
随随随机机机微微微积积积分分分和和和随随随机机机过过过程程程概概概要要要

陈陈陈童童童

随机过程和随机微积分在金融以及在物理学中都很重要。我们这

个Note并非一个讲义，而仅仅是对相关知识的一个概要性总括。读者如果

真要学习相关知识还是得参考其它书。

1 伊伊伊藤藤藤规规规则则则

让我们来考察一下维纳过程W (t)。我们记维纳过程的无穷小增量为dW =

W (t+ dt)−W (t), 显然dW是一个随机变量，dW的概率分布为

P (dw) =
1√
2π

exp(−1

2

(dw)2

dt
), (1)

这里我们用小写的dw来表示随机变量dW的取值。另外，由于维纳过程是

一个马尔可夫过程，因此当t ̸= t′时，dW (t)和dW (t′)统计无关。

下面我们来考察随机变量(dW )2, 显然它的期望值等于dt，它的方差正

比于(dt)2。因此当我们考察下面的表达式时

I(t) =

∫ t

0

(dW )2 = lim
∑

(∆W )2, (2)

由于不同时刻的dW统计独立，我们将发现这个随机变量的期望值等

于
∫
dt = t, 而它的方差将正比于

∫
(dt)2 ∼ dt

∫
dt = dt · t，为无穷小量，因

此在极限下等于零。这就告诉我们I(t)实际上不是一个随机变量，而是就

等于t, 即我们有 ∫ t

0

(dW )2 = t. (3)

习惯上，人们常常将这个式子形式化地记成

(dW )2 = dt. (4)

1



类似的，我们可以论证随机变量
∫ t

0
dtdW等于零，当然

∫ t

0
dtdt也等于

零。因此，我们又有形式化的方程

dtdW = 0, dtdt = 0. (5)

这两条规则(4)(5)称之为伊藤规则。

2 随随随机机机微微微积积积分分分

下面让我们来考察一个随机过程X(t)(我们以小写的x标记这个随机变量的

取值)，假定它满足微分方程

dX = µ(t,X)dt+ σ(t,X)dW. (6)

满足这样的随机微分方程的过程称之为伊藤过程，这个微分方程的第一项

就是所谓的漂移项，第二项就是所谓的扩散项。实际上，由于随机变量

的任何一个解路径x(t)通常都不可导，因此我们需要和上一段中的讨论一

样，在积分的意义上理解这个方程(6). 同样的，下面出现的所有微分表达

式都应该在积分的意义上来理解，因为它们都用到了伊藤规则，而这个规

则实际上是在积分意义上才成立的。

这里有一个微妙的问题，既然方程(6)需要在积分的意义上来理解，那

就涉及到如何定义下面的积分的问题，即如何定义∫ t

0

dsσ(s,X(s))dW. (7)

这个问题之所以复杂，是因为W (t)和X(t)都是随机变量，而不是普通的

数，而且X(t)与W (t)有关，而处于不同时刻的W (t)与ζ(s) = dW/ds在统计

上是关联的。因此在一个积分的∆t小区间上，X(t)与ζ(s)如何按照时间排

序就变得很重要，不同的排序方式给出的积分结果是不同的。伊藤提出，

在定义积分式(7)时我们应该将被积函数排序在小区间的左边界，即∫ t

0

dsσ(s,X(s))dW =
∑
i

σ(ti, X(ti))(W (ti+1)−W (ti)). (8)

这样定义的好处在于，它可以使得我们在泰勒展开的意义上形式化地使用

上面的伊藤规则，下面的结果都是在这个意义上才成立的。
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按照上面的讨论，现在我们考虑一个任意的连续函数A(t, x), 利用伊藤

规则很容易看出来，A(t,X)也是一个伊藤过程，它满足

dA = ∂tAdt+ ∂xA · dX +
1

2
∂2xA · (dX)2

= (∂tA+ µ · ∂xA+
1

2
σ2∂2xA)dt+ σ∂xAdW. (9)

假设另有一个伊藤过程B(t,X)，那么AB也是伊藤过程，利用伊藤规则我

们很容易得到

d(AB) = dAB + AdB + dAdB. (10)

