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第九章 *再谈分数量子霍尔效应

陈陈陈童童童

本章进一步讨论分数量子霍尔效应。我们将看到上一章谈到的任意子

如何作为分数量子霍尔液体的准粒子激发而出现，这些准粒子又如何满足

奇妙的分数统计。

本章我们还将讨论贝里相位，以及如何应用贝里相位计算准粒子的分

数电荷和分数统计。

2



第九章 *再谈分数量子霍尔效应 3

9.1 从规范不变性到量子化霍尔电导

这一章我们将进一步讨论分数量子霍尔效应。但还是让我们从整数量

子霍尔效应开始，我们将首先利用规范不变性论证霍尔电导必须量子化

为e2/h的整数倍。然后我们再指出这个论证对于分数量子霍尔效应为什么

失效了，又该作什么样的修正。由此引导出分数量子霍尔效应与整数量子

霍尔效应的一个本质不同，即在分数量子霍尔效应中，整块霍尔薄片的基

态将出现拓扑简并。从这种基态拓扑简并开始，我们将逐步探讨分数量子

霍尔效应的一些奇妙性质。

9.1.1 Byers-Yang 定理

考虑一个任意的多电子系统，假设系统中心有一个洞，洞的中心落在

坐标原点上，如图(9.1)所示。 假设我们在洞中通过磁通Φ。则根据第三章

图 9.1: 中心有洞的多电子系统，洞中通过磁通Φ.

学过的Aharnaov-Bohm效应我们知道，当电子围绕着洞转一圈再回到起点

时，其波函数将会多出一个相位exp
(
i2πΦ/Φ0

)
，式中Φ0 = 2π~/e称为磁通

量子。很显然，如果洞中通过的磁通Φ是磁通量子Φ0的整数倍，那这个多

出来的相因子将为1，从而Aharnaov-Bohm效应就无法探测到这样的磁通。

不仅如此，1961年Byers 和杨振宁还进一步证明，如果洞中通过的磁

通改变Φ0的整数倍，则改变前后整个系统的能量本征谱将保持不变。这就

是Byers-Yang 定理。

证明这个定理的关键在于利用规范不变性。根据定态薛定谔方程的

规范不变性，我们可以知道，如果对于矢量势A(x)，多电子系统的哈密

顿量有一个能量为E的本征波函数ψ(x1,x2, ...,xN)。那么我们将容易找到
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另一个相应于矢量势A′(x)的有相同能量E的本征波函数ψ′(x1,x2, ...,xN)，

A′(x)和ψ′(x1,x2, ...,xN)分别是A(x)和ψ(x1,x2, ...,xN)的规范变换

A′(x) = A(x) + (~/e)∇ε(x)

ψ′(x1,x2, ...,xN) =
[ N∏
j=1

eiε(xj)
]
ψ(x1,x2, ...,xN). (9.1)

对于如图(9.1)所示的这种中间有一个洞的系统，我们可以将规范变换

函数ε(x)取成下面这样的多值形式

ε(x) = mθ(x), (9.2)

式中θ(x)是围绕着洞中心分布的一个角度变量，当人们绕着洞走一圈时，

θ(x)的取值刚好从0变化到2π。有时候人们称这样的规范变换为大规范变

换。从上一段我们知道，系统的能量本征谱在这样的大规范变换下也是不

变的。然而，变换以后通过洞的磁通却并非不变，而是会变化为

Φ′ =

∮
A′(x) · dx =

∮
A(x) · dx+ (~/e)m

∮
∇θ(x) · dx

= Φ+ 2πm~/e = Φ+mΦ0. (9.3)

