时候我们可以证明，前

面关于散射定态的抽象理论其实是和我们的物理直观完全一致的。这种一

致性就是我们这一章想要论述的第一个主题，我们将分别对于一维势散射

问题和三维势散射问题，先从直观上给出散射定态的概念，并讨论如何从

这些直观的散射定态中计算出散射概率，然后我们再分别证明这些直观的

散射定态概念和前面含时问题与散射问题一章中关于散射定态的抽象定义

完全一致。如此一来，一维势散射和三维势散射就成了前面关于散射的一

般理论的一种具体应用。

当然，关于三维势散射的微扰理论和玻恩近似我们在前面的章节中已

经系统地处理过了。但是，作为散射一般理论的应用，一维势散射和三维

势散射问题能够很好地说明如何对散射问题进行非微扰分析。当然，这

首先涉及到求解散射定态，其次还涉及到如何利用对称性，以及如何利

用S矩阵的幺正性和解析性。我们将分别通过对宇称守恒的一维势散射，

以及中心力场中的三维势散射的分析来说明这些非微扰分析方法的应用。

在三维中心力场的情况下，这一方法通常被称为分波法。

值得说明的是，我们这里对一维势散射和三维势散射(包括分波法)的

处理并不是最快捷的，这是因为我们想用这些特殊情形来说明更为一般性

的散射问题中非微扰分析大致可以如何进行。正因为如此，对于很多结论，

只要有可能我们就总是会采用一般性的有可能被推广的推导方法，而不仅

仅只是为了处理一维势散射和三维势散射这样的特殊情形，如果只是为了

后一目标，那这一课题当然可以被处理得更快捷一些。

11.1 一维势散射问题

所谓的一维势散射问题，我们指的是一个沿x轴运动的入射粒子受

一个固定势场V (x)散射的问题，在实际应用中产生这种散射势场的原因

很多，比方说它可能反映的是一维材料在某个区域上的一些杂质，这时
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候势散射问题描写的其实就是入射粒子被这些杂质所散射的问题。我们

对V (x)的具体形式没有太多的限制，只是假定它只集中在一个有限的区

域，即V (x)在|x| → ∞时会以足够快的速度衰减为0，如图(11.1)所示。 因

图 11.1: 一维势散射问题。入射粒子被势V (x)散射，产生反射波和透射

波。

此在|x| → ∞的空间无穷远处，散射势可以忽略，这时候粒子可以看成是
自由粒子，由自由粒子哈密顿量H0描述，H0 =

p2

2m
，这里p为粒子的动量算

符。当然，包含散射势在内的完整哈密顿量H = H0 + V (x)。

对于自由粒子哈密顿量H0 = p2

2m
。对于任何给定的大于0的能量E，显

然H0有两个本征态，我们称之为右行波和左行波，分别记为⟨x|E,R⟩和⟨x|E,L⟩,
它们由下式给出

⟨x|E,R⟩ = eikEx, ⟨x|E,L⟩ = e−ikEx, (11.1)

式中，kE =
√

2mE
~2 (从而E =

~2k2E
2m

)。如图(11.2)所示。很显然，右行波和左

图 11.2: 自由粒子的右行波和左行波。

行波是正交的，即⟨E,L|E,R⟩ = 0。另外，波函数当然可以相差一个整体

归一化常数，而在公式(11.1)这种归一化选取下两个能量不同的右行波的正

交归一性则是，⟨E ′, R|E,R⟩ = 2πδ(kE′ − kE), 类似的也有左行波的正交归

一性，⟨E ′, L|E,L⟩ = 2πδ(kE′ − kE)。



第十一章 *再论势散射 5

11.1.1 直观的理论

如图(11.1)所示，假设我们考虑一个自由粒子从势V (x)的左边入射，然

后被势V (x)所散射，一部分波反射回来，另一部分波从势中透射出去，我

们所关心的就是粒子被反射的概率和透射的概率。下面我们会看到，这些

概率可以通过求解定态薛定谔方程来得到，实际上，这就是求解一维势散

射问题的散射定态。

我们要求解的方程是(
− ~2

2m

d2

dx2
+ V (x)

)
ψ(x) = Eψ(x), (11.2)

由于我们这里关心的是散射定态，所以E > 0。当x → −∞时，散射
势V (x)已经衰减为0，所以粒子完全被自由粒子哈密顿量H0所描述，这时

候对于给定能量E > 0，定态解必定是右行波和左行波的某种线性叠加。从

直观上，在x → −∞的渐近区域，既有入射波(这是一个右行波)又有反射

波(这是一个左行波)，所以定态波函数必定有eikEx + re−ikEx = ⟨x|E,R⟩ +
r⟨x|E,L⟩的渐近形式，这里r是一个复数，而且我们已经通过调整波函
数ψ(x)的整体常数系数将入射右行波前面的叠加系数设置为1了。类似的，

在x → +∞的渐近区域，粒子也成为一个自由粒子，但是，从图(11.1)的

直观上我们可以知道，在这个区域只有右行的透射波没有左行波。因此，

当x → +∞时，定态波函数ψ(x)必定渐近为teikEx = t⟨x|E,R⟩的形式。我
们把在x → ±∞时具有刚才所说渐近形式的定态波函数记为ψE,R(x) =

⟨x|ψE,R⟩，下标R表示它描述的是入射粒子从左边入射(因此入射波是右行

波)的情形。

因此，我们现在要找的就是定态薛定谔方程(11.2)的某种特定类型的

解ψE,R(x) = ⟨x|ψE,R⟩，它具有如下渐近形式

x→ −∞ : ⟨x|ψE,R⟩ ∼ ⟨x|E,R⟩+ r⟨x|E,L⟩
x→ +∞ : ⟨x|ψE,R⟩ ∼ t⟨x|E,R⟩. (11.3)

复系数r和t分别称作反射系数和透射系数，它们要通过求解满足上述渐近

条件(11.3)的定态薛定谔方程(11.2)，才能具体确定。

下面我们来看一下，复系数r和t是如何决定反射概率和透射概率的。

我们定义反射概率pr等于反射波的概率流密度的大小比上入射波概率流密

度的大小(在实验上，我们总是用一束入射粒子来做实验，因此这个定义其

实说的就是，反射概率等于反射粒子流强度比上入射粒子流的强度)，反射
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波是r⟨x|E,L⟩ = re−ikEx, 很容易算得它的概率流密度大小为|r|2 ~kE
2m
，类似

的，入射波⟨x|E,R⟩ = eikEx的概率流密度为~kE
2m

, 因此我们有

pr = |r|2. (11.4)

类似的，我们定义透射概率pt等于透射波概率流密度比上入射波概率流密

度(也就是透射流强比上入射流强), 最后我们也容易得出

pt = |t|2. (11.5)

当然，由于入射粒子要么被反射，要么透射，总概率是守恒的，即入射的

概率流大小等于出射(包括反射和透射)的概率流大小，因此必有

|r|2 + |t|2 = 1. (11.6)

现在，假设我们让自由粒子从势V (x)的右边入射，如图(11.3)所示。

图 11.3: 自由粒子从势V (x)的右边入射。

那这个时候入射波就是一个左行波，透射波也是一个左行波，而反射波

成了一个右行波。相应的满足方程(11.2)的散射定态我们记作ψE,L(x) =

⟨x|ψE,L⟩, 它满足的渐近条件是

x→ +∞ : ⟨x|ψE,L⟩ ∼ ⟨x|E,L⟩+ r′⟨x|E,R⟩
x→ −∞ : ⟨x|ψE,L⟩ ∼ t′⟨x|E,L⟩. (11.7)

同样，这时候的反射系数r′和透射系数t′也得满足概率守恒，

|r′|2 + |t′|2 = 1. (11.8)

因此，一维势散射问题可以用四个复系数r, t, r′, t′来刻画，这些复系数

都是入射粒子能量E的函数。当然，独立的系数没有这么多，因为正如刚

才我们所说的，它们要满足两个概率守恒关系。而且后文我们会进一步证

明，实际上r′和t′并不是独立的，它们完全可以用r, t表达出来。
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11.1.2 与散射的一般理论的联系

上一小节是我们从物理直观上得到的理论，尤其是，我们是根据直观

物理图像写出散射定态所满足的渐近条件(11.3)和(11.7)的。而我们在前面

的章节含时问题和散射问题中给出过散射定态的一般定义，我们知道散射

定态|ψ+
α ⟩就是哈密顿算符H的能写成如下形式的本征态

|ψ+
α ⟩ = |α⟩+ 1

Eα −H0 + iϵ
T |α⟩. (11.9)

那么上一小节的直观理论和这个一般性的形式化理论是不是一致呢？尤其

是两者如何联系起来呢？这就是我们这一小节要探讨的内容。

首先，一般理论中的|α⟩态是哈密顿量H0的本征态，在我们这里当然

就是|E,R⟩和|E,L⟩。不过，为了后面推导的方便，从现在开始我们改变
一下|E,R⟩和|E,L⟩的归一化。具体来说就是，我们要求|E,R⟩归一化到能
量δ函数上，即要求⟨E ′, R|E,R⟩ = δ(E ′ − E) (在上一小节中我们是归一化

到2πδ(kE′ − kE)), 同样，现在我们也要求⟨E ′, L|E,L⟩ = δ(E ′ −E)。可以验

证，我们只要将右行波⟨x|E,R⟩和左行波⟨x|E,L⟩作如下重新定义，就能满
足这一新的归一化要求，

⟨x|E,R⟩ =
√

m

2π~2kE
eikEx, ⟨x|E,L⟩ =

√
m

2π~2kE
e−ikEx. (11.10)

现在，假设我们以指标1标记右行波，以指标2标记左行波，即令1 = R, 2 =

L。那么自由粒子本征态的正交归一关系就可以写成

⟨E ′, i|E, j⟩ = δ(E ′ − E)δij, i, j = 1, 2. (11.11)

因此，这里的(E, i)这样的一对标记就相当于一般理论里的指标α，相应的，

一般理论中涉及的对α的积分在这里当然就要理解成既对连续指标E积分，

同时也对离散指标i求和。

在散射的一般理论中，散射概率是由S矩阵和T矩阵决定的，它们满足

⟨β|S|α⟩ = δ(β − α)− 2πiδ(Eβ − Eα)⟨β|T |α⟩. (11.12)

现在，在我们的一维势散射问题中，这一关系就是

⟨E ′, i|S|E, j⟩ = δ(E ′ − E)δij − 2πiδ(E ′ − E)⟨E ′, i|T |E, j⟩
= δ(E ′ − E)(δij − 2πi⟨E, i|T |E, j⟩). (11.13)
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δ(E ′ − E)当然意味着散射初末态能量得守恒。公式(11.13)中的δ(E ′ − E)因

子也意味着S矩阵关于H0表象是“对角的”(关于i, j指标当然不对角)，“对

角元”是(δij − 2πi⟨E, i|T |E, j⟩)，我们常常将它简记作Sij(E)，即

⟨E ′, i|S|E, j⟩ = δ(E ′ − E)Sij(E), Sij(E) = δij − 2πi⟨E, i|T |E, j⟩.(11.14)

Sij(E)构成了一个2× 2的矩阵Ŝ(E)，即

Ŝ(E) =

(
SRR(E) SRL(E)

SLR(E) SLL(E)

)
. (11.15)

不难验证，S矩阵的幺正性现在就意味着这个2× 2的矩阵是一个幺正矩阵，

即满足

Ŝ†Ŝ = ŜŜ† = 1. (11.16)

由于Ŝ(E)是S矩阵关于H0表象的“对角元”，所以在一维势散射问题中我

们也常常直接把它叫做S矩阵。从(11.14)式我们还可以看到，这样定义

的S矩阵实际上和标准的T矩阵⟨E, i|T |E, j⟩只差一个常数系数−2πi以及一

个相加常数δij。

由于我们只需要处理初末态能量相等(均为E)的情形，所以后文我

们也常常省略能量指标E, 比如，后文我们常常将|E, i⟩态简写成|i⟩态，即
将|E,R⟩简写成|R⟩, 将|E,L⟩简写成|L⟩。当这样简写时，我们默认粒子的能
量为E。

下面我们就是要阐明S矩阵Ŝ和我们前面直观理论中的反射系数和透

射系数之间的关系。直观上，由于这些系数代表的是出射波(反射波和透

射波都是出射波)相对于入射波的幅度，而S矩阵按照定义就是入射的初态

到出射的末态的跃迁幅，因此人们可以想见这些反射系数和透射系数大致

应该就是Ŝ的矩阵元。下面我们会利用散射定态的一般性形式理论证明这

一点。由此我们也将上一小节关于散射定态的直观处理与一般性的形式定

义(11.9)联系起来。

我们的出发点就是方程(11.9)。在现在的一维势散射问题中，这一方程

可以更具体地写成

|ψE,R⟩ = |R⟩+ 1

E −H0 + iϵ
T |R⟩

|ψE,L⟩ = |L⟩+ 1

E −H0 + iϵ
T |L⟩ (11.17)
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其中第一个式子描写的是粒子从V (x)左边−∞处往右边入射的情形，第二
个式子描写的粒子从+∞处往左边入射的情形。