作为例子，我们用这些伊藤微积分的公式来做一个简单的计算, 由

于d(W 3) = 3W 2dW + 3Wdt, 因此∫
W 2dW =

1

3
W 3 −

∫
Wdt. (11)

另外，注意到维纳过程是一个马尔可夫过程。对于伊藤过程，假设我们

把它所满足的微分方程(6)写成差分的形式，我们也很容易看到，它也是马

尔可夫过程。后文我们会用到伊藤过程的这一性质。

3 科科科尔尔尔莫莫莫哥哥哥诺诺诺夫夫夫朝朝朝前前前方方方程程程（（（福福福克克克-普普普朗朗朗克克克方方方程程程）））

假设随机过程X(t)满足方程(6). 我们来考虑物理量A(X)的期望值⟨A(X)⟩随
时间的演化。利用方程(9)(注意现在A(x)不显含时间)我们容易得到

d⟨A⟩
dt

= ⟨µ · ∂xA+
1

2
σ2∂2xA⟩. (12)

另一方面，假设我们记t′时刻到t时刻的转移概率为P (t, x|t′, x′), 则在给定初
始条件的情况下A的期望值可以写成

⟨A(X)⟩t′,x′ =

∫
dxA(x)P (t, x|t′, x′). (13)

将这个表达式代入方程(12)，并利用分部积分我们就可以导出P (t, x|t′, x′)所
满足的方程

∂tP (t, x|t′, x′) = −∂x
[
µ(t, x)P (t, x|t′, x′)− 1

2
∂x(σ

2P (t, x|t′, x′))
]
. (14)
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这个方程就是科尔莫哥诺夫朝前方程，也叫福克-普朗克(Fokker-Plank)方

程。

为了进一步理解式中函数µ(t, x)和σ2(t, x)的含义，我们取∆x = x − x′,

并注意到P (t, x|t′, x′)|t=t′ = δ(x − x′)，然后我们分别取A(x)等于∆x和等

于(∆x)2代入方程(12), 就容易有

∂t⟨∆x⟩t′,x′|t=t′ = ⟨µ⟩t′,x′|t=t′ = µ(t′, x′). (15)

类似的有

∂t⟨(∆x)2⟩t′,x′|t=t′ = ⟨2µ∆x+ σ2⟩t′,x′|t=t′ = σ2(t′, x′). (16)

这就告诉我们µ(t′, x′)是t′时刻处于x′位置的粒子的平均漂移速度,而σ2(t′, x′)就

是t′时刻从x′位置出发的粒子的平均扩散率。

4 Feynman-Kac定定定理理理（（（科科科尔尔尔莫莫莫哥哥哥诺诺诺夫夫夫朝朝朝后后后方方方程程程）））

为了记号的简洁，现在假设我们将时刻t′和t掉个个，即假设t′ > t, 我们将

从t时刻到t′时刻的转移概率记为P (t′, x′|t, x), 现在让我们来考虑

ϕ(t, x) =

∫
dx′A(x′)P (t′, x′|t, x). (17)

我们想推导出ϕ(t, x)满足的偏微分方程。为此，设想我们收集了整个系综

到t时刻为止的所有信息，我们把这些信息记为F(t)。现在让我们来考虑随

机变量A(X)在给定F(t)的情况下在t′时刻的期望值E(A(X(t′))|F(t))。由于

伊藤过程是马尔可夫过程，因此很显然，这一期望值是一个t时刻的随机变

量，实际上

E(A(X(t′))|F(t)) = ϕ(t,X(t)). (18)

不仅如此，由于t时刻是任意选定的，因此随机变量ϕ(t,X(t))必然满足

E(ϕ(t,X(t))|F(s)) = ϕ(s,X(s)), (19)

式中s < t。或者我们也可以把这个方程写成

E(ϕ(t,X(t))− ϕ(s,X(s))|F(s)) = 0. (20)
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这样的随机过程称之为鞅过程。由(20)式可见，鞅过程的特征之一是，它

所满足的微分方程没有漂移项。这也就告诉我们

∂tϕ+ µ · ∂xϕ+
1

2
σ2∂2xϕ = 0. (21)