即大规范变换前后通过洞的磁通将改变Φ0的整数倍。这就说明，当洞中通

过的磁通改变Φ0的整数倍时，系统的能量本征谱将保持不变，这就证明

了Byers-Yang 定理。

9.1.2 量子化霍尔电导

我们知道，整数量子霍尔效应的霍尔电导是量子化的，在前面的第四

章中我们也详细讨论过这种量子化的物理起源，本小节我们重新回到这个

问题，我们将利用Byers-Yang 定理给出霍尔电导必然量子化的一个新论

证，这就是所谓的Laughlin论证。

考察一块圆环状的霍尔薄片，将它放在强磁场中让它量子化。我们把

环绕圆环的方向称作纵向，与之垂直的方向称作径向，如图(9.2)所示。 忽

略电子间的相互作用以后，根据朗道能级的知识，每一个电子的量子态可

以标记为|n,m⟩态，其中n = 0, 1, 2, ...用来标记电子所处的朗道能级，m则

是电子的轨道角动量量子数，m电子处在半径rm =
√
2mlB的轨道上，相

同朗道能级不同轨道角动量的那些量子态是简并的。现在假设系统的费
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图 9.2: 圆环状霍尔薄片，洞中缓慢加上一个磁通量子。

米能EF处在n = ν − 1和n = ν朗道能级之间，也即是说，系统的前ν个朗

道能级是填满的。则根据前面第四章的知识我们知道，这时候系统的霍

尔电导σH会量子化为σH = ν e2

2π~，这里ν是一个量子化整数。下面我们跟

随Laughlin，利用规范不变性来论证这种霍尔电导的量子化。

假设我们绝热地(也就是足够缓慢地)在圆环霍尔薄片中心的洞中通过

磁通Φ(t), Φ(t)很缓慢地从0增加到一个磁通量子Φ0。根据法拉第电磁感应

定律，这个变化的磁通会在纵向产生感应电场E以及感应电动势E ,

E =

∮
E · dx = −dΦ(t)

dt
. (9.4)

由于霍尔效应，这个纵向感应电场会在与之垂直的径向产生霍尔电流J

J = σHE. (9.5)

J从圆环的内边缘流向圆环的外边缘，我们可以将J环绕圆环积分，得到径

向的电流强度I,

I = σHE . (9.6)

再次对时间积分，就可以得到一段时间之内从圆环内边缘转移到外边缘的

电荷量∆Q

∆Q =

∫
dtI = σH

∫
dtE = −σH

∫
dt
dΦ(t)

dt
= −σH∆Φ. (9.7)

式中∆Φ是过程前后洞中磁通量的改变量，在我们这里∆Φ = Φ0。

当然，整个霍尔薄片是一个多电子系统，从多电子的角度而不是从单

电子朗道能级的角度来看，整个系统当然是处在多电子体系的最低能态，
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也就是基态。由于我们是绝热地增加洞中的磁通，磁通的改变过程足够缓

慢，因此这个增加磁通的过程不会将系统激发到激发态上去，整个过程系

统都将保持在基态。而根据Byers-Yang 定理，当我们将洞中通过的磁通改

变Φ0时，系统的能量本征谱将保持不变。因此过程前后的基态能量应该是

一样的，由于整个霍尔薄片的基态不简并，因此这实际上意味着过程前后

霍尔薄片中的多电子系统处在完全一样的基态。

但是，前面我们说过，过程前后圆环内边缘将转移∆Q = −σHΦ0的电

荷到外边缘。如果过程前后薄片体内的多电子系统处于同样的量子态，又

由于这个量子态包含的都是一些整数电子电荷，从而只能有整数个电子

电荷从内边缘转移到外边缘，不妨设有p个电子电荷转移(p是一个整数)，

即∆Q = −pe(注意电子带负电)。从而即有

−pe = ∆Q = −σHΦ0 = −σH
2π~
e
, (9.8)

由此我们就可以得到量子化的霍尔电导

σH = p
e2

2π~
. (9.9)

不仅如此，实际上从单电子量子态|n,m⟩的角度来看，当洞中的磁通增
加一个磁通量子时，相应的|n,m⟩态电子就会变成|n,m + 1⟩态的电子，它
在径向方向上就会往外移动一个轨道。给定一个填满的朗道能级n，磁通