根据上面的方程(11.17), 我们有

⟨x|ψE,R⟩ = ⟨x|R⟩+ ⟨x| 1

E −H0 + iϵ
T |R⟩

= ⟨x|R⟩+
∫ +∞

−∞
dx′⟨x| 1

E −H0 + iϵ
|x′⟩⟨x′|T |R⟩. (11.18)

接下来，我们来计算一下⟨x| 1
E−H0+iϵ

|x′⟩，利用动量本征态的封闭性关
系
∫
dp|p⟩⟨p| = 1，并注意到H0|p⟩ = p2

2m
|p⟩，我们有

⟨x| 1

E −H0 + iϵ
|x′⟩ =

∫
dp⟨x| 1

E −H0 + iϵ
|p⟩⟨p|x′⟩

=

∫
dp

1

E − p2

2m
+ iϵ

⟨x|p⟩⟨p|x′⟩ =
∫

dp

2π~
1

E − p2

2m
+ iϵ

eip(x−x′)/~

=

∫
dk

2π

eik(x−x′)

~2k2E
2m

− ~2k2
2m

+ iϵ
= −2m

~2

∫ +∞

−∞

dk

2π

eik(x−x′)

k2 − k2E − iϵ
. (11.19)

为了算出上式最后那个对k的积分，我们首先注意到， 1
k2−k2E−iϵ

在k的复平

面上有两个极点kE + iϵ和−kE − iϵ, 如图(11.4)所示。 另外，(11.19)式最

图 11.4: k的极点与积分围道。

后对k的积分是沿着实轴积分，但是，当x − x′ > 0时，我们可以把这个

积分加上k复平面在上半平面无穷远处的一个半圆，形成一个闭合的围道

积分，如图(11.4)所示。这是因为，当x − x′ > 0时，(11.19)式中的指数因
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子eik(x−x′)在复上半平面是指数衰减的(因为这时候k有一个正虚部)，在无

穷远处的半圆上衰减为0，因此实际上这时候无穷大半圆上的积分贡献是0，

也即是说围道积分其实就等于沿着实轴的积分。类似的，当x − x′ < 0时，

我们可以把沿实轴的积分加上k复平面在下半平面无穷远处的一个半圆，形

成在下半平面的一个闭合围道积分，如图(11.4)所示。利用围道积分的留数

法，我们就可以将这两种情形时(11.19)式最后的积分结果都算出来，最后

的结果可以概括如下

⟨x| 1

E −H0 + iϵ
|x′⟩

= −2πi

(√
m

2π~2kE

)2 [
θ(x− x′)eikE(x−x′) + θ(x′ − x)e−ikE(x−x′)

]
= −2πi [θ(x− x′)⟨x|R⟩⟨R|x′⟩+ θ(x′ − x)⟨x|L⟩⟨L|x′⟩] . (11.20)

式中θ(x)是阶跃函数，它的定义是，当x > 0时θ(x) = 1, 当x < 0时θ(x) =

0。(11.20)式的最后一个等号是利用了右行波⟨x|R⟩和左行波⟨x|L⟩的定义
式(11.10)。

将(11.20)的最终结果代入散射定态波函数的方程(11.18), 我们就可以

得到

⟨x|ψE,R⟩ = ⟨x|R⟩+

−2πi

[
⟨x|R⟩

∫ x

−∞
dx′⟨R|x′⟩⟨x′|T |R⟩+ ⟨x|L⟩

∫ +∞

x

dx′⟨L|x′⟩⟨x′|T |R⟩
]
.(11.21)

因此，当x→ −∞时，我们有

⟨x|ψE,R⟩ ∼ ⟨x|R⟩ − 2πi

[
⟨x|L⟩

∫ +∞

−∞
dx′⟨L|x′⟩⟨x′|T |R⟩

]
= ⟨x|R⟩ − 2πi⟨x|L⟩⟨L|T |R⟩. (11.22)

另一方面，根据(11.14)式，我们有SLR = −2πi⟨L|T |R⟩, 因此我们有，x →
−∞ : ⟨x|ψE,R⟩ ∼ ⟨x|R⟩+ ⟨x|L⟩SLR。

类似的，根据(11.21)式可知，当x→ +∞时，我们有

⟨x|ψE,R⟩ ∼ ⟨x|R⟩ − 2πi

[
⟨x|R⟩

∫ +∞

−∞
dx′⟨R|x′⟩⟨x′|T |R⟩

]
= ⟨x|R⟩ − 2πi⟨x|R⟩⟨R|T |R⟩. (11.23)

另一方面，根据(11.14)式，我们有SRR = 1 − 2πi⟨R|T |R⟩, 因此我们有，
x→ +∞ : ⟨x|ψE,R⟩ ∼ ⟨x|R⟩SRR。
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简单归纳一下就是，通过上面两段的推导，我们得到了下面的结果

x→ −∞ : ⟨x|ψE,R⟩ ∼ ⟨x|R⟩+ ⟨x|L⟩SLR

x→ +∞ : ⟨x|ψE,R⟩ ∼ ⟨x|R⟩SRR. (11.24)

将这个结果(11.24)与上一小节的(11.3)式进行比较，我们就有

SLR = r, SRR = t. (11.25)

当然，读者可能注意到，上一小节的(11.3)式与这里的(11.24)式对右行

波|R⟩以及对左行波|L⟩所采用的归一化是不同的。但这种不同完全不影响
这两者的比较，因为相差一个整体的归一化常数对波函数⟨x|ψE,R⟩并不产
生什么实质的影响。(11.25)式这个结果非常好理解，SRR表示入射右行波

到出射右行波的散射，这当然对应的是透射，因此等于t，而SLR表示入射

右行波到出射左行波的散射，那当然对应的是反射，因此等于r。

我们可以对入射粒子从V (x)右边+∞处往左边入射的情形作完全类似
的推导，最后会得到

x→ −∞ : ⟨x|ψE,L⟩ ∼ ⟨x|L⟩SLL

x→ +∞ : ⟨x|ψE,L⟩ ∼ ⟨x|L⟩+ ⟨x|R⟩SRL. (11.26)

将这个式子与上一小节的(11.7)式比较，我们就有

SRL = r′, SLL = t′. (11.27)

综合(11.25)和(11.27)，我们就有

Ŝ(E) =

(
SRR SRL

SLR SLL

)
=

(
t r′

r t′

)
. (11.28)

可见，从散射的形式化理论开始推导出来的结果和上一小节的直观理

论是完全一致的。形式化的推导虽然没有那么直接，但它可以看作是对上

一小节的直观理论的一个数学证明。并且，通过这个推导，我们将反射系

数和透射系数与S矩阵联系了起来，这就使得我们可以利用S矩阵的幺正性

和解析性来进一步得到几个反射系数和透射系数之间的关系。而且，上面

的推导过程具体地演示了如何从散射定态解中得到T矩阵和S矩阵的信息，

而这样的处理不仅只适用于一维势散射问题，而是具有一般性的。形式化
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处理的最大好处也许是，它是一个统一性的理论，我们可以统一性地用它

来处理所有的散射问题，不管是这里处理的一维势散射也好，还是后面将

要讨论的三维势散射也好，还是其它更复杂的散射问题也好，我们都可以

用同一套散射的一般理论来处理。

当然，我们可以考察一个更为一般的散射定态|ψE⟩,它是|ψE,L⟩和|ψE,R⟩的
线性叠加，

|ψE⟩ = cL|ψE,L⟩+ cR|ψE,R⟩. (11.29)

那么根据(11.24)式和(11.26)式，我们可以看到，|ψE⟩将满足如下渐近条件

x→ −∞ : |ψE⟩ ∼ cR|R⟩+ (SLRcR + SLLcL)|L⟩
x→ +∞ : |ψE⟩ ∼ cL|L⟩+ (SRRcR + SRLcL)|R⟩. (11.30)

很显然，这两个渐近表达式的第一项都是代表的入射波，而第二项都是代

表的出射波(比方说在x → −∞的区域，也就是V (x)的左边，入射波当然就

是右行波，而左行波当然就是出射波)。(11.30)式告诉我们，在{|R⟩, |L⟩}表
象下，入射波的列矢量ψi以及出射波的列矢量ψo可以分别表示为

ψi =

(
cR

cL

)
, ψo =

(
SRR SRL

SLR SLL

)(
cR

cL

)
= Ŝψi. (11.31)

可见，S矩阵正是把出射波的幅度与入射波的幅度联系起来的矩阵。而S矩

阵的幺正性(11.16)所说的无非是，出射波的总概率等于入射波的总概率，

也就是概率守恒。

(11.28)告诉我们，反射系数和透射系数其实是S矩阵元，因此我们可

以应用S矩阵的幺正性(11.16)。由Ŝ†Ŝ = 1可以知道，(
t∗ r∗

r′∗ t′∗

)(
t r′

r t′

)
=

(
1 0

0 1

)
, (11.32)

从而必有

|t|2 + |r|2 = |t′|2 + |r′|2 = 1,
t′

t∗
= −r

′

r
. (11.33)

这个结果中的第一个式子是我们在上一小节中已经根据概率守恒得到过的，

现在我们从S矩阵的幺正性再一次得到了它们。这是不令人意外的，因为
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正如我们在上一段所说的，幺正性的物理本质就是概率守恒。但是由于我

们现在考虑的是更一般情形下的概率守恒，所以我们还额外得到一个关系

式。不仅如此，假设我们进一步利用ŜŜ† = 1, 那将还可以得到

|t|2 + |r′|2 = |t′|2 + |r|2 = 1,
t′

t∗
= − r∗

r′∗
. (11.34)

比较(11.33)式的第一个式子和(11.34)式的第一个式子，我们有

|r′|2 = |r|2, |t′|2 = |t|2. (11.35)

这告诉我们粒子从V (x)右边入射的反射概率以及透射概率分别与粒子从

左边入射的反射概率以及透射概率相等。当然，有了这个结果以后，那

么(11.33)式的第二个式子和(11.34)式的第二个式子实际上就是一回事了。

不仅如此，注意到我们这里并没有涉及到粒子的自旋，尤其是没有

涉及到自旋与外磁场耦合等破坏时间反演对称性的相互作用，因此我

们的系统是时间反演不变的。在时间反演之下，粒子的动量p将变成−p，
即p → −p，这就告诉我们，在时间反演之下，左行波会变成右行波，而
右行波会变成左行波，即|E,R⟩ → |E,L⟩，|E,L⟩ → |E,R⟩。另外很显
然的是，在时间反演之下，初末态也将调换，初态将变成末态，末态将

变成初态。因此，在时间反演之下，⟨E ′, R|S|E,R⟩(这里的S是散射一般
理论中的S算符)将变成⟨E,L|S|E ′, L⟩，⟨E ′, L|S|E,R⟩将变成⟨E,L|S|E ′, R⟩,
即⟨E ′, R|S|E,R⟩ → ⟨E,L|S|E ′, L⟩, ⟨E ′, L|S|E,R⟩ → ⟨E,L|S|E ′, R⟩。系统
有时间反演对称性，那就意味着时间反演之后的结果和反演之前相等，即

有

⟨E ′, R|S|E,R⟩ = ⟨E,L|S|E ′, L⟩, ⟨E ′, L|S|E,R⟩ = ⟨E,L|S|E ′, R⟩.(11.36)

另一方面，根据矩阵Ŝ(E)的定义(11.14), ⟨E ′, i|S|E, j⟩ = δ(E ′ − E)Sij(E)，

因此上面的式子就告诉我们

SRR(E) = SLL(E). (11.37)

用透射系数来写，这个结果即是t′ = t。结合(11.33)式的第二个式子，我们

有

t′ = t, r′ = −r t
t∗
. (11.38)

正因为这个结果，我们前面才说，系数r′, t′可以用r, t表达出来。
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11.1.3 空间反演对称性

上一小节最后通过对时间反演对称性的分析，我们已经看到对称性如

何可以限制S矩阵。这一小节我们进一步考虑空间反演对称性可以如何简

化一维势散射问题。

我们假定势函数具有V (−x) = V (x)的形式，如图(11.5)所示。习惯上，

图 11.5: 具有空间反演对称性的势函数。

人们常常定义空间反演算符P ,

P |x⟩ = | − x⟩, P 2 = 1. (11.39)