将这个式子中的随机变量X换成普通变量x，我们就得到ϕ(t, x)所满足的偏

微分方程。这个结果称之为Feynman-Kac定理。另外，由ϕ(t, x)的定义式

可以看出，P (t′, x′|t, x)关于变量t, x所满足的方程和ϕ(t, x)所满足的方程是
一样的。因此这样的方程又称之为科尔莫哥诺夫朝后方程。

实际上，科尔莫哥诺夫朝前方程和朝后方程是相互共轭的，可以相互推

导。为了看清楚这一点，我们利用伊藤过程的马尔可夫性质，因此对于时

间列t1 < t < t2，我们有

P (x2, t2|x1, t1) =
∫
dxP (x2, t2|x, t)P (x, t|x1, t1). (22)

将这个方程对t求导，左边等于零，因此右边可以重写成∫
dxP (x2, t2|x, t)∂tP (x, t|x1, t1) = −

∫
dx∂tP (x2, t2|x, t)P (x, t|x1, t1). (23)

由此很容易看出，假如我们将科尔莫哥诺夫朝前方程记为∂tP (x, t|x1, t1) =
L̂xP (x, t|x1, t1), 式中L̂x表示作用在变量x上的一个线性算子。则，科尔莫

哥诺夫朝后方程就是

−∂tP (x2, t2|x, t) = L̂∗
xP (x2, t2|x, t), (24)

这里L̂∗
x为L̂x的共轭算子。

5 朗朗朗之之之万万万方方方程程程

作为上面理论的应用，如果我们考虑下面的朗之万方程，

mẌ +mγẊ = −∂xV (X) +
√

2mγTζ. (25)

式中ζ(t) = dW/dt是热噪声，T是一个常数，相应于热平衡温度。为了将这

个方程转化成标准的伊藤过程的形式，我们引入动量P = mẊ. 则上面的

朗之万方程等价于

dX = P/mdt

dP = (−γP − ∂xV )dt+
√

2mγTdW. (26)
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现在我们要考察的概率分布就是相空间的概率分布，我们将之记

为ρ(x, p, t)。由科尔莫哥诺夫朝前方程，它满足

∂tρ(x, p, t) = −∂x[p/mρ] + ∂p[(γp+ ∂xV )ρ+mγT∂pρ]. (27)

很容易验证，这个方程的稳定态解ρe(x, p)为

ρe(x, p) = N exp(−H
T
), (28)

式中H = p2

2m
+ V (x)就是系统的哈密顿量。显然这个结果就是标准的玻尔

兹曼因子。

我们还可以计算系统的平均能量E = ⟨H(X,P )⟩随时间的演化，容易得
到

dE

dt
= −γ⟨P

2

m
− T ⟩. (29)

显然，只要系统的温度足够低，平均能量一定是随时间减少的，在热平衡

态由于能量均分定理，平均能量达到极小。

6 热热热平平平衡衡衡的的的证证证明明明

作为一个最简单的例子，让我们更仔细地讨论下面的随机微分方程

dX = −∂xV (X)dt+
√
2TdW. (30)

假定T为常数。这时候福克-普朗克方程为

∂tP (x, t) = ∂x[∂xV P (x, t) + T∂x(P (x, t))]. (31)

令方程左边等于零就可以得到这个方程的稳定态解，为N exp
(
− V (x)

T

)
。

很显然，这个稳定态解描述的是一种热平衡状态。问题是，这种热平衡态

可以达到吗？唯一吗？

为了解决这个问题，我们将上面的福克-普朗克方程(31)改写成

∂tP (x, t) = T∂x
[
e−

V
T ∂x(e

V
T P )

]
. (32)

引入线性算子Ĥ, 其定义为

Ĥ = Te
V
T ∂x · e−

V
T · ∂x. (33)
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则我们的福克-普朗克方程的解可以形式化地写成

P (x, t) = e−
V
T etĤe

V
T P0(x). (34)

式中P0(x) = P (x, 0), 为初始时的概率分布。

构造希尔伯特空间H, 它是一个函数空间，其定义为，对于其上的任何

两个函数ψ(x)和ϕ(x)，定义它们的内积为

(ψ, ϕ) =

∫
dxe−

V
T ψ(x)ϕ(x). (35)