增加一个Φ0时，这个能级上的每一个电子都会往外挪一个轨道，最终的效

果就是，内边缘有一个电子挪进了薄片体内，而同时最外面也有一个体内

的电子挪到了外边缘上，总体就是，每一个被占据的朗道能级都有一个电

子电荷从内边缘转移到了外边缘。由于总共有ν个朗道能级被占据，因此最

终从内边缘转移到外边缘的电子电荷数目就是

p = ν. (9.10)

这就完成了我们对霍尔电导量子化关系的论证。

9.1.3 分数量子霍尔效应的基态简并

上一小节我们利用规范不变性论证了霍尔电导必然要量子化为e2/(2π~)
的整数倍，即填充分数ν要等于整数。然而，在分数量子霍尔效应中，ν其

实取下面这样的分数

ν = p/q, (9.11)
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式中p, q为两个较小的整数。比方说第一个被观测到的分数量子霍尔平台就

是ν = 1/3。问题是，分数量子霍尔效应是在哪个地方使得我们前面的论证

不成立了呢？

另一方面，通过前面的论证我们知道，填充分数ν反映的是，在圆环霍

尔薄片中间的洞中每增加一个磁通量子霍尔薄片内边缘转移到外边缘的电

荷量，这个电荷量为−νe。因此ν = 1/q这样的分数量子霍尔效应就意味着

转移了e∗ = e/q的分数电荷。由于电子携带的是整数电荷−e，因此这种分
数电荷转移就意味着分数量子霍尔效应中必然要出现携带分数电荷的准粒

子！

另外，通过上一小节的论证我们也知道，如果整个系统的基态没有简

并，那增加一个磁通量子将只能转移整数个电子电荷，所以要使得转移分

数电荷成为可能，就必然意味着分数量子霍尔效应整个系统的基态有多重

简并。和上一小节的论证一样，由于在洞中增加磁通的过程是绝热地进行

的，所以在整个过程中系统都将保持处于基态。结合Byers-Yang 定理我们

就可以论证，增加一个磁通量子的前后，基态能量不变。然而，如果基态

有多重简并，我们就无法论证过程前后系统依然处于同一个基态，因为它

完全可能变换到另一个简并基态上去。以ν = 1/3的情形为例，这时候系统

实际上有3个简并基态，分别记为|Ω1⟩、|Ω2⟩、|Ω3⟩，随着洞中磁通量子的
不断增加，每增加一个磁通量子系统就从一个基态变换到另一个基态，最

终系统实际上是在这3个基态上循环，

insertΦ0−−−−→ |Ω1⟩
insertΦ0−−−−→ |Ω2⟩

insertΦ0−−−−→ |Ω3⟩
insertΦ0−−−−→ |Ω1⟩

insertΦ0−−−−→ (9.12)

在霍尔薄片的洞中每增加一个磁通量子，都会有e∗ = e/3的电荷从一个边

缘转移到另外一个边缘，连续增加3个磁通量子以后，就正好转移一个完整

的电子电荷，而这时候系统的基态也刚好循环到初始时的同一个基态，这

样一来就与Laughlin论证完全不矛盾了。

所以分数量子霍尔效应中必然存在分数电荷的准粒子激发，同时也存

在基态简并。而这两件事情都非常不可思议，分数电荷的不可思议无需多

言，这里的基态简并同样神奇。这是因为，分数量子霍尔效应中的这种基

态简并和对称性没有任何关系！相反，它与我们考察的霍尔薄片中间有一

个洞这种拓扑非平凡性倒是密切相关，它是一个拓扑基态简并。正是由于

注意到分数量子霍尔效应这种与对称性无关的拓扑基态简并，文小刚老师

才提出了重要的拓扑序概念。
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9.2 Laughlin 波函数与分数统计