假设我们将系统的哈密顿算符记作H(x) = − ~2
2m

d2

dx2 +V (x), 则由于V (−x) =
V (x)，因此PH(x) = H(−x)P = H(x)P , 另外由于H0 = − ~2

2m
d2

dx2也是x的偶

函数，所以很显然也有PH0 = H0P，即

[P,H0] = [P,H] = 0. (11.40)

现在让我们来考察空间反演算符在左行波和右行波上的作用。由

于P |x⟩ = | − x⟩, 则⟨x|P = ⟨−x|P。现在让我们来考察P |R⟩, 由于⟨x|P |R⟩ =
⟨−x|R⟩ =

√
m

2π~2kE
e−ikEx = ⟨x|L⟩, 因此即有P |R⟩ = |L⟩, 类似的P |L⟩ = |R⟩,

即

P |R⟩ = |L⟩, P |L⟩ = |R⟩. (11.41)

下面我们进一步来考察P在散射定态|ψE,R⟩和|ψE,L⟩上的作用。根据我
们在散射的一般理论中的讨论，散射定态满足一个形式化的定义|ψ+

α ⟩ =

UI(0,−∞)|α⟩,在我们这里即有|ψE,R⟩ = UI(0,−∞)|R⟩, |ψE,L⟩ = UI(0,−∞)|L⟩。
另一方面，根据定义，时间演化算符UI(t2, t1) = ei

H0
~ t2U(t2, t1)e

−i
H0
~ t1 =
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ei
H0
~ t2e−iH~ (t2−t1)e−i

H0
~ t1。由于空间反演算符P与H0以及H均对易(11.40), 因

此很显然PUI(t2, t1) = UI(t2, t1)P。由此即有P |ψE,R⟩ = PUI(0,−∞)|R⟩ =
UI(0,−∞)P |R⟩ = UI(0,−∞)|L⟩ = |ψE,L⟩, 同理有P |ψE,L⟩ = |ψE,R⟩, 即

P |ψE,R⟩ = |ψE,L⟩, P |ψE,L⟩ = |ψE,R⟩. (11.42)

由于P与时间演化算符UI对易，而S算符是一个特殊的时间演化算

符UI(+∞,−∞),所以PS = SP。由此即有⟨E ′, R|S|E,R⟩ = ⟨E ′, L|PSP |E,L⟩ =
⟨E ′, L|SP 2|E,L⟩ = ⟨E ′, L|S|E,L⟩，⟨E ′, R|S|E,L⟩ = ⟨E ′, R|SP |E,R⟩ =

⟨E ′, R|PS|E,R⟩ = ⟨E ′, L|S|E,R⟩，也即是⟨E ′, R|S|E,R⟩ = ⟨E ′, L|S|E,L⟩,
⟨E ′, R|S|E,L⟩ = ⟨E ′, L|S|E,R⟩。类似的也有⟨E ′, L|S|E,R⟩ = ⟨E ′, R|S|E,L⟩。
由于⟨E ′, i|S|E, j⟩ = δ(E ′ − E)Sij(E)，因此即有

SRR = SLL, SRL = SLR. (11.43)

或者用反射系数和透射系数来写即是

t′ = t, r′ = r. (11.44)

更方便的处理方式是重新定义基矢|+⟩和|−⟩，它们的定义是

|+⟩ = 1√
2
(|R⟩+ |L⟩), |−⟩ = 1√

2
(|R⟩ − |L⟩). (11.45)

根据(11.41)，很显然|+⟩、|−⟩均为空间反演算符P的本征态，

P |+⟩ = |+⟩, P |−⟩ = −|−⟩. (11.46)

即|+⟩为正宇称态，|−⟩为负宇称态。
在新基矢下，有⟨E ′,−|S|E,+⟩ = ⟨E ′,−|SP |E,+⟩ = ⟨E ′,−|PS|E,+⟩ =

−⟨E ′,−|S|E,+⟩，因此必有⟨E ′,−|S|E,+⟩ = 0，同理⟨E ′,+|S|E,−⟩ = 0。

这就意味着在这个新的基矢下S+−(E) = S−+(E) = 0, S矩阵的非0矩阵元

为S++(E)和S−−(E)。新基矢下S矩阵的幺正性就变成

|S++(E)|2 = |S−−(E)|2 = 1. (11.47)

这就意味着S++和S−−都是一个相因子，有时侯也记作S++(E) = e2iδ+(E),

S−−(E) = e2iδ−(E)。当然，根据基矢之间的变换关系，我们也有

S++ = SRR + SRL = t+ r, S−− = SRR − SRL = t− r. (11.48)
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同样，我们可以定义新的散射定态|ψE,+⟩和|ψE,−⟩，它们的定义是

|ψE,+⟩ = (|ψE,R⟩+ |ψE,L⟩), |ψE,−⟩ = (|ψE,R⟩ − |ψE,L⟩). (11.49)

根据(11.42)式可知，它们也是P的本征态，满足

P |ψE,+⟩ = |ψE,+⟩, P |ψE,−⟩ = −|ψE,−⟩. (11.50)

则根据散射定态解的渐近形式(11.30)式，我们有

x→ −∞ : |ψE,+⟩ ∼ |R⟩+ (SLR + SLL)|L⟩ = |R⟩+ S++|L⟩
x→ +∞ : |ψE,+⟩ ∼ |L⟩+ (SRR + SRL)|R⟩ = |L⟩+ S++|R⟩.(11.51)

同理也有

x→ −∞ : |ψE,−⟩ ∼ |R⟩+ (SLR − SLL)|L⟩ = |R⟩ − S−−|L⟩
x→ +∞ : |ψE,−⟩ ∼ −|L⟩+ (SRR − SRL)|R⟩ = −|L⟩+ S−−|R⟩.(11.52)

也即是说，通过研究有确定宇称的散射定态的渐近形式我们就可以得

到S矩阵的信息。

11.1.4 一维势散射举例

让我们考虑一个如图(11.6)所示的对称方形势阱的例子。 让我们来考

图 11.6: 对称的方形势阱。

察它的偶宇称散射定态|ψE,+⟩, 相应的波函数记为ψE,+(x)。则根据(11.51)式

可知

x ≤ −a
2
: ψE,+(x) = eikEx + S++(E)e

−ikEx

x ≥ +
a

2
: ψE,+(x) = e−ikEx + S++(E)e

ikEx. (11.53)
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另外，很显然，[−a/2,+a/2]区间上的偶函数解必定有如下形式

x ∈ [−a/2,+a/2] : ψE,+(x) = A(eiqEx + e−iqEx), (11.54)

式中qE > 0满足
~2q2E
2m

= E + V0。利用波函数和波函数的一阶导数在x =

−a/2(或者x = a/2)处的连续性条件，我们可以得到

S++(E) = e−ikEa 1 + i(qE/kE) tan(qEa/2)

1− i(qE/kE) tan(qEa/2)
. (11.55)

类似的，人们也可以考察奇宇称的散射定态|ψE,−⟩, 并进而得到

S−−(E) = e−ikEa 1 + i(kE/qE) tan(qEa/2)

1− i(kE/qE) tan(qEa/2)
. (11.56)

求出S++和S−−以后，人们当然也可以利用(11.48)式求出反射系数和透射系

数。

束束束缚缚缚态态态

上面求出来的S矩阵(11.55)和(11.56)适用于E > 0情形。但是假如我们

将它们解析延拓到E < 0的情形，或者等价的，将kE解析延拓到正虚轴上，

之所以是正虚轴而不能是负虚轴，是因为kE =
√

2mE
~2 ，而且我们的解析延

拓是从能量复平面正实轴割线的上沿开始的(即是从E+ = E + iϵ开始的)，

因此当E延拓到负实轴上的时候，相应的kE应该延拓到正虚轴。这样解析

延拓以后，我们就可能发现S++(E)和S−−(E)的极点。根据我们在散射的一

般理论中的论述，T矩阵在能量复平面实轴上的极点对应于哈密顿量H的

束缚态。由于我们这里的S矩阵和T矩阵其实是密切相关的。因此这也就是

说，S++(E)和S−−(E)在负实轴上的极点对应的是系统的束缚态。

为了加深对这种S矩阵在能量负实轴上的极点与系统束缚态之间的对

应关系的理解，我们现在通过简单考察散射定态在解析延拓下的行为来

作进一步说明。假设我们将能量E延拓到负实轴，相应的kE就解析延拓

为kE = iλE(λE > 0)。根据(11.53)式，这时候散射定态波函数在x ≥ +a
2
区

间上将延拓为

eλEx + S++(E)e
−λEx, (11.57)

很显然，一般来说这样的波函数将是无法归一化的，从而解析延拓后的

散射定态一般来说不对应任何物理态。但是，有一种情形例外，那就是
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如果延拓后的能量刚好是S++(E)的极点的话，那么(11.57)式的第二项将

有一个无穷大的幅度，因此不可归一化的第一项相比就可以忽略(为了看

得更清楚，人们可以将表达式(11.57)整体除以一个常数S++(E), 从而看到

在极点处(11.57)的第一项相对来说为0)，从而使得解析延拓后的散射定态

在x ≥ +a
2
区间上实际上正比于e−λEx，这样一个在无穷远处衰减为0的波函

数所描述的当然就是一个束缚态。

假设我们将kE解析延拓为kE = iλE, 因此E = −~2λ2
E

2m
< 0, 从而

~2q2E
2m

=

E + V0 = −~2λ2
E

2m
+ V0。则从表达式(11.55)很容易看出，S++(E)的极点由下

面的方程决定

λE = qE tan(qEa/2), λ2E + q2E =
2mV0
~2

. (11.58)

这组方程的解对应于偶宇称的束缚态。同样的道理，根据S−−(E)的极点，

我们也可以得到奇宇称束缚态所满足的方程

qE = −λE tan(qEa/2), λ2E + q2E =
2mV0
~2

. (11.59)

不难验证，通过直接求解束缚态情形下的定态薛定谔方程，我们也正好可

以得到(11.58)和(11.59), 这就说明了，H的束缚态的确对应于S矩阵解析延

拓以后在能量复平面实轴上的极点。

我们可以用画图的方法来求解方程组(11.58)和方程组(11.59)，如

图(11.7)所示，方程组(11.58)对应左图，方程组(11.59)对应右图。 从图

图 11.7: 束缚态解。左图对应偶宇称束缚态，右图对应奇宇称束缚态。

中很容易看出，对于偶宇称情形，无论V0 > 0具体取多少，至少存在一个

束缚态。但是，对于奇宇称情形，如果V0 > 0的值过小的话，奇宇称束缚

态有可能不存在。
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11.1.5 共振态

上一小节我们讨论了如何通过将S矩阵解析延拓进而找到系统的束缚

态。然而，如果势函数V (x)具有的是如图(11.5)所示的形状，那么严格的

束缚态是不存在的。因为这时候粒子虽然可以暂时性地被束缚在势阱之中，

但是，它也有一定的概率通过量子隧穿效应隧穿到势阱外面去。因此，这

时候没有稳定的束缚态存在，只要等待的时间足够长，粒子必定会出现在

势阱之外，成为一个自由粒子。但是，如果粒子最初处在势阱之内，并且

我们等待的时间也并不太长，那么直观上很显然的是，粒子将有更大的概

率依然被束缚在势阱之内。也即是说，在一定的意义上，束缚态的概念在

这里依然适用，不过，这时候的束缚态不是一个稳定束缚态，而是一个会

随时间衰变的束缚态。

上一章在散射的一般理论中我们说过，这种不稳定的束缚态对应的

是T矩阵在能量复平面上实轴之外的极点，更严格地说是在能量复平面

下半平面上的极点。在我们这里也就是，不稳定束缚态对应S矩阵在能

量复平面下半平面的极点。以偶宇称的不稳定束缚态为例，这时候，它

们对应于S++(E)在下半平面的极点。比方说，假设其中一个这样的极点

为ER − iΓ
2
~, 则由于S++(E)本身是一个相因子，因此在此极点附近必有

S++(E) ∼
E − ER − iΓ

2
~

E − ER + iΓ
2
~
. (11.60)

根据我们在上一章中的讨论，τ = 1/Γ就是这个不稳定束缚态的典型寿命。

直观上，这是因为，这个不稳定束缚态的能量是一个复数E = ER − iΓ
2
~,

它随时间的演化将满足

e−iE~ t = e−i
ER
~ te−

Γ
2
t. (11.61)

因此，t = 0时刻处于这一态上的粒子在t时刻依然处于这个态上的概率将

为e−Γt = e−
t
τ。

这种不稳定束缚态也称作散射共振态。因为，在散射实验中，假设入

射粒子能量接近ER, 那么它将和这个不稳定束缚态共振，从而使得入射粒

子短暂地处于这个不稳定束缚态上，然后再衰变为出射自由粒子态。

举举举例例例

下面我们举一个会出现这种散射共振态的具体例子。假设我们考虑
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双δ函数势