则容易证明，线性算子Ĥ是H上的一个自伴算子，满足

(ψ, Ĥϕ) = (Ĥψ, ϕ). (36)

因此，Ĥ的不同本征值的本征函数是正交的。进一步，我们容易有

(ψ, Ĥψ) = −T (∂xψ, ∂xψ) ≤ 0. (37)

由此可见, Ĥ没有正本征值。而且很容易看出来，它的最大本征值为0, 相

应的本征函数是唯一的，为常数函数。

在方程(34)中将函数e
V
T P0(x)按照Ĥ的本征函数进行展开，由

∫
dxP0(x) =

1可以看到，对应于零本征值的展开项为一个与初始分布P0(x)无关的常

数N , 取t → +∞, 则负本征值的本征函数的贡献全部衰减为零，因此就容

易看出

P (x,+∞) = N e−
V
T . (38)

这样我们就证明了系统总能达到热平衡态，而且热平衡态是唯一的。

一个更简单的证明热平衡的办法是引入自由能函数F [P ],

F [P ] =

∫
dxV (x)P (x, t) + T

∫
dxP log(P ). (39)

容易证明，F [P ]随时间单调减少，

dF

dt
= −⟨(∂xV + T∂x logP )

2⟩ ≤ 0. (40)

当热平衡时，F [P ]达到极小值。
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7 福福福克克克-普普普朗朗朗克克克方方方程程程解解解的的的收收收敛敛敛性性性

上面对概率分布收敛性的证明可以推广到如下一般性的Fokker-Plank方程

∂tP (x, t) = −∂x
[
µ(t, x)P (x, t)− 1

2
∂x(σ

2P (x, t))
]
= L̂P (x, t). (41)

设P1(x, t)和P2(x, t)是上面方程(41)的任意两个不同解，则我们可以定义函

数H(t)

H(t) =

∫
dxP1(x, t) log(

P1

P2

). (42)

定义R(x, t) = P1/P2 > 0, 则很容易看出来

H(t) =

∫
dxP2(R logR−R + 1), (43)

而R logR − R + 1 =
∫ R

1
dy log y ≥ 0, 因此H(t) ≥ 0, 等号当且仅当R = 1时

成立。我们容易有

dH

dt
=

∫
dx(log(R)L̂P1 −RL̂P2) (44)

=

∫
dx[P1L̂

∗ logR− P2L̂
∗R] (45)

=

∫
dxP1[µ

1

R
∂xR− 1

2
σ2(∂x logR)

2 +
1

2
σ2 1

R
∂2xR] (46)

−
∫
dxP2[µ∂xR +

1

2
σ2∂2xR] (47)

= −1

2

∫
dxP1(x, t)[σ

2(∂x logR)
2] ≤ 0. (48)

等号仅当R为常数时成立，但由于P1, P2的归一化，此常数只能是1。因此

这也就是说，Fokker-Plank 方程的任意两个不同解随着时间的演化都会最

后趋同。

8 多多多变变变量量量的的的一一一个个个例例例子子子

我们举一个例子来说明多变量情形。对于2维矢量X = [X1, X2]
T (上面

的T表示转置)，让我们来考虑下面的随机微分方程,

dX = rXdt+ σ

[
0 1

1 0

]
XdW. (49)
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式中r和σ均为常数。这个方程是几何布朗运动的某种变种。

如果我们将上面方程的扩散项当成普通的微积分项，并且忽略漂移项，

就容易得到下面的解

X(t) = exp{σ

[
0 1

1 0

]
Wt}C (50)

=

(
cosh(σWt) + sinh(σWt)

[
0 1

1 0

])
C. (51)

式中C为积分常数。为了得到原来的完整的随机微分方程的解，我们利用

常数变易法，由伊藤公式，就容易得出

X(t) = exp{(r − σ2

2
)t+ σ

[
0 1

1 0

]
Wt}X(0). (52)

引入概率分布函数P (x1, x2, t)，形式上很容易得到它满足的Fokker-

Plank 方程为

∂tP = −r [∂x1(x1P ) + ∂x2(x2P )] +
σ2

2

[
∂x2

1
(x22P ) + 2∂x1x2(x1x2P ) + ∂x2

2
(x21P )

]
.