9.2.1 Laughlin 波函数

在第8章中我们讨论过，填充分数ν = 1的整数量子霍尔效应的基态波

函数可以写成如下形式，

Ψ(x1,x2, ...,xN) =
∏

1≤i<j≤N

(wi − wj)
N∏
i=1

e
− |wi|

2

4l2
B . (9.13)

式中N = NΦ为单电子最低朗道能级的简并度。起初人们不觉得这个波函

数有多大的重要性，然而出人意料的是，Laughlin用他的神来之笔将这个

波函数作了一点“简单”推广就成了人们理解分数量子霍尔效应的基础。

Laughlin提出，对于ν = 1/m，m是一个奇数的分数量子霍尔效应，其基态

的试探波函数可以取成如下形式

Ψ(m) =
∏

1≤i<j≤N

(wi − wj)
m

N∏
i=1

e
− |wi|

2

4l2
B . (9.14)

这就是著名的Laughlin波函数，式中的电子数目N满足

NΦ = m(N − 1). (9.15)

从而，当N很大时填充分数ν = N/NΦ的确趋于1/m。但公式(9.15)并不是

为了凑对这个填充分数而强加的，之所以要求N满足公式(9.15)，是因

为m(N − 1)是Langhlin波函数全纯多项式部分的最高次幂，而从第4章关于

朗道能级的研究中我们已经知道，这个最高幂次决定了霍尔液滴的半径，

它乘上2πl2B就是霍尔液滴在平面上的面积，由于每2πl2B面积对应一个磁通

量子，所以这个幂次本身应该等于朗道能级的总磁通量子数NΦ。正因为公

式(9.15)的成立有自然的理由，所以我们反过来知道，Laughlin波函数的确

解释了填充分数ν = 1/m。

9.2.2 等离子体类比

我们已经有了一个看起来不错的分数量子霍尔效应的试探波函数，也

就是Laughlin 波函数，下一步当然就是用这个多体波函数来计算各种物理

量的期望值，但这并不是一件简单的事情，因为Laughlin波函数的变量数
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目N太多了，处理起来会很困难。本节我们将介绍一种处理这一问题的统

计物理方法。

我们首先要计算的就是Laughlin波函数的归一化，为此我们把这

个Laughlin波函数重新取作下面的无量纲形式，

Ψ
(m)
L =

∏
i<j

(wi − wj)
m

lmB
e
−

∑
i
|wi|

2

4l2
B . (9.16)

为了计算归一化，我们要对波函数的模方进行积分，不妨将波函数的模方

记为P [w],

P [w] = |Ψ(m)
L |2 =

∏
i<j

|wi − wj|2m

l2mB
e
−

∑
i
|wi|

2

2l2
B . (9.17)

为了将波函数归一化，我们需要计算Z =
∫ ∏N

i=1 d
2wiP [w], 注意到复坐

标w = x+ iy，所以式中的d2wi = dxidyi。

计算Z的一个直观办法是将之看成是一个统计物理问题的配分函数。

为此我们将P [w]重新写成玻尔兹曼因子的形式

P [w] = e−βU [w], (9.18)

式中

βU [w] = −2m
∑
i<j

log
( |wi − wj|

lB

)
+

1

2l2B

∑
i

|wi|2. (9.19)

为了看出这个统计物理系统到底是什么系统，我们进一步将逆温度β取成

如下形式

β =
2

m
. (9.20)

如此一来这个统计物理系统的相互作用能U [w]就应该取成

U [w] = −m2
∑
i<j

log
( |wi − wj|

lB

)
+

m

4l2B

∑
i

|wi|2. (9.21)

下面我们将会看到，这刚好是N个“电荷”q = m的带电粒子在一个背景负

“电荷”上的等离子体势能。也即是说，计算Laughlin 波函数的归一化以
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及物理量期望值的问题，等价于一个逆温度β = 2/m的两维等离子体系统