V (x) = V0
~2

2m

[
δ(x− 1) + δ(x+ 1)

]
, (11.62)

式中V0 > 0为这个δ函数势的强度。

假设我们考虑偶宇称散射定态|ψE,+⟩。则在|x| ≥ 1的地方，散射定态

波函数将具有(11.53)的形式。而在x ∈ [−1, 1]区间上，散射定态波函数将

具有ψE,+(x) = A(eikEx + e−ikEx)的形式。在x = ±1处，波函数依然是连续

的，但是波函数的一阶导数并不连续，比方说，将相应的定态薛定谔方程

在x = 1附近积分我们可以得到

ψ′(1+)− ψ′(1−) = V0ψ(1), (11.63)

式中ψ′(x)表示ψ(x)对x的一阶导数，1+ = 1 + ϵ, 1− = 1− ϵ，ϵ > 0为一个无

穷小量。

由波函数的连续性，以及波函数的一阶导数所满足的方程(11.63), 我

们就可以得到

S++(E) = e−2ikE
1 + i(tan kE − V0

kE
)

1− i(tan kE − V0

kE
)
. (11.64)

现在，将能量延拓到复平面上，或者等价地将kE延拓到复平面上，则我们

可以找到S++的极点，它们满足1− i tan kE + i V0

kE
= 0，整理一下即是

e2ikE = −
(
1− i

2kE
V0

)
. (11.65)

很容易证明，对于V0取一个足够大的有限值情形, 在kE复平面上沿着实轴

或者沿着虚轴，都找不到这个方程的解。因此，一般来说，(11.65)的解是

一个不为纯虚数的复数，对应的能量E =
~2k2E
2m
当然也必定是复数。也即是

说，S++(E)的极点不在能量复平面的实轴上，因此相应于不稳定束缚态。

假设V0足够大，那我们可以将(11.65)的解按照1/V0进行级数展开，人

们容易验证，下面给出的kE直到(1/V0)
2阶为止都满足方程(11.65)

kE =
π

2
(1− 1

V0
+

1

V 2
0

)− i(
π

2V0
)2. (11.66)

相应的能量极点E =
~2k2E
2m
为

E = ER − i
~
2

(
~π3

4mV 2
0

)
, (11.67)
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式中ER的近似表达式我们留给读者自己去推导。这个式子告诉我们，直

到(1/V0)
2阶，这个不稳定束缚态的Γ = ~π3

4mV 2
0
。

11.2 三维势散射问题

所谓的三维势散射问题，指的是一束入射粒子被一个固定势场V (x)散

射的问题，如图(11.8)所示。我们要求势场V (x)在无穷远处衰减得足够

快，以使得势场的有效作用范围有限。 整个系统的哈密顿量H为，H =

图 11.8: 入射粒子流受固定势场散射。

H0 + V (x)，其中H0 = − ~2
2m

∇2为自由粒子哈密顿量。

首先让我们来回顾一下散射截面的概念。假设如图(11.8)所示，入射

粒子束沿着水平的z轴入射，每单位时间单位横截面积上的入射粒子通量

为Fi, 显然，Fi等于入射粒子总数与入射粒子概率流密度Ji的乘积，Fi =

JiN。假设势场V (x)定域在坐标原点O附近。在θ, φ方向上，在远离散射势

场的地方，我们放置有一个探测器，它对O点的张角为立体角dΩ。经过势

场的散射以后，入射粒子有一定的概率被散射到这个立体角dΩ里面去，从

而被探测到。假设单位时间探测器探测到的粒子数为dN , 很显然dN等于入

射粒子总数N与跃迁概率wi→f的乘积，dN = wi→fN , 式中wi→f表示单个粒

子单位时间之内从入射初态跃迁(散射)到dΩ所表示的连续末态的概率。根

据我们以前的定义，微分散射截面dσ = wi→f/Ji = wi→fN/(JiN) = dN/Fi,

即等于探测器单位时间之内探测到的粒子数与入射粒子通量的比值。很显

然，探测器探测到的粒子数将正比于dΩ, 因此dσ也正比于dΩ, 常常也写作

dσ = σ(θ, φ)dΩ. (11.68)
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人们有时候也把σ(θ, φ)称为微分散射截面。

为了后文的推导，让我们先来研究一下如果散射势不存在，粒子完全

自由时的行为。很显然，这时候给定能量E > 0, 设E =
~2k2E
2m

(kE > 0), 则自

由粒子所满足的定态薛定谔方程为

(∇2 + k2E)ϕE(x) = 0, (11.69)

式中ϕE(x)为能量为E的自由粒子定态波函数。方程(11.69)有一类非常平凡

的平面波解

ϕE(x) = eikE ·x, (11.70)

式中kE为任意一个满足|kE| = kE的波矢量。很显然，这个解描述的是一个

动量为~kE的自由粒子。

为了寻找方程(11.69)其它形式的解，我们利用球坐标中的关系式

∇2 =
1

r
∂2rr −

L2

~2r2
, (11.71)

式中，r = |x|为离散射中心的距离，L为角动量算符。下面我们仅仅

关心r → +∞时方程(11.69)在球坐标中的解。由(11.71)式可知，当r →
+∞时， L2

~2r2可以忽略，因此方程(11.69)渐近为

r → +∞ : (
1

r
∂2rr + k2E)ϕE(x) = 0. (11.72)

这个方程的解为

r → +∞ : ϕE(x) ∼ g(θ, φ)
e±ikEr

r
. (11.73)

很明显，这两个解分别描写的是外行和内行的球面波, 式中g(θ, φ)是一个任

意的角度部分波函数。

11.2.1 直观理论

考虑到固定势场V (x), 则完整的定态薛定谔方程就应该是(
− ~2

2m
∇2 + V (x)

)
ψE(x) = EψE(x), (11.74)



第十一章 *再论势散射 23

式中ψE(x)为定态波函数。不过，由于我们是在研究散射问题，所以我们关

心的其实是这个定态薛定谔方程的散射定态解。这些散射定态解除了要满

足这个定态薛定谔方程之外，还需要满足一些额外的限制。

为了找到散射定态所需满足的额外限制，我们来考察方程(11.74)在r =

|x| → +∞时的渐近行为。根据我们的假设，这时候势场V (x)完全可以忽

略，被散射的粒子将成为一个自由粒子，从而由自由粒子定态薛定谔方

程(11.69)所描述。这告诉我们两点：第一，对于散射定态，能量E可以定

义为粒子在无穷远处的动能，因此必定可以取成，E =
~2k2E
2m

(kE > 0)。第

二，在r → +∞的无穷远处，定态波函数ψE(x)必定趋近于某个自由粒子定

态波函数ϕE(x)。

直观上，当r → +∞时，定态波函数ψE(x)应该包含两部分，其中一

部分描写入射自由粒子态(注意入射粒子是从z → −∞的无穷远处入射的)，

另外一部分描写散射以后的出射粒子态。由于粒子是沿着z轴水平入射，所

以入射自由粒子态显然可以取成平面波eikEz。但是，经过势场散射以后，

粒子将沿着四面八方出射，所以在r → +∞时，出射粒子态应该由一个外
行的球面波来描写。这也就是说，在r → +∞时，散射定态ψE(x)应该具有

如下渐近行为

r → +∞ : ψE(x) ∼ eikEz + f(θ, φ)
eikEr

r
. (11.75)

其中函数f(θ, φ)(有时候也称为散射振幅)的具体形式要通过求解定态薛定

谔方程(11.74)才能得到。

为了求出散射定态解ψE(x)如何决定微分散射截面dσ，我们可以计

算入射波eikEz的概率流密度，结果为Ji = ~kE
m

, 因此单位时间单位横截

面积上的入射粒子通量Fi = ~kE
m
N。然后我们再计算单位时间之内探测

器在无穷远处探测到的粒子数dN，很显然，它等于总粒子数N与出射波

概率流密度Jr在面积元r
2dΩ上的通量的乘积，即dN = NJrr

2dΩ。对于

出射波f(θ, φ) e
ikEr

r
, 我们很容易计算出它沿着径向的概率流密度Jr, 结果

为Jr =
~kE
m

|f(θ,φ)|2
r2
。由此我们可以得到

dσ = dN/Fi = |f(θ, φ)|2dΩ. (11.76)

可见，微分散射截面完全由散射定态解ψE(x)在r → +∞时的渐近形式决
定。
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11.2.2 与散射的一般理论的联系

上一小节我们给出的是在三维势散射问题中散射定态的直观理论。但

是我们还有一个关于散射定态的一般性理论。那么上面的直观理论和一般

性形式化理论给出来的结果是否一致呢？这就是这一小节将要研究的内容，

通过这个研究，我们将会看到，三维势散射问题同样是一般性散射理论的

一个特例。

为了看清楚理论的一般结构，现在我们将三维势散射的散射定

态ψE(x)重记为|ψki
⟩, 式中ki为入射波的波矢量(它沿着水平的z轴)，因

此|ki| = kE。根据散射定态的一般理论，|ψki
⟩将满足方程

|ψki
⟩ = |ki⟩+

1

E −H0 + iϵ
T |ki⟩. (11.77)

式中T为散射理论的T算符，|k⟩为自由粒子平面波态，我们取

⟨x|k⟩ = eik·x, (11.78)

因此它们满足归一化条件

⟨k|k′⟩ = (2π)3δ(k− k′). (11.79)

与这个归一化相配套的，对k态的求和现在也应该是积分
∫

d3k
(2π)3

...。

根据(11.77)式，我们有⟨x|ψki
⟩ = ⟨x|ki⟩+

∫
d3x′⟨x| 1

E−H0+iϵ
|x′⟩⟨x′|T |ki⟩。

为了进一步计算这个散射定态波函数，我们首先需要计算出⟨x| 1
E−H0+iϵ

|x′⟩,
具体的推导过程和一维情形完全类似

⟨x| 1

E −H0 + iϵ
|x′⟩ =

∫
d3k

(2π)3
⟨x| 1

E −H0 + iϵ
|k⟩⟨k|x′⟩

=

∫
d3k

(2π)3
1

E − ~2k2

2m
+ iϵ

⟨x|k⟩⟨k|x′⟩ =
∫

d3k

(2π)3
eik·(x−x′)

~2k2E
2m

− ~2k2

2m
+ iϵ

=

∫ +∞

0

k2dk

(2π)3

∫ π

0

sin θdθ

∫ 2π

0

dφ
eik|x−x′| cos θ

~2k2E
2m

− ~2k2
2m

+ iϵ

=
m

2π~2
1

|x− x′|
i

π

(∫ +∞

0

kdk
eik|x−x′| − e−ik|x−x′|

k2 − k2E − iϵ

)
=

m

2π~2
1

|x− x′|
i

π

(∫ +∞

−∞
kdk

eik|x−x′|

k2 − k2E − iϵ

)
. (11.80)

最后这个对k的积分和一维情形中表达式(11.19)最后的积分类似，在k复

平面上同样有两个极点，kE + iϵ以及−kE − iϵ。但是，现在由于指数因



第十一章 *再论势散射 25

子eik|x−x′|只在k的上半复平面收敛，并在上半复平面无穷远处的半圆上衰

减为0，所以现在的积分围道只有一种选择，就是选择由实轴和上半复平面

无穷远处的半圆所构成的围道，这个围道只包含极点kE + iϵ，由留数定理

就可以得到

⟨x| 1

E −H0 + iϵ
|x′⟩ = − m

2π~2
eikE |x−x′|

|x− x′|
. (11.81)

所以散射定态⟨x|ψki
⟩可以由下面的方程给出

⟨x|ψki
⟩ = ⟨x|ki⟩ −

m

2π~2

∫
d3x′ e

ikE |x−x′|

|x− x′|
⟨x′|T |ki⟩. (11.82)

下面我们来考察散射定态⟨x|ψki
⟩在r = |x| → +∞时的渐近行为。如

图(11.9)所示, 这时候

|x− x′| ≈ r − er · x′, (11.83)

式中er = x/|x|为径向单位矢量。 因此我们有

图 11.9: r = |x| → +∞时的渐近行为。

eikE |x−x′|

|x− x′|
≈ 1

r
eikEre−ikf ·x′

=
eikEr

r
⟨kf |x′⟩, (11.84)

式中

kf = kEer, (11.85)

它可以理解为出射粒子的波矢量。因此我们可以得到(11.82)式在r →
+∞时的渐近形式

⟨x|ψki
⟩ ∼ ⟨x|ki⟩ −

m

2π~2
eikEr

r

∫
d3x′⟨kf |x′⟩⟨x′|T |ki⟩

= eikEz − eikEr

r

m

2π~2
⟨kf |T |ki⟩. (11.86)
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将这个结果与上一小节直观理论中的结果(11.75)进行比较，我们就可以得