容易看出来，首先当r > 0时漂移项所对应的势函数是一个run away 势，其

次，扩散矩阵正比于 [
x22 x1x2

x1x2 x21

]
. (53)

这个矩阵的行列式为零，因此也不是一个正定矩阵。正因如此，这个福

克-普朗克方程的不同解是不收敛的。这种不收敛的一个反映是，在前面的

随机微分方程的解中，即使t→ +∞, 解也依然依赖于初始条件X(0)。

Run away 势的一个反映是，随机微分方程的解随着时间指数增长，因

此没法保证概率分布P (x1, x2, t)在空间边界上始终趋于零。因此前面有关

收敛性等等证明过程中所涉及到的分部积分就无法丢掉空间边界项，因此

解的收敛性就无法保证。

9 从从从随随随机机机微微微分分分方方方程程程的的的解解解到到到福福福克克克-普普普朗朗朗克克克方方方程程程的的的解解解

从随机微分方程的解可以得到Fokker-Plank方程的解，关键点在于注意到

下面的联系，

P (x, t) = ⟨δ(x−X(t))⟩ =
∫

dk

2π
eikx⟨e−ikX(t)⟩. (54)
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假定X(t)满足随机微分方程，则容易直接证明，上面这个式子给出来的表

达式的确满足Fokker-Plank方程。实际上，这可以看成是Fokker-Plank方程

的另一种推导方式。

下面我们举例说明上面结果的应用。考虑如下随机微分方程

dX = −µX + σdW, (55)

式中µ和σ均为常数。假定我们令σ =
√
2T , 则这个随机微分方程的势函数

为谐振子势1
2
µx2，它的热平衡概率分布为P e ∼ exp(− 1

2T
µx2)。

实际上，上面这个随机微分方程可以很容易解出来为

X(t) = X(0)e−µt + σe−µt

∫ t

0

eµsdW (s). (56)

记初始位置为X(0) = x0, 则利用前面给出来的公式(54)，我们可以得到相

应Fokker-Plank方程的一个解

P (x, t) =

∫
dk

2π
eik(x−x0e−µt)⟨e−ikσe−µt

∫ t
0 eµsζ(s)ds⟩. (57)

式中ζ(t) = dW
dt
，它的概率分布为∼ exp

(
−1

2

∫
dsζ2(s)

)
, 或者说满足

⟨ζ(t)ζ(s)⟩ = δ(t− s). (58)

由此容易得到, (57)可以重写成

P (x, t) =

∫
dk

2π
eik(x−x0e−µt)e−

1
2
k2σ2e−2µt

∫ t
0

∫ t
0 dsds′eµ(s+s′)⟨ζ(s)ζ(s′)⟩

=

∫
dk

2π
eik(x−x0e−µt)e−

1
2
k2σ2e−2µt

∫ t
0 dse2µs

=

∫
dk

2π
eik(x−x0e−µt)e−

1
4µ

k2σ2(1−e−2µt)

=
1

σ
√

π(1−e−2µt)
µ

exp

(
−µ(x− x0e

−µt)2

σ2(1− e−2µt)

)
. (59)

容易验证，这的确是相应的Fokker-Plank 方程的解。

10 随随随机机机量量量子子子化化化

下面我们考虑一个无穷自由度的随机过程。即考虑

dϕ(x) = − δS

δϕ(x)
dt+

√
2dW (x). (60)

10



式中的微分表示对时间t进行的，S是场变量ϕ(x)的泛函，它满足一定的正

定性要求。dW (x)满足下面关系

dW (x)dW (y) = δ(x− y)dt. (61)

显然这个系统会趋向于如下的平衡分布

P [ϕ] =
1

Z
exp(−S[ϕ]). (62)

显然这是一个欧氏场论。

对于任何一个物理量F(ϕ), 由方程(12)可知，当系统达到平衡是它满足

下列方程 ∫
dx⟨ δ2F

δϕ(x)2
− δS

δϕ(x)

δF
δϕ(x)

⟩ = 0. (63)

将 δF
δϕ(x)
替换成F(ϕ), 并去掉对x的积分，我们就得到Dyson-Schwinger方程

⟨ δF
δϕ(x)

− δS

δϕ(x)
F(ϕ)⟩ = 0. (64)

11