的统计物理问题，所以我们把这种方法称作等离子体类比。

看出公式(9.21)描述的是一个等离子体系统的关键有两个。第一个关键

是要注意到表达式(9.21)的第一项描述的是两维平面内多个电荷为q = m的

带电粒子之间的库伦相互作用势能。为此我们需要求解两维空间点电荷q所

产生的电势ϕ的泊松方程

−∇2ϕ = 2πqδ(x). (9.22)

人们可以验证，这个方程的解为

ϕ = −q log
( r
lB

)
. (9.23)

注意到两个点电荷之间的电势能U = qϕ，我们容易知道(9.21)式的第一项

的确是两维带电粒子系统的相互作用电势能。

等离子类比的第二个关键是要知道表达式(9.21)的第二项描述的是q =

m的带电粒子在电荷密度ρ0 = −1/(2πl2B)的负电荷背景中的电势能。为了

证明这一点，我们只需要验证 1
4l2B

|w|2是ρ0的背景负电荷所产生的背景电势，
也即是验证如下泊松方程

−∇2
( 1

4l2B
|w|2

)
= 2πρ0 = − 1

l2B
. (9.24)

而这个验证相当容易。这里值得注意的是，背景负电荷密度ρ0的大小正好

是磁通量子的密度。

现在，我们可以利用这幅等离子体图像帮助我们思考了。比方说，

由于背景电荷均匀分布，因此为了最小化系统的能量U [w]，这些电荷

为q = m的粒子也应该均匀分布，其粒子数密度n应该刚好能够平衡背景电

荷密度，使得整个系统呈电中性，即满足nm = |ρ0|, 由此得到

n =
1

2πl2B

1

m
. (9.25)

这刚好是填充分数ν = 1/m的分数量子霍尔系统的电子数密度。这是因

为，等离子体类比中的q = m带电粒子正好相应于原来Laughlin 波函数中

的电子。所以我们这里实际上是利用等离子体类比得到了正确的填充分

数ν = 1/m。
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9.2.3 准粒子激发

前面我们说过，分数量子霍尔效应的神奇之处之一是，它有一些带分

数电荷的准粒子激发。实际上，有两种不同电荷符号的准粒子激发，分别

称作准空穴和准电子，准空穴带正电，准电子带负电。这一小节我们讨论

如何利用Laughlin 波函数描述这些准粒子激发。

准准准空空空穴穴穴(Quasiholes)

描写一个位于复坐标η的准空穴的波函数Ψqh(w, η)为

Ψqh(w; η) =
N∏
i=1

(wi − η)Ψ
(m)
L (w), (9.26)

式中Ψ
(m)
L (w)就是原来(9.16)式给出的Laughlin波函数。从这个波函数我们

很容易看出，电子在η位置出现的概率密度为0。也即是说，我们在原来的

多电子形成的液体中创生了一个空穴，所以称之为准空穴。值得注意的是，

在这个描述中，准空穴是系统在η位置的一个缺陷，因此η本身并不是动力

学变量，而是准空穴波函数的一个参数，动力学变量是电子的坐标wi。

准空穴的奇异性质之一是，它携带e∗ = e/m的分数电荷。注意，电子

携带的是−e的电荷，因此准空穴携带的是正电荷。
为了解释为什么准空穴的电荷是e/m，我们不妨在η位置放m个相同的

准空穴，描述这m个准空穴的波函数当然应该是

N∏
i=1

(wi − η)mΨ
(m)
L (w). (9.27)

很明显的是，如果η是一个动力学变量，那这个波函数就是标准的Laughlin

波函数，只不过η位置也有一个电子。但现在η不是动力学变量，而只是一

个参数，因此η位置的这个电子实际上是缺失的。也即是说，η位置的m个

准空穴等价于η位置的一个电子缺失，因此一个准空穴就相当于1/m个电子

缺失。由于电子带−e的电荷，电子缺失就相当于+e的正电荷，因此一个准

空穴就相当于一个e/m的正电荷。

以上我们描述的是单个准空穴，人们很容易将这个描述推广到M个准

空穴，相应的波函数是

Ψqh(w; η1, η2, ..., ηM) =
M∏
a=1

N∏
i=1

(wi − ηa)Ψ
(m)
L (w). (9.28)
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准准准电电电子子子(Quasielectrons)