到，只要令

f(θ, φ) = − m

2π~2
⟨kf |T |ki⟩, (11.87)

那么散射定态的直观理论给出来的结果与散射一般性理论推导出来的结果

就是一致的。正因为散射振幅f(θ, φ)具有(11.87)的形式，我们也常常将之

记为f(kf ,ki)。

到此为止我们就建立起了三维势散射的直观理论与散射一般性理论之

间的联系。不仅如此，将上面的(11.87)式代入微分截面公式(11.76), 我们还

可以得到dσ =
(

m
2π~2

)2 |⟨kf |T |ki⟩|2dΩ。这个结果与我们在上一章散射的一
般理论中给出的截面公式完全吻合。这已经足以说明，三维势散射问题完

全可以看成是散射的一般理论的一个特例。

11.2.3 时间反演对称性和空间反演对称性

不妨让我们讨论一下时间反演对称性和空间反演对称性将会如何限制

散射振幅。首先讨论时间反演对称性，如果系统具有这种对称性，则时间

反演算符Θ将与H0以及相互作用V均对易。由于Θ是一个反线性算符，所以

必有ΘT (E+)Θ−1 = T (E−) = [T (E+)]†, 式中E− = E − iϵ, 而T (E+)就是标

准的T算符，我们一般简记为T。也即是说，对于具有时间反演对称性的系

统，我们必有

ΘTΘ−1 = T †. (11.88)

记|ϕ⟩ = |k′⟩, |ψ⟩ = T |k⟩, 则利用时间反演算符的性质我们有

⟨Θψ|Θϕ⟩ = ⟨ϕ|ψ⟩ = ⟨k′|T |k⟩. (11.89)

另一方面，由于在时间反演之下动量会反向，即Θ|k⟩ = | − k⟩，所以我们
也有

|Θψ⟩ = ΘTΘ−1Θ|k⟩ = T †| − k⟩. (11.90)

当然也有|Θϕ⟩ = Θ|k′⟩ = | − k′⟩。将这些代入(11.89)式，即有

⟨−k|T | − k′⟩ = ⟨k′|T |k⟩. (11.91)
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也即是说, 对于具有时间反演对称性的系统，必有f(k′,k) = f(−k,−k′)。

在前面的一维散射问题中，我们也得到过类似的结果。

假如系统除了具有时间反演对称性之外，同时还具有空间反演对称性，

则由于动量会在空间反演之下反向，我们将有

⟨−k|T | − k′⟩ = ⟨k|T |k′⟩. (11.92)

结合前面的(11.91)式，即有

f(k′,k) = f(k,k′). (11.93)

由于散射振幅的模方是微分散射截面，即 dσ
dΩ
(k → k′) = |f(k′,k)|2，所以这

就告诉我们，对于同时具有时间反演对称性和空间反演对称性的系统，我

们有

dσ

dΩ
(k → k′) =

dσ

dΩ
(k′ → k). (11.94)

这有时候也称为细致平衡方程。

11.2.4 全同粒子散射

前面我们处理的是单个入射粒子在一个固定势场中的散射问题，但是

我们也说过，同样的处理也适用于两个粒子“相互碰撞”的问题。这时候，

我们需要选取两粒子的质心参考系，然后研究一个粒子相对于另一个粒子

的运动，如果我们设粒子1的坐标为x1，粒子2的坐标为x2, 那这种相对运动

就由相对坐标x = x1 − x2来刻画，这时候散射势就是两粒子之间的相互作

用势，相对运动的波函数将依然具有如下渐近形式

eik·x + f(θ, φ)
eikr

r
. (11.95)

但是，如果这两个粒子是两个无自旋的全同玻色子，那这时候如

图(11.10)所示，波函数在D处的渐近形式将由图中两种情形共同贡献。 注

意到在球坐标中x → −x相应于(θ, φ) → (π − θ, π + φ)，因此这时候波函数

的渐近形式将为

eik·x + e−ik·x +
[
f(θ, φ) + f(π − θ, π + φ)

]eikr
r
. (11.96)
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图 11.10: 全同粒子散射

因为只有这样的波函数才是一个关于x1和x2的对称波函数。因此最终的微

分散射截面就应该是

dσ

dΩ
= |f(θ, φ) + f(π − θ, π + φ)|2

= |f(θ, φ)|2 + |f(π − θ, π + φ)|2 + 2Re
[
f(θ, φ)f ∗(π − θ, π + φ)

]
.(11.97)

很显然，如果f(θ, φ) = f(θ)而与φ无关(比如相互作用势为中心势)，则θ,=

π/2处是干涉加强的。

但是，如果这两个粒子是两个自旋1/2的全同费米子，并且假设它们之

间的相互作用与自旋无关。那这时候总的波函数就应该是一个反对称波函

数，而这又有两种可能性：第一，这两个粒子处于自旋单态，即自旋波函

数反对称，那这时候空间波函数就应该对称，这和上面的情形类似。第二，

这两个粒子处于自旋三重态，即自旋波函数对称，那这时候空间波函数就

应该反对称了，这和上面的情形不同。为了具体起见，不妨进一步假设入

射的这两个粒子是非极化的，它们以相等的概率处于各种可能的自旋本征

态，即有1/4的概率处于自旋单态，3/4的概率处于自旋三重态，那这时候

的微分散射截面就应该是

dσ

dΩ
=

1

4
|f(θ, φ) + f(π − θ, π + φ)|2 + 3

4
|f(θ, φ)− f(π − θ, π + φ)|2

= |f(θ, φ)|2 + |f(π − θ, π + φ)|2 − Re
[
f(θ, φ)f ∗(π − θ, π + φ)

]
.(11.98)

很显然，如果f(θ, φ) = f(θ)与φ无关, 那这时候θ = π/2处是干涉减弱的。

11.2.5 卢瑟福公式的非微扰精确求解

回到固定势场散射情形。通过前面的讨论我们看到，如果能求出H的

散射定态解，那么从散射定态的渐近形式中我们就能读出散射振幅的信息，
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进而就可以算出散射截面。当然一般来说散射定态的精确解往往都得不到。

但是，有一些特殊的散射势是存在精确解的，比方说，库伦势的散射定态

就可以精确求解。这一小节我们主要就是要讨论如何从库伦势的精确散射

定态中得到卢瑟福截面公式。

在上一章中我们已经用玻恩近似得到了卢瑟福截面公式。但是玻恩近

似是一个微扰论公式，而且只计算到了微扰级数的第一阶，因此如果考虑

到高阶微扰修正，那之前我们得到的卢瑟福公式就有可能要作修正。但是，

通过这一小节的精确求解我们将看到，由于库伦势的特殊性(它除了有中心

力场的旋转对称性以外，还有更多的隐藏对称性)，精确的卢瑟福截面公式

实际上和我们前面用玻恩近似得出来的结果完全一样，高阶微扰修正只是

改变了散射振幅的相因子，而这个相因子在散射截面中并不会反映出来(因

为散射截面正比于散射幅的模方)。当然，正如我们将要看到的，散射振幅

的相因子也包含了重要的信息，比方说，它里面隐藏了库伦吸引势的束缚

态信息，而这些信息在微扰论的计算下是无法得到的。

库伦势本身也有一点额外的复杂性，那就是它在无穷远处衰减得不够

快，因此实际上，它的散射定态解并没有(11.75)式那样的渐近形式。这一

点我们会在库伦势散射定态精确解的渐近形式中清楚地看到。也就是说，

本节前几个小节所发展的理论对于库伦势情形严格来说是不成立的。好在，

前几个小节的大致框架依然是成立的，只需要在细节上作一些修正。最终

我们依然可以从散射定态的渐近形式中得到散射振幅，进而可以推导出卢

瑟福截面公式。

我们可以将库伦势写成

V (r) =
V0
r
, (11.99)

式中V0表示库伦势的强度，V0 > 0为排斥势，V0 < 0为吸引势，对于两个原

子核的散射，V0 = Z1Z2e2

4πϵ0
= Z1Z2e

2
s，对于氢原子和类氢离子V0 = − Ze2

4πϵ0
=

−Z~αc(α为精细结构常数)。则我们需要求解的定态薛定谔方程即是(
− ~2

2m
∇2 +

V0
r

)
ψE(x) = EψE(x). (11.100)

当然，我们关心的是散射定态，因此入射粒子能量E =
~2k2E
2m
，从而我们可

以将上面的定态薛定谔方程重写为(
∇2 + k2E − 2γEkE

r

)
ψE(x) = 0. (11.101)
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式中γE = mV0/(~2kE)是一个无量纲参数，它依赖于入射能量E。
假设我们记相应的入射粒子波矢量为k，和前文一样，k沿着水平

的z轴，大小等于kE，因此k = kEez (式中ez为z轴方向的单位矢量)，则相

应的散射定态解是

ψE(x) = eik·xe−πγE/2Γ(1 + iγE)1F1

(
− iγE; 1; i(kEr − k · x)

)
. (11.102)

其中1F1(a; b;w)是合流超几何函数，它可以定义为下面的无穷级数

1F1(a; b;w) = 1 +
+∞∑
n=1

(a)n
(b)n

wn

n!
, (11.103)

式中(a)n = a(a + 1)...(a + n− 1)，叫做Pochhammer符号。当然，由于k沿

着z轴，所以实际上式中的k · x = kEz，kEr − k · x = kE(r − z)。我们只是

直接给出这个精确解，至于具体是如何找到它的，这不是我们这里要关注

的重点，读者可以参阅朗道《量子力学》第十七章第135节的相关推导。

下面我们来考察这个解(11.102)在r → +∞时的渐近形式。对于散射
问题来说，重要的是考察x不在水平z轴上的情形，这时候r → +∞就相
当于r − z → +∞。因此我们需要用到合流超几何函数1F1(a; b;w)在|w| →
+∞时的渐近展开(参见朗道《量子力学》的数学附录)，它是

1F1(a; b;w) = eiπa
Γ(b)

Γ(b− a)
w−a

(
1 +

+∞∑
n=1

(−1)n
(a)n(a− b+ 1)n

n!
w−n

)

+ ewwa−b Γ(b)

Γ(a)

(
1 +

+∞∑
n=1

(b− a)n(1− a)n
n!

w−n

)
. (11.104)

由此我们可以得到散射定态解(11.102)在r − z → +∞时的渐近形式

ψE(x) ∼ eikEz[kE(r − z)]iγE − γE
kE(r − z)

Γ(1 + iγE)

Γ(1− iγE)
eikEr[kE(r − z)]−iγE + ....

= eikEz+iγE log(kE(r−z)) − γE
kE(r − z)

Γ(1 + iγE)

Γ(1− iγE)
eikEr−iγE log(kE(r−z)) + ....

= eikEz+iγE log(kE(r−z)) + f(θ)
eikEr−iγE log(kE(r−z))

r
+ ... (11.105)

式中

f(θ) = −γE
kE

Γ(1 + iγE)

Γ(1− iγE)

r

r − z
= − γE

2kE

Γ(1 + iγE)

Γ(1− iγE)

1

sin2(θ/2)
, (11.106)
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式中θ是x与水平z轴的夹角，也就是散射角。

从(11.105)的最终结果来看，库伦势情形的散射定态解并没有(11.75)式

那样标准的渐近形式，但是很像，只需要我们修正一下入射波和出射球面

波的相位，将eikEz+iγE log(kE(r−z))当作入射波，将eikEr−iγE log(kE(r−z))/r当作

出射球面波。因此(11.106)式给出的f(θ)就是精确的散射振幅表达式，它的

模方将给出精确的微分散射截面，即

dσ

dΩ
= |f(θ)|2 = V 2

0

16E2 sin4(θ/2)
, (11.107)

式中我们代入了γE = mV0/(~2kE)，以及E = ~2k2E/(2m)，最终的这个微

分散射截面就是著名的卢瑟福截面，不过，我们现在给出来的是精确结

果，但是很显然它和玻恩近似给出来的结果是一样的。实际上，散射振

幅f(θ)(根据(11.87)式，它在相差一个常数系数的意义上也就是T矩阵元)

的精确解(11.106)只是比玻恩近似的结果多出了一个相位eiδ(E)

eiδ(E) =
Γ(1 + iγE)

Γ(1− iγE)
, (11.108)

这个相位对散射截面没有贡献，但是，它其实包含了很重要的信息。

为了看清楚相位eiδ(E)中额外包含的信息。我们将入射粒子能量E解析

延拓到E < 0的情形，相应的kE =
√
2mE/~2就解析延拓到正虚轴，进一

步，如果我们的库伦势是一个吸引势，即V0 < 0, 则这时候γE ∝ V0/kE也会

解析延拓到正虚轴，不妨记γE = iνE(νE > 0)。当然，这时候由(11.108)式

给出来的eiδ(E)就不再是一个相位了，而会变成

Γ(1− νE)

