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前面我们讨论了重整化变换的一般性定义，和一般性的重整化群。这一

节我们将讨论一个精确的重整化群，进而验证重整化群的物理含义。我们

的讨论将限于四维欧空间的标量场论，但由此得来的重整化群的物理内涵

则是普遍适用的。

假定我们的标量场论定义在某一个尺度a上，也即是说，假定我们有一

个截断函数K(p2a2), 它在自变量p2a2 < 1时取值为1, 而在p2a2 > 1时飞快地

趋近于零。在做了这样的截断以后，自由标量场的传播子就可以写成

K(p2a2)

p2 +m2
. (1)

我们将作用量S(a)的自由场部分记为S0(a), 它由下式给出

S0(a) =
1

2

∫
d4p

(2π)4
ϕ(−p)ϕ(p)

p2 +m2

K(p2a2)
. (2)

我们记自由场的泛函积分为Z0, Z0 =
∫
[dϕ]e−S0(a)。由高斯积分我们有自由

场关联函数

⟨ϕ(q)ϕ(−p)⟩0 =
1

Z0

∫
[dϕ]ϕ(q)ϕ(−p)e−S0(a) = (2π)4δ4(q − p)

K(p2a2)

p2 +m2
. (3)

特别的，我们可以得到

1

Z0

∫
[dϕ]ϕ(p)ϕ(−p)e−S0(a) = (2π)4δ4(0)

K(p2a2)

p2 +m2
. (4)

包含相互作用以后，我们有泛函积分

Z =

∫
[dϕ]e−S0(a)−SI(a), (5)

1



式中SI(a)为我们的标量场论的相互作用部分。将这个泛函积分模去自由场

泛函积分的结果定义为相互作用场的配分函数，记为ZI ,

ZI =
Z

Z0

. (6)

我们要推导的重整化群方程即是，SI(a)作为尺度a的函数如何随a变化才能

保证这个配分函数ZI与重整化尺度a无关。前面的小节中我们说过了，这

正是重整化变换的一般要求。也即是说，我们想要讨论，如何才能让下面

的方程成立

0 =
∂ZI

∂ ln(a)
=

1

Z0

∂Z

∂ ln(a)
− Z

Z0

∂Z0

Z0∂ ln(a)
. (7)

首先根据Z0的定义，我们容易有

∂Z0

Z0∂ ln(a)
= −1

2

∫
d4p

(2π)4
∂K−1

∂ ln(a)
(p2 +m2)

1

Z0

∫
[dϕ]ϕ(p)ϕ(−p)e−S0(a)

= −1

2
δ4(0)

∫
d4p

∂K−1

∂ ln(a)
K =

1

2
δ4(0)

∫
d4p

∂ ln(K)

∂ ln(a)
. (8)

在上式的第二行中，我们代入了(4)式。

下面推导的关键是利用泛函积分的Dyson-Schwinger方程，也就是∫
[dϕ]

δ

δϕ(p)
F(ϕ) = 0, (9)

式中F(ϕ)是ϕ的泛函，并且我们假定场位形空间是一个闭合流形，或者如

果场位形空间有边界或渐进边界，我们就假定在边界上F(ϕ) → 0。

应用上面的Dyson-Schwinger方程，我们就有，

0 =
1

2

∫
d4p

(2π)4

p2 +m2

∂K

∂ ln(a)

∫
[dϕ]

δ

δϕ(p)

(
δe−SI

δϕ(−p)
e−S0

)
=

∫
d4p

(2π)4

p2 +m2

∂K

∂ ln(a)

∫
[dϕ]

(
1

2

δ2e−SI

δϕ(p)δϕ(−p)
e−S0 − 1

2

δe−SI

δϕ(−p)

δS0

δϕ(p)
e−S0

)
,(10)

通过对泛函积分进行分部积分，上式第二行的第二项显然又等于∫
d4p

(2π)4

p2 +m2

∂K

∂ ln(a)

∫
[dϕ]

(
1

2

δ2S0

δϕ(−p)δϕ(p)
− 1

2

δS0

δϕ(−p)

δS0

δϕ(p)

)
e−S0−SI

=

∫
[dϕ]