与准空穴相反，准电子是一种携带负分数电荷的准粒子，其电荷

为−e/m。写出准电子的试探波函数相对更难一些。
首先，我们注意到准空穴的存在会增加多电子波函数全纯多项式部分

的幂次，从而扩大了霍尔液滴所占的总面积，降低了液滴的密度。这是因

为空穴的存在将电子排挤到了更远一点的地方。而准电子则相反，它相

当于在霍尔液滴上多鼓出了一个小包(而不是创生一个空穴)，因此准电子

的存在会升高液滴的密度，从而也就是要缩小霍尔液滴所占的面积，这

就意味着准电子的存在应该降低波函数全纯多项式部分的幂次。基于此，

Laughlin 猜测一个位于坐标原点的准电子将有如下波函数

Ψqe(w; 0) =
[∏

i

( ∂

∂wi

)∏
k<l

(wk − wl)
m
]
e
−

∑
i
|wi|

2

4l2
B . (9.29)

很显然，偏导项的存在正确地将每一个wi的幂次降低了1，从也就将每一个

电子的角动量量子数降低了1，因此每一个电子都会朝原点挪动一个轨道，

由于所有的单电子轨道中，实际被电子占据的只有ν = 1/m，所以总的来

说，原点处就会累积出−νe = −e/m的电荷，这就是原点处的准电子的电
荷。

稍微推广一下，如果准电子不是位于坐标原点，而是位于复坐标η处，

注意到轨道角动量量子数的吻合，人们应该将准电子波函数写成

Ψqe(w; η) =
[∏

i

(
2l2B

∂

∂wi

− η
)∏

k<l

(wk − wl)
m
]
e
−

∑
i
|wi|

2

4l2
B . (9.30)

式中η是η的复共轭，式中偏导前面的因子2l2B来自于wi的作用投影到最低朗

道能级正好是2l2B
∂

∂wi
。

9.2.4 分数统计

ν = 1/m分数量子霍尔液体的准粒子激发不仅携带分数电荷，而且它

们还满足第8章中学过的分数统计，从而是一种任意子。这一小节我们就是

要具体研究ν = 1/m分数量子霍尔液体准空穴激发的分数统计。不仅如此，

我们还将从一个不同的角度证明准空穴的确携带分数电荷。这一节的推导

要用到贝里相位，相关介绍我们放在了本章附录中，所以在阅读本小节之

前，请读者先阅读本章的附录。
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我们考察M个准空穴激发，这些准空穴分别具有复坐标η1, η2, ..., ηM ,

这些准空穴的波函数是

Ψ(w; η1, η2, ..., ηM) =
M∏
a=1

N∏
i=1

(wi − ηa)
∏
k<l

(wk − wl)
me

−
∑

i
|wi|

2

4l2
B . (9.31)

准空穴的坐标η1, η2, ..., ηM是这个波函数的参数，不是动力学变量。但这个

波函数没有归一化，为了将这个波函数归一化，我们需要计算波函数模方

的积分Z[η]

Z[η] =

∫ N∏
i=1

d2wi|Ψ(w; η1, η2, ..., ηM)|2. (9.32)

重复我们前面关于等离子体类比的讨论可以知道，Z[η]可以看成是一

个逆温度β = 2/m的统计物理系统的配分函数，这个系统的能量U [w]如下

U [w] = −m
∑
i,a

log
( |wi − ηa|

lB

)
−m2

∑
i<j

log
( |wi − wj|

lB

)
+

m

4l2B

∑
i

|wi|2.(9.33)