Γ(1 + νE)
. (11.109)

伽马函数Γ(w)在复平面上并没有0点，但是有极点，w = 0,−1,−2,−3, ...就

是伽马函数的极点。这意味着当νE满足下式时，会对应于解析延拓以后

的T矩阵元在能量复平面上的极点，

1− νE = −(n− 1), n = 1, 2, 3, .... (11.110)

显然，这时候νE = n, 即γE = in, 即kE = −imV0/(~2n)(注意，V0 < 0)，即

E =
~2k2E
2m

= −mV
2
0

2~2
1

n2
. (11.111)
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如果代入V0 = −Z~αc, 那这个结果给出来的就是著名的氢原子能级公式。
从这个例子我们再一次清楚地看到，T矩阵元在能量负实轴上的极点对应

于系统的束缚态能级。

但是，如果是库伦排斥势情形，也即是V0 > 0的情形，那当我们将

能量解析延拓到E < 0时，kE还是会解析延拓到正虚轴，但这时候γE ∝
V0/kE将会解析延拓到负虚轴，不妨记γE = −iνE(νE > 0)。那这时候

由(11.108)式给出来的eiδ(E)就会解析延拓成

Γ(1 + νE)

Γ(1− νE)
. (11.112)

由于νE > 0，因此这个表达式并没有极点。也就是说，这时候T矩阵元在

能量负实轴上并没有极点，因此系统当然也就没有束缚态。这非常符合我

们的直观，因为库伦排斥势的势能大于0，当然是不可能有束缚态存在的。

11.3 中心势场的分波法

对于三维势散射问题，通过前面的论述我们已经知道，散射的T矩阵

元可以从散射定态解的渐近形式中读出来。当然，通常我们并不能得到散

射定态的精确解，然而如果系统有一些对称性的话，那么我们将可以进行

进一步的非微扰分析。下面我们将集中于系统有三维空间旋转不变性的情

形，具体来说就是，我们将考察球对称的中心势V (r)的情形。

11.3.1 对称性分析

对于球对称的中心力场，旋转不变性告诉我们[L, V (r)] = 0, 式中L为

粒子的角动量算符。另外，自由粒子哈密顿量H0显然是旋转不变的，从而

我们有

[L, H0] = [L, H] = 0. (11.113)

又由于时间演化算符UI(t2, t1) = ei
H0
~ t2e−iH~ (t2−t1)e−i

H0
~ t1，因此[L, UI(t2, t1)] =

0，特别的，L与S = UI(+∞,−∞)对易，即

[L, S] = 0. (11.114)

这告诉我们，S算符是一个标量算符。
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前面在第(11.2.2)小节中，我们的分析都是在平面波矢量基|k⟩下进行
的。但是对于旋转不变的中心力场, 引入球对称的矢量基|E, l,m⟩将是非常
有帮助的。按照定义，|E, l,m⟩是H0、L2、以及Lz共同的本征态，本征值

分别为E、l(l + 1)~2、以及m~。这里的m表示磁量子数，而不是散射粒子
的质量，这两者我们用了相同的符号，希望读者可以根据上下文作出区分。

因此，这里的|E, l,m⟩就相当于散射的一般理论中用抽象的指标表示的|α⟩，
它们的归一化如下，

⟨E ′, l′,m′|E, l,m⟩ = δ(E − E ′)δl′lδm′m, (11.115)

(在散射的一般理论中是抽象地写作⟨β|α⟩ = δ(β − α))。

我们来考察在这个球对称表象{|E, l,m⟩}下的S矩阵元⟨E ′, l′,m′|S|E, l,m⟩。
由于散射过程的能量守恒，可以知道⟨E ′, l′,m′|S|E, l,m⟩ ∝ δ(E ′ − E)。进

一步我们可以利用旋转不变性，由[L2, S] = 0，有

0 = ⟨E ′, l′,m′|[L2, S]|E, l,m⟩
= ⟨E ′, l′,m′|L2S|E, l,m⟩ − ⟨E ′, l′,m′|SL2|E, l,m⟩
= [l′(l′ + 1)− l(l + 1)]~2⟨E ′, l′,m′|S|E, l,m⟩, (11.116)

即⟨E ′, l′,m′|S|E, l,m⟩ ∝ δl′l。而由[Lz, S] = 0，我们有

0 = ⟨E ′, l,m′|[Lz, S]|E, l,m⟩
= ⟨E ′, l,m′|LzS|E, l,m⟩ − ⟨E ′, l,m′|SLz|E, l,m⟩
= (m′ −m)~⟨E ′, l,m′|S|E, l,m⟩, (11.117)

即⟨E ′, l,m′|S|E, l,m⟩ ∝ δm′m。又由[L+, S] = 0，我们有

0 = ⟨E ′, l,m|[L+, S]|E, l,m− 1⟩
∝

(
⟨E ′, l,m− 1|S|E, l,m− 1⟩ − ⟨E ′, l,m|S|E, l,m⟩

)
, (11.118)

(式中第二个等号我们利用了L−|l,m⟩ = ~
√
l(l + 1)− (m− 1)m|l,m − 1⟩的

共轭转置⟨l,m|L+ = ~
√
l(l + 1)− (m− 1)m⟨l,m− 1|), 即

⟨E ′, l,m− 1|S|E, l,m− 1⟩ = ⟨E ′, l,m|S|E, l,m⟩. (11.119)

将上一段的所有对称性分析结果概括起来，即有

⟨E ′, l′,m′|S|E, l,m⟩ = δ(E ′ − E)Sl(E)δl′lδm′m. (11.120)
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实际上，如果引用第七章中讨论过的Wigner-Eckart 定理的话，那上

一段的推导完全可以省略，我们可以直接写出这个结果。也就是说,

在{|E, l,m⟩}表象中，S矩阵变成了一个对角矩阵，Sl(E)是它的对角元，

因此S矩阵的幺正性就变成

|Sl(E)|2 = 1. (11.121)

由此可以将Sl(E)写成

Sl(E) = e2iδl(E), (11.122)

式中的δl(E)称作相移。

类似的可以对T矩阵进行分析，有⟨E, l′,m′|T |E, l,m⟩ = Tl(E)δl′lδm′m。

散射的一般理论告诉我们，S矩阵和T矩阵之间有如下关系

⟨E ′, l′,m′|S|E, l,m⟩ = δ(E ′ − E)δl′lδm′m − 2πiδ(E ′ − E)Tl(E)δl′lδm′m.(11.123)

因此结合上一段的结果，我们有

Sl(E) = 1− 2πiTl(E), (11.124)

这个表达式就决定了T矩阵与相移的关系。

11.3.2 分波法与散射振幅

从上一节的前两个小节我们知道，对于三维势散射问题，关键是求出

散射振幅f(θ, φ), 或者等价的求出动量表象下的T矩阵⟨kf |T |ki⟩。但是，在
本节上一小节中我们又看到，对于球对称的中心势场情形，分波法的表

象{|E, l,m⟩}对于对称性分析来说更方便。这一节我们将要把这两个表象联
系起来，即利用分波法表象下的T矩阵对角元Tl(E) 来表示出动量表象下

的T矩阵元⟨kf |T |ki⟩。
首先我们要求出分波法表象和动量表象之间的变换矩阵⟨k|E, l,m⟩，式

中E = ~2k2E/(2mµ)(这里的mµ表示散射粒子质量), k为一个任意的波矢量。

我们注意到，给定k, 它的矢量方向k̂(k̂为单位矢量)就在空间指定了一个确

定方向，假设我们在波矢量空间取球坐标，那这个方向也即相应于单位球

面上的一个点，不妨记作k̂ = (θ, φ)。而概率幅⟨k|E, l,m⟩表示的就是，对
于一个能量为E，角动量为|l,m⟩的粒子，我们发现它的波数为k = |k|, 同
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时发现它处在单位球面的k̂点的概率幅。我们知道，对于一个|l,m⟩态的粒
子，我们在单位球面上某点(θ, φ)发现它的概率幅就是球谐函数Ylm(θ, φ)

(因为球谐函数就是具有确定角动量|l,m⟩的粒子在单位球面上的波函数)。

由此我们知道⟨k|E, l,m⟩必然正比于Ylm(k̂)。另外，由于|E, l,m⟩态具有确
定的能量E, 因此可知除非Ek = ~2k2/(2mµ) = ~2k2/(2mµ) = E，否则概率

幅⟨k|E, l,m⟩必然等于0。概括这两点，我们就必然有

⟨k|E, l,m⟩ = gl(E)δ(Ek − E)Ylm(k̂). (11.125)

为了进一步确定这个表达式中未定的gl(E), 我们可以利用正交归一关

系⟨E ′, l′,m′|E, l,m⟩ = δ(E ′ − E)δl′lδm′m。具体来说，⟨E ′, l′,m′|E, l,m⟩ =∫
d3k
(2π)3

⟨E ′, l′,m′|k⟩⟨k|E, l,m⟩ = g2l (E)
∫

d3k
(2π)3

δ(Ek−E ′)δ(Ek−E)Ylm(k̂)Y ∗
l′m′(k̂) =

g2l (E)δ(E
′−E) mµ

~2kE
k2E

(2π)3

∫
dΩk̂Ylm(k̂)Y

∗
l′m′(k̂) = g2l (E)

mµkE
~2(2π)3 δ(E

′−E)δl′lδm′m,

(式中第三个等号我们利用了δ(Ek − E) = mµ

~2kE
δ(k − kE)，而最后一个等

号则利用了球谐函数的正交归一性
∫
dΩk̂Ylm(k̂)Y

∗
l′m′(k̂) = δl′lδm′m)。将这

个结果与正交归一关系⟨E ′, l′,m′|E, l,m⟩ = δ(E ′ − E)δl′lδm′m比较，我们

有gl(E) = (2π)3/2~/
√
mµkE，即

⟨k|E, l,m⟩ = (2π)3/2
~√
mµkE

δ(Ek − E)Ylm(k̂). (11.126)

现在我们可以用T矩阵分波Tl(E)来表示⟨kf |T |ki⟩了(注意，假设我们

以E来表示入射粒子能量，则由于散射过程的能量守恒，所以Ekf
= Eki

=

E，即|kf | = |ki| = kE)。

⟨kf |T |ki⟩ =
∑

l′,m′,l,m

∫
dE ′dE ′′⟨kf |E ′, l′,m′⟩⟨E ′, l′,m′|T |E ′′, l,m⟩⟨E ′′, l,m|ki⟩

= (2π)3
~2

mµkE

∑
l′,m′,l,m

Yl′m′(k̂f )Y
∗
lm(k̂i)⟨E, l′,m′|T |E, l,m⟩

= (2π)3
~2

mµkE

∑
l′,m′,l,m

Yl′m′(k̂f )Y
∗
lm(k̂i)Tl(E)δl′lδm′m

= (2π)3
~2

mµkE

∑
l,m

Ylm(k̂f )Y
∗
lm(k̂i)Tl(E)

= (2π)3
~2

mµkE

∑
l

Tl(E)
2l + 1

4π
Pl(cos θ). (11.127)
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式中最后一行我们利用了球谐函数的加法定理∑
m

Ylm(k̂f )Y
∗
lm(k̂i) =

2l + 1

4π
Pl(cos θ). (11.128)

式中θ为k̂f与k̂i之间的夹角，也就是散射角。

将上面的T矩阵表达式(11.127)代入公式(11.87)(注意这两个式子的散

射粒子质量用了不同的符号，但其实是同一个质量)，我们就有

f(θ) = − π

kE

∑
l

(2l + 1)Tl(E)Pl(cos θ)

=
1

2ikE

∑
l

(2l + 1)
(
Sl(E)− 1

)
Pl(cos θ)

=
1

kE

∑
l

(2l + 1)eiδl(E) sin(δl)Pl(cos θ). (11.129)

式中我们代入了方程(11.124)以及方程(11.122)。

利用我们在散射的一般理论中推导出来的光学定理kα
4π
σT = − m

2π~2 ImTαα =

Imf(θ)|θ=0(这里的θ = 0是因为对于朝前散射幅来说，kf = ki，即散射角

为0), 以及Pl(cos 0) = Pl(1) = 1，我们可以得到总截面σT =
∫
dσ的公式，

σT =
4π

k2E

∑
l

(2l + 1) sin2(δl). (11.130)

11.3.3 如何确定相移

通过上一小节我们已经看到，对于中心势场，散射振幅完全由相

移δl(E)决定。那么如何求解这些相移呢？回答是，通过求解分波形式的散

射定态。这一小节我们将详细地阐明这一点。

首先，根据(11.75)我们已经知道，当r → +∞时，散射定态波函
数ψE(x)有如下渐近形式

r → +∞ : ψE(x) ∼ eikEz + f(θ)
eikEr

r
. (11.131)