∫
d4p

(
1

2

∂K

K∂ ln(a)
δ4(0) +

1

2

∂K−1

∂ ln(a)
ϕ(p)ϕ(−p)

p2 +m2

(2π)4

)
e−S0−SI ,

=
1

2

∫
d4p

∂ ln(K)

∂ ln(a)
δ4(0)

∫
[dϕ]e−S0−SI −

∫
[dϕ]

∂e−S0

∂ ln(a)
e−SI . (11)
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上式的第二行我们利用了

δ2S0

δϕ(−p)δϕ(p)
= δ4(0)

p2 +m2

(2π)4K
. (12)

请注意不要漏了前面的δ4(0)，这里很容易搞错，请读者严格按照二阶泛函

导数的定义进行推导。

结合(10)式和(11)式，我们就有∫
d4p

(2π)4

p2 +m2

∂K

∂ ln(a)

∫
[dϕ]

(
1

2

δ2e−SI

δϕ(p)δϕ(−p)
e−S0

)
−
∫
[dϕ]

∂e−S0

∂ ln(a)
e−SI +

1

2

∫
d4p

∂ ln(K)

∂ ln(a)
δ4(0)

∫
[dϕ]e−S0−SI = 0. (13)

因此, 如果e−SI(a)满足下面的重整化群方程

∂e−SI

∂ ln a
= −1

2

∫
d4p

(2π)4

p2 +m2

∂K

∂ ln a

δ2e−SI

δϕ(−p)δϕ(p)
. (14)

则, 我们就有(要将所有式子除以Z0)

0 =
1

Z0

∫
[dϕ]

∂e−SI

∂ ln a
e−S0 +

1

Z0

∫
[dϕ]

∂e−S0

∂ ln a
e−SI

− 1

2

∫
d4p

∂ ln(K)

∂ ln(a)
δ4(0)

1

Z0

∫
[dϕ]e−S0−SI . (15)

代入(8)式，我们就可以将上面结果重写成

0 =
1

Z0

∂Z

∂ ln(a)
− Z

Z0

∂Z0

Z0∂ ln(a)
. (16)

这正是我们想要的(7)式。换言之，如果重整化群方程(14)成立，则配分函

数ZI与重整化尺度无关。

很显然，在上面的推导中我们可以将相互作用e−SI换成ϕ的任意泛

函F(ϕ)，比方说F(ϕ)可以取成乘积算子ϕ(q1)ϕ(q2)。完全一样的推导告诉

我们，对于任意这样的F(ϕ)，如果它满足重整化群方程

∂F
∂ ln a

= −1

2

∫
d4p

(2π)4

p2 +m2

∂K

∂ ln a

δ2F
δϕ(−p)δϕ(p)

, (17)

那么自由场关联函数⟨F(ϕ)⟩0在重整化群下保持不变，即

∂

∂ ln(a)

[
1

Z0

∫
[dϕ]F(ϕ)e−S0

]
= 0. (18)
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比如我们取F为ϕ(q1)ϕ(q2), 那么重整化群方程(17)告诉我们，真正的重整化

以后的算子F应该取成

F = ϕ(q1)ϕ(q2)− ⟨ϕ(q1)ϕ(q2)⟩0, (19)

式中的自由场关联函数⟨ϕ(q1)ϕ(q2)⟩0 = (2π)4δ4(q1 + q2)K(q21a
2)/(q21 + m2),

这样的结果当然是众所周知的。

让我们再来看看前面的方程(14), 它可以重写成

∂SI

∂ ln a
= −1

2

∫
d4p

(2π)4

p2 +m2

∂K

∂ ln a

(
δ2SI

δϕ(−p)δϕ(p)
− δSI

δϕ(−p)

δSI

δϕ(p)

)
. (20)

这个方程在费曼图计算中有很直观的解释，它的左边是藕合常数的重整

化，右边的第一项说明这种重整化可能来源于同一个顶角上的两个算子的

收缩，右边的第二项则说它还可能来源于两个不同顶角上算子的收缩，也

就是说藕合常数的重整化来源于积掉短程自由度。这也正是重整化变换的

物理实质，找到重整化群的这个物理含义当然是K.G.Wilson 的巨大贡献。
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