等号右边的第一项来自于准空穴，很显然这第一项可以看成是电荷为m的

带电粒子和电荷为1的带电粒子之间的库伦相互作用能。由于在等离子类

比中电子相当于统计物理系统的电荷为m(与电子的真实电荷没有什么关

系)的带电粒子，因此这就启发我们将准空穴看成是位置固定的电荷为1的

带电粒子。

但如果真将准空穴看成电荷为1的带电粒子的话，那整个统计物理系统

的能量就应该修正为U [w; η],

U [w; η] =
m

4l2B

∑
i

|wi|2 +
1

4l2B

∑
a

|ηa|2

− m2
∑
i<j

log
( |wi − wj|

lB

)
−m

∑
i,a

log
( |wi − ηa|

lB

)
−

∑
a<b

log
( |ηa − ηb|

lB

)
. (9.34)

我们说了，准空穴相当于电荷为1的带电粒子，因此上式第一行右边的第二

项就来自于这种带电粒子与背景负电荷的相互作用势能，而上式第三行的

那一项则来源于这种带电粒子相互之间的库伦相互作用能。
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(9.34)式的这个统计物理系统和(9.33)式的统计物理系统的关系是，两

者的配分函数间满足如下关系∫ N∏
i=1

d2wie
−βU [w;η] = Z[η] · exp

( 2

m

∑
a<b

log
|ηa − ηb|

lB
− 1

2m

∑
a

|ηa|2

l2B

)
.(9.35)

这一关系使得我们可以通过计算(9.34)式这个系统的配分函数来得到我们

想要计算的配分函数Z[η]。

而(9.34)式这个系统的配分函数可以有物理的办法来得到。这是因为，

很显然(9.34)式描述的依然是一个等离子体系统，只不过在等离子体中引入

了M个电荷为1的杂质(相应于准空穴)。然而，等离子体有一种著名的德拜

屏蔽效应，它告诉我们，当在等离子体中加入带正电的杂质时，由于静电

吸引，等离子体的正负电荷(在这里就是N个电荷为+m的带电粒子以及背

景负电荷)会重新分布，正电荷会被排斥到离杂质更远的地方，这会使得靠

近杂质负电荷更多，进而在超过某个长度尺度lD的距离上，杂质的电荷将

完全被等离子的负电荷屏蔽掉。也即是说，只要杂质间的距离超过lD，那

么它们相互就完全感觉不到彼此的存在，杂质的坐标在这个意义上就是自

由而无关紧要的。因此(9.34)式对应的配分函数
∫ ∏N

i=1 d
2wie

−βU [w;η]实际上

是一个不依赖于η坐标的常数C。从而根据(9.35)式我们马上就有

Z[η] = C · exp
(
− 1

m

∑
a<b

log
|ηa − ηb|2

l2B
+

1

2m

∑
a

|ηa|2

l2B

)
. (9.36)

利用Z我们就可以把准空穴的波函数Ψ(w; η1, η2, ..., ηM)归一化，记未

归一化的波函数Ψ(w; η1, η2, ..., ηM)为⟨w,w|η⟩，则有

⟨η|η⟩ =
∫ N∏

i=1

d2wi|Ψ(w; η1, η2, ..., ηM)|2 = Z[η]. (9.37)

记归一化以后的量子态为|ψ⟩, 则有

|ψ⟩ = Z− 1
2 |η⟩. (9.38)

注意Ψ(w; η1, η2, ..., ηM)关于所有的η参数都是全纯的，所以量子态|η⟩关于
所有的η参数都全纯。

注意到这种全纯性，我们就可以计算贝里联络的全纯分量Aη(η, η)，

Aη(η, η) = −i⟨ψ| ∂
∂η

|ψ⟩ = i
1

2
Z−1∂Z

∂η
− iZ−1⟨η| ∂

∂η
|η⟩. (9.39)
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由于|η⟩关于η全纯，所以⟨η|关于η反全纯，所以⟨η| ∂
∂η
|η⟩ = ∂