下面我们要做的就是将这个渐近形式用分波表示出来。为此，我们首先注

意到下面的恒等式(证明参见朗道《量子力学》第五章第34节)

eikEz = eikEr cos θ =
∑
l

(2l + 1)iljl(kEr)Pl(cos θ). (11.132)
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式中jl(kEr)为球贝塞尔函数。其次，当r → +∞时，球贝塞尔函数有如下
渐近形式

jl(kEr) ∼
ei(kEr− lπ

2
) − e−i(kEr− lπ

2
)

2ikEr
. (11.133)

将这些结果代入(11.131)式，并代入散射振幅f(θ)的分波表达式(11.129), 我

们就有

r → +∞ : ψE(x) ∼
∑
l

(2l + 1)Pl(cos θ)
1

2ikEr

[
Sl(E)e

ikEr − e−i(kEr−lπ)
]
.(11.134)

由这个表达式可以看出，散射势的存在完全体现在将出射波前面的系数

从1替换成了相因子Sl(E)。这个表达式也告诉我们，我们只需要求解出分

波形式下的散射定态解，然后从其渐近形式中就能读出相因子Sl(E)的具体

取值，从而就可以得到相移δl(E)。

公式(11.134)还告诉我们一个证明|Sl(E)|2 = 1的不同方法。首先从

公式(11.134)我们可以知道，对于给定的分波l, 在半径为r的球面上，外

行出射波的概率流密度正比于|Sl(E)|2, 而内行入射波的概率流密度正比
于|eilπ|2 = 1。概率守恒和角动量守恒告诉我们，对于每一个分波l，球面上

内行的概率通量必定等于外行的概率通量，从而必有|Sl(E)|2 = 1。前面我

们是利用S矩阵的幺正性得到这个结果的，但在物理本质上，S矩阵的幺正

性本身反映的就是概率守恒。所以这两种不同的推导方式在物理本质上其

实是一样的，只不过从S矩阵的幺正性得到|Sl(E)|2 = 1这一推导更加具有

一般性。

我们还有另外一个更好用的方法可以表示结果(11.134)。为此我们注意

到，由于角动量守恒，所以算符H,L2, Lz两两可对易，因此我们可以求解

它们共同的本征态ψE,l,m(x), 由于中心对称性，很显然ψE,l,m(x)必定可以写

成

ψE,l,m(x) = RE,l(r)Ylm(θ, φ) =
1

r
uE,l(r)Ylm(θ, φ). (11.135)

其中uE,l(r)满足径向方程[
− ~2

2mµ

d2

dr2
+
l(l + 1)~2

2mµr2
+ V (r)

]
uE,l(r) = EuE,l(r). (11.136)

当然我们关心的不是束缚态，而是E =
~2k2E
2mµ

> 0时的解。
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当r → +∞时，势能V (r)已经衰减为0，同样离心势 l(l+1)~2
2mµr2

也已经衰减

为0，因此方程(11.136)渐近为

r → +∞ :

[
d2

dr2
+ k2E

]
uE,l(r) = 0. (11.137)

解这个渐近方程，从而就有

r → +∞ : uE,l(r) ∼ Al(E)e
ikEr +Bl(E)e

−ikEr. (11.138)

同样，根据概率守恒，在半径为r的球面上内行的概率通量应该等于外行的

概率通量，从而必有

|Al(E)|2 = |Bl(E)|2. (11.139)

当然Al(E)和Bl(E)的具体值要通过求解完整的径向方程(11.136)才能得出。

另一方面，散射定态ψE(x)当然一定能写成ψE,l,m(x)的线性组合形式。

不仅如此，由于散射问题绕着水平的z轴旋转不变，所以散射定态必定与

角度φ无关，因此这也就是说，散射定态必定能写成ψE,l,0(x) = Yl0(θ, φ) ∝
1
r
uE,l(r)Pl(cos θ)的线性组合。很显然，我们前面得到的散射定态的渐近形

式(11.134)的确满足这一点。不仅如此，根据渐近形式(11.134)，我们还可

以知道, 在相差一个整体归一化常数的意义上，必有

r → +∞ : uE,l(r) ∼ Sl(E)e
ikEr − e−i(kEr−lπ). (11.140)

比较uE,l(r)的这两个渐近形式(11.138)和(11.140)(两者可以相差一个整体常

数)中出射波与入射波的幅度之比, 我们可以得到

Sl(E) = (−)l+1Al(E)

Bl(E)
. (11.141)

当然，根据(11.139)式，结果必定是一个相因子。

以上就是我们最终求解Sl(E)的方法。即我们首先求解径向方程(11.136)，

并得出解uE,l(r)在r → +∞时的渐近形式(11.138)，根据(11.141)，从这个渐

近形式中我们就能读出Sl(E)。

11.3.4 束缚态和共振态

假设我们将能量E解析延拓到E < 0, 从而kE就解析延拓到正虚轴，不

妨记kE = iλE。从而渐近形式(11.138)就解析延拓为

r → +∞ : uE,l(r) ∼ Al(E)e
−λEr +Bl(E)e

λEr. (11.142)
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由于λE > 0，所以一般来说，这样的解当然是不可归一化的，从而也就不

是物理的。除非相应的能量E刚好是函数Bl(E)的零点，这时候(11.142)中

不可归一化的指数增长项实际上是0，相应的波函数在无穷远处实际上

是指数衰减的，这当然就是一个束缚态。所以，系统的束缚态相应于函

数Bl(E)在能量复平面负实轴上的零点。根据(11.141)式，这也就是说，系

统的束缚态相应于Sl(E)在能量复平面负实轴上的极点。这和我们在散射的

一般理论中通过考察S矩阵和T矩阵的解析性得到的结论相一致。

类似的，Sl(E)在能量复平面下半平面的极点对应于散射共振态(或者

说不稳定束缚态)。由于Sl(E)是一个相因子，因此当能量E靠近某个共振

态极点ER − iΓ~/2时，必有

Sl(E) = e2iδ
(0)
l (E)E − ER − iΓ~/2

E − ER + iΓ~/2
. (11.143)

式中δ
(0)
l (E)表示远离共振态的通常散射所贡献的相移。为了将注意力集中

在共振态上，我们不妨忽略所有的通常散射贡献，从而令δ
(0)
l (E) = 0。这

时候取Sl(E) = e2iδl(E)的实部，可以得到cos(2δl) =
(E−ER)2−(Γ~)2/4
(E−ER)2+(Γ~)2/4 , 进而可

以得到sin2 δl =
(Γ~)2

4(E−ER)2+(Γ~)2，将这个结果代入总截面σT的公式(11.130),

可以得到

σT (E) ∼
4π

k2E
(2l + 1)

(Γ~)2

4(E − ER)2 + (Γ~)2
. (11.144)

这个公式叫做Breit-Wigner公式，它告诉我们散射共振态的存在会在散

射截面(作为入射粒子能量E的函数)中引入一个共振峰，这个峰的位置

在ER处，宽度由Γ~来衡量。由于散射共振态的寿命τ = 1/Γ，因此共振峰

越宽的共振态寿命就越短。

在粒子物理中，大多数微观粒子都是不稳定的，都会衰变，从而

可以作为散射截面的共振峰而被发现。这时候由于爱因斯坦质能关

系ER = mc2，共振峰的位置ER就对应这些不稳定粒子的质量。图(11.11)和

图(11.12)是两个散射截面的例子。图(11.11)是正反电子对撞的散射截

面，从图中可以看出，这个截面在ER ≈ 91GeV处有一个共振峰，其宽

度为Γ~ ≈ 2.5GeV。这个共振峰对应Z玻色子，根据其宽度可以算得其寿命

约为3 × 10−25s。 图(11.12)所示的是2012年发现上帝粒子(Higgs玻色子)的

截面数据。从图中共振峰的位置可以读出Higgs玻色子的质量约为125GeV。
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图 11.11: Z玻色子的散射截面。

图 11.12: 上帝粒子的散射截面。

11.3.5 关于相移的一般性讨论

相相相移移移δl的的的正正正负负负号号号

在前文中，我们已经看到，为了确定相移，关键是要求解径向方

程(11.136)。利用E = ~2k2E/(2m)(这里m表示散射粒子的质量)，我们可以

将这个方程重写为

d2

dr2
uE,l(r) +

[
k2E − 2mV (r)/~2 − l(l + 1)

r2

]
uE,l(r) = 0

⇔ d2

dr2
uE,l(r) + k2(r)uE,l(r) = 0. (11.145)

式中，k(r) =
√
k2E − 2mV (r)/~2 − l(l + 1)/r2是uE,l(r)随着径向坐标的振

荡频率。很显然，当散射势不存在时，k(r) = k0(r) =
√
k2E − l(l + 1)/r2，
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当散射势是一个吸引势时，即V (r) < 0时，k(r) > k0(r), 即在吸引势场

中，uE,l(r)将比没有势场时振荡得稍微快一些，反过来，当散射势是一

个排斥势时，即V (r) > 0时，uE,l(r)将比没有势场时振荡得稍微慢一些，

即k(r) < k0(r)。

另一方面，根据(11.140)式我们也知道，在远离散射势的区域，uE,l(r)渐

近为uE,l(r) ∼ Sl(E)e
ikEr−e−i(kEr−lπ) = e2iδl(E)eikEr−e−i(kEr−lπ) = ei(lπ/2+δl(E))·(

ei(kEr−lπ/2+δl(E)) − e−i(kEr−lπ/2+δl(E))
)
∝ sin(kEr − lπ/2 + δl(E))，即在相差

一个整体常数因子的意义上，uE,l(r) 在远离散射区的渐近形式也可以重写

为

uE,l(r) ∼ sin
(
kEr − lπ/2 + δl(E)

)
. (11.146)

当然，如果散射势不存在，则相移δl(E) = 0，所以从渐近式(11.146)可以知

道，相移δl(E)其实就是由于散射势V (r)的存在而使得振荡函数uE,l(r)在散

射区额外累积出来的相位。由于当V (r) < 0时，uE,l(r)在散射区将振荡得

比没有散射势时快，因此它额外累积出来的相位应该为正，即δl(E) > 0。

反过来，当V (r) > 0时，uE,l(r)在散射区将振荡得比没有散射势时慢，因

此它额外累积出来的相位应该为负，即δl(E) < 0。可见，一一一般般般来来来说说说，，，相相相

移移移δl(E)的的的正正正负负负号号号总总总是是是和和和散散散射射射势势势的的的正正正负负负号号号相相相反反反的的的。

当然，上两段的分析结论仅在|V (r)|比较小时才成立。很显然，|V (r)|越
大，则k(r)和k0(r)的差别就越大，从而|δl(E)|也就会越大。特别的，当|V (r)|
大到一个适当值时，有可能使得某个分波l的|δl(E)| = π。这时候根据散射

振幅f(θ)的公式(11.129)，这个l分波实际上反而是没有散射的！

低低低能能能散散散射射射

下面我们简单地讨论一下δl对角动量量子数l的依赖关系。首先，我们

假定势场V (r)的有效作用范围为r < a，当r > a时势场的作用近似可以忽

略。其次，一般来说，入射粒子不可能完全对准靶粒子(或者说散射中心)，

散射中心O与入射粒子运动直线之间的垂直距离就是所谓的瞄准距离，通

常记为b。因此，如果b > a, 则势场的存在就可以忽略。根据经典力学，一

个动量为~kE，瞄准距离为b的入射粒子，其角动量为L = b~kE，而根据量
子力学L ∼ l~，从而l ∼ bkE, 或者说b ∼ l/kE，也即是说，给定入射粒子能

量，l越大的散射分波，其瞄准距离就越大。很显然，当l > akE时，b > a，

从而散射势的存在可以忽略。这也即是说，对于一个力程为a的散射势，

当l > akE时，相应的δl(E) ∼ 0。即我们仅仅只需要考察l ≤ akE的分波的
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相移。特别的，如果入射粒子能量非常低，以致于kE → 0，那么这时候我

们将只需要考察l = 0的s分波的散射。

这种低能散射的一个重要例子是所谓的Ramsauer–Townsend效应。我

们知道，对于惰性气体氩、氪、氙而言，其核外电子的电荷分布通常相

当对称。因此这些惰性气体原子在比最外层电子轨道半径a更大的距离

上所产生的电场可以忽略(原子核的电场和核外电子的电场几乎完全抵

消)。因此当用低能电子和这些惰性气体原子相互碰撞的时候，如果瞄准距

离b > a，那散射效应就可以忽略。这也就是说，如果入射电子能量足够低，

使得akE < 1，那我们将仅仅只需考察l = 0的s分波的散射。但是，前面我

们也说了，对于一个合适大小的散射势|V (r)|，如果入射粒子能量E取一个
合适的值(依然足够低)，那将有可能使得相移|δ0(E)| = π，那么这时候s分

波实际上也没有散射。因此，对于氩、氪、氙这样的惰性气体，如果入射

低能电子的能量取一个合适的值，它将可能几乎没有散射，使得散射截面

出现一个极小值！实验发现，对于氙原子这个极小值大约出现在0.8eV的能

量上。这就是Ramsauer–Townsend效应，它是一个在量子力学出现之前人

们就已经发现的效应，但值到量子力学理论建立起来以后人们才正确地解

释了它。

我们已经知道，当入射粒子能量足够低时，我们将只需要考虑最低l的

那些分波的散射，现在我们将更细致地考察这个结论。首先，由(11.87)式

我们知道，散射振幅f(θ, φ)可以看成是入射粒子波矢量ki以及出射粒

子波矢量kf的函数，因此我们可以将之重记为f(kf ,ki), 即f(kf ,ki) =

f(θ, φ)。其次，对于中心力场，从f(kf ,ki)的分波表达式(11.129)可以看

到，f(kf ,ki)实际上是入射粒子能量E以及ki与kf的夹角θ的函数，而由于

散射过程的能量守恒|ki| = |kf | = kE，由此我们可以知道，f(kf ,ki)关于其

两个自变量ki和kf完全是对称的。

假设我们取定ki沿着水平的z轴，则θ角就是kf与z轴的夹角，从而完全

由kf的方向决定。另外，我们知道球谐函数|kf |lYlm(θ, φ)当从球坐标变换
到直角坐标后，它其实是关于kf的直角坐标分量的l阶齐次函数。而Yl0 =√

(2l + 1)/(4π)Pl(cos θ), 因此当然|kf |lPl(cos θ)也是关于kf的直角坐标分

量的l阶齐次函数。由于自变量ki和kf完全对称，因此|ki|l|kf |lPl(cos θ) =

k2lEPl(cos θ)将同时是ki和kf的直角坐标分量的l阶齐次函数。

当入射粒子能量足够低时，|ki| = |kf | = kE将足够小，也即是说，入

射波和出射波的波长都将足够长，因此这些波探测不到散射势V (r)在小尺

度上的任何剧烈变化，对于入射波和散射波而言，散射势看起来是足够平
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滑的。因此这也就是说，函数f(kf ,ki)在ki ∼ 0, kf ∼ 0时是一个足够光滑

的函数，因此我们可以在直角坐标中将函数f(kf ,ki)在(ki,kf ) = (0, 0)处

进行泰勒展开。我们知道，对于多元函数，泰勒级数的每一阶都将是

一个齐次函数，同时又注意到f(kf ,ki)关于ki和kf完全对称，从而我们可

以知道，f(kf ,ki)的展开式必定可以写成，f(kf ,ki) =
∑

lHl(kf ,ki), 式

中Hl(kf ,ki)表示某个关于ki的直角坐标分量的l阶齐次函数，当然同时它

也是关于kf的直角坐标分量的l阶齐次函数。将这个泰勒展开的结果代

入f(kf ,ki)的分波表达式(11.129)的等号左边，并在等号右边利用上一段

的分析结果，注意到等号左右两边的l阶齐次函数必定是一样的，从而即

有Hl(kf ,ki) ∝ k2lEPl(cos θ)。进而再一次根据分波表达式(11.129)我们就可

以知道，当能量足够低时必有

eiδl(E) sin(δl(E)) ∼ k2l+1
E . (11.147)

由于能量足够低时kE足够小，这时候相移δl(E)实际上是很小的，因此上式

又可以重写为

kE → 0 : δl(E) ∼ k2l+1
E . (11.148)

这就是低能散射相移的普遍规律，从这个规律也可以清楚地看到，当kE足

够小时，我们将仅仅只需考虑l = 0分波的相移，其它分波的相移都是高阶

小量。

对于足够低能的散射，我们将仅仅只需考察s分波，根据结果(11.148),

我们知道δ0 ∼ kE。当然，由于δ0是无量纲的，而kE是长度的负一次方量纲，

因此在足够低能时实际上我们必定可以将δ0写成如下形式

δ0(E) ∼ −kEas. (11.149)

式中|kEas| ≪ 1，as可正可负，是某个长度量纲的量，通常称作散射长度。

进一步根据总截面的公式(11.130)可以知道，在足够低能时，

σT ∼ 4πa2s. (11.150)

散射长度的概念对于刻画散射势的低能散射行为非常有用。

高高高能能能散散散射射射

下面我们简单地讨论一下高能散射情形。具体来说，对于一个力程

为a的散射势，我们来考察一下入射粒子能量足够高，以致于kEa足够大
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时的散射。根据我们前面的分析，所有l ≤ kEa的分波这时候都需要考虑，

因此这时候将有大量的分波需要考虑，根据总截面的公式(11.130)，这时

候σT → 4π
k2E

∑kEa
l=0 (2l + 1) sin2 δl。由于有大量的l需要考虑，因此δl将随着l的

变化而在0到2π的范围内近似于连续地变化, 呈现出一种周期性变化规律。

因此，我们可以将总截面公式中的sin2 δl近似地用其周期平均值
1
2
来替换，

从而有σT → 2π
k2E

∑kEa
l=0 (2l + 1)，当kEa足够大时，求和的最终结果将趋近

于2πa2。因此，最终人们发现，高能散射的总截面将趋于

σT → 2πa2. (11.151)

这和低能散射时的4πa2s有根本性的不同。

对于一个半径为a的硬球。经典的散射截面当然就是这个硬球的横截

面积πa2, 也即是说，所有碰到这个横截面积上的入射粒子都会被散射。但

是在量子的层次上，对于低能散射，我们将得到总截面4πa2，是经典散射

截面的4倍。当然，低能意味着长波，这时候散射粒子的波动性非常重要，

所以我们得到的结果与经典截面有偏离并不出乎意料。但是，即使对于

高能散射(粒子性比较强)，根据我们上一段的分析，量子散射的总截面也

将是2πa2，也不同于经典的πa2, 而是它的两倍。这是因为，在量子的层次

上，散射波其实可以分成两部分，其一是反射部分，这一部分产生的截面

就是πa2。但是，在量子层次上，散射波还有一个朝前散射波部分，这个朝

前散射波在散射角θ = 0时最强(所以叫朝前波)。朝前散射波会和入射波干

涉相消，从而在硬球的背后留下一个阴影(其实并不是完全干涉相消，因为

在阴影正中心还会有一个泊松亮斑)。朝前波是必须存在的，否则硬球这一

障碍物的背后将不会有任何阴影，这当然不符合我们的物理直觉。实际上，

这个朝前散射波对截面的贡献也是πa2, 因此最终的总截面就是2πa2。

11.3.6 零能束缚态与散射长度：一个例子

这一节我们将考察一个简单的例子。假设我们考察一个入射粒子在下

面这样一个球对称势阱V (r)上的散射，

V (r) =

−V0, r < a

0, r > a
(11.152)

为了简单起见，我们将仅限于考察l = 0的s波。相应的波函数uE(r) =
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rψE(r)将满足下面的径向方程

d2

dr2
uE(r) + (k2E + k20)uE(r) = 0, r < a

d2

dr2
uE(r) + k2EuE(r) = 0, r > a. (11.153)

式中kE =
√

2mE/~2, k0 =
√
2mV0/~2。由于波函数ψE(r)在r = 0处有限，

所以uE(r)得满足uE(0) = 0的边界条件。由此我们可以得到方程(11.153)的

解，为

uE(r) = A sin(
√
k2E + k20r), r < a

uE(r) = B sin(kEr + δ0), r > a (11.154)

式中δ0就是s波相移。

根据uE(r)以及它的一阶导数u
′
E(r)在r = a处的连续性,即u′E(a)/uE(a)的

连续性。我们可以得到

tan(kEa+ δ0) =
kE√
k2E + k20

tan(a
√
k2E + k20) = f(kE). (11.155)

由这个式子我们又可以得到s分波的S矩阵S0(E) = e2iδ0为，

S0(E) = e−2ikEa 1 + if(kE)

1− if(kE)
. (11.156)

假设我们将注意力集中在低能散射上，即考察k2E ≪ k20, 同时kEa ≪
1的情形。这时候方程(11.155)可以近似为

tan(kEa) + tan(δ0)

1− tan(kEa) tan(δ0)
≈ kE
k0

tan(k0a). (11.157)

利用tan(kEa) ≈ kEa≪ 1我们可以进一步得到

δ0 ≈ tan(δ0) ≈ kEa

(
tan(k0a)

k0a
− 1

)
. (11.158)

根据散射长度as的定义(即δ0 ≈ −kEas)我们可以知道

as = a− tan(k0a)

k0
. (11.159)
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很显然，当V0很小，也就是k0很小时，这个散射长度为负(从而δ0为正)，注

意到我们这里考察的是一个吸引势，因此这与我们前面得到的δl的正负号

与V (r)相反是一致的。但是，随着k0的增加，显然as将会从0开始沿着负

方向逐渐趋于−∞(当k0a = π/2时)，之后如果k0进一步增加，使得k0a =

π/2 + ϵ(ϵ为一个正的无穷小量)，则as会从−∞跳到+∞。之后，k0再增加，
as就会逐渐减小，直至再次趋于−∞，然后再次跳到+∞，如此不断循环。
总之，随着V0的逐渐增加，散射长度as将会不断地在−∞到+∞之间振荡。
我们想问的是，散射长度的这一奇异振荡行为起因于哪里？特别的，类似

于上面的推导人们不难发现，如果散射势是一个排斥势，即V0 < 0，那相

应的散射长度as将始终大于0，并且有限，因此不会有−∞到+∞之间的振
荡。

理解吸引势时as的这种发散和振荡行为的关键在于考察系统的束缚

态。为此我们将入射粒子能量E解析延拓到E < 0情形，等价的，这也就是

将kE解析延拓到正虚轴，即取kE = iλE(λE > 0)。束缚态相应于S矩阵的

极点，因此根据(11.156)式，束缚态能级En将满足f(kEn) = −i。进一步根
据f(kE)的定义式(11.155), 以及解析延拓关系kEn = iλEn，这也就是要满足

tan(a
√
k20 − λ2En

) = −

√
k20 − λ2En

λEn

. (11.160)

我们可以引入qE =
√
k20 − λ2E, 从而将这个方程写为

qEn = −λEn tan(aqEn), q2En
+ λ2En

= k20. (11.161)

这个方程组是我们前面在一维势散射求束缚态的例子中碰到过的，我们可

以用画图的方法求解这组方程，我们知道，当势阱足够深，从而V0和k0足

够大时，这组方程有解，从而束缚态存在。

散射长度as的发散行为与一种特殊的束缚态密切相关。一般来说，束

缚态的能量En当然小于0，但是，如果V0取一个合适值，将有可能使得

最高束缚态能级的能量趋于0，从而出现一种特殊的束缚态，我们称之

为零能束缚态。为了求出什么时候会出现零能束缚态，我们直接在方

程(11.160)中令λEn = 0，从而得到零能束缚态的条件tan(k0a) = ∞(或者

等价的k0a = (n + 1
2
)π)。很显然，正是在零能束缚态出现的时候，散射

长度as变得发散。随着k0的增加，在零能束缚态出现之前，tan(k0a)逐渐

趋于+∞，这时散射长度as逐渐趋于−∞，但是，从方程(11.160)很容易看

到，一旦出现零能束缚态，tan(k0a)将立即从+∞跳到−∞，相应的散射长
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度as就将从−∞跳到+∞。可见，散射长度的发散以及从−∞到+∞的跳变
行为正是由于零能束缚态引起的。随着k0的增加，不断会有新的零能束缚

态出现，因此散射长度as就周期性地从−∞跳变到+∞。
为了进一步理解散射长度as在零能束缚态附近的发散行为，我们不妨

记最高束缚态能级为E0 < 0, 最后我们将考察E0 → 0的零能束缚态极限(这

时候λE0 → 0)。根据定义，iλE0是S矩阵S0(E)的一个极点，在这个极点附

近，S0(E)可以近似成

S0(E) = e2iδ0 ∼ iλE0 + kE
iλE0 − kE

. (11.162)

由于我们考察的是低能散射，所以kE ≪ λE0，由此我们近似地可以得

到δ0 ∼ −kE/λE0 , 从而即有

as ∼
1

λE0

. (11.163)

很显然，当E0趋于一个零能束缚态时，即λE0 → 0时，as将发散。

11.4 附注

关于一维势散射的两个具体求解例子，关于卢瑟福公式的精确推导，

以及关于零能束缚态和散射长度的那个例子，均参考了D. Tong的讲义

《Applications of Quantum Mechanics》。