∂η
⟨η|η⟩ = ∂Z

∂η
, 代

入(9.39)式就可以得到

Aη(η, η) = −i1
2

∂ logZ

∂η
. (9.40)

贝里联络的反全纯分量Aη(η, η)当然是全纯分量的复共轭，所以我们也有

Aη(η, η) = −i⟨ψ| ∂
∂η

|ψ⟩ = i
1

2

∂ logZ

∂η
. (9.41)

进一步代入Z的计算结果(9.36)就可以得到

Aηa = i
1

2m

∑
b ̸=a

1

ηa − ηb
− i

1

4m

ηa
l2B

Aηa = −i 1

2m

∑
b̸=a

1

ηa − ηb
+ i

1

4m

ηa
l2B
. (9.42)

当然这个结果仅当准空穴间距离不太短，大于德拜屏蔽长度lD时才成立。

下面我们就用这个结果来计算分数电荷与分数统计。计算的关键在于注意

到，当将第a个准空穴沿着闭合路径C缓慢运动一圈以后，波函数将多出一

个贝里相位eiγC ,

γC =

∮
C

(
Aηadηa +Aηadηa

)
. (9.43)

分分分数数数电电电荷荷荷

为了计算准粒子的分数电荷，我们让第a个准空穴的环绕路径C不不不包包包围围围

任何其它准空穴。这时候根据复变函数的围道积分，(9.42)各贝里联络表达

式的第一项对于环路积分(9.43)均没有贡献。对环路积分(9.43)有贡献的是

贝里联络表达式的第二项。很显然，对于这些项，我们有

γC =
1

4ml2B

∮
C

(
− iηadηa + iηadηa

)
=

S

ml2B
. (9.44)

式中S是回路C所包围的面积，代入l2B = ~/(eB), 就可以得到

γC =
1

m
(2πΦ/Φ0). (9.45)
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Φ为回路C所包围的磁通，Φ0为磁通量子。很显然，这个贝里相位来源于准

空穴在磁场中环绕一圈的Aharnaov-Bohm效应，不妨将之重记为γAB。如

果准空穴的电荷为e，那我们知道这个相位应该是(2πΦ/Φ0)，但现在算出

来的相位是它的1/m，这就说明准空穴的带电量为

e∗ = e/m. (9.46)

这正是准空穴的分数电荷。

分分分数数数统统统计计计

为了计算分数统计，我们让a准空穴的运动回路C中包围另一个准

空穴b，并假设b是回路C唯一包围的准空穴。进一步，我们假设回路C是

围绕准空穴b逆时针转了一圈。现在，(9.42)各贝里联络表达式的两项均

对环路积分(9.43)有贡献，当然第二项的贡献是我们刚才已经计算过了

的Aharnaov-Bohm相位γAB, 现在的关键是要计算第一项的贡献γ，即

γC = γAB + i
1

2m

∮
C

( dηa
ηa − ηb

− dηa
ηa − ηb

)
= γAB + γ. (9.47)

由围道积分我们很容易计算出这个相位γ为

γ = −2π/m. (9.48)

贝里相位γC中的γAB当然和全同粒子统计没有任何关系，但剩下的这个γ却

没有任何其它解释，只能理解为起源于准空穴的全同粒子统计。即是说，

当我们将一个准空穴逆时针围绕另一个准空穴转一圈时，波函数应该多出

如下统计相因子

eiγ = e−i2π/m. (9.49)

这意味着当我们将两个全同准空穴逆时针交换位置时(相当于一个准空穴围

绕另一个转半圈)，应该多出一个统计相因子e−iπ/m。对于分数量子霍尔效

应，这既不是玻色统计，也不是费米统计，而是任意子统计！

如果我们把n个准空穴绑在一起形成一个整体，并让一个这样的物体

和另一个这样的物体逆时针交换位置，则由于每一对准空穴的位置交换都

要贡献一个e−iπ/m, 现在这两个物体中的准空穴可以有n2种组对可能，所以

总的统计相因子就应该是e−in2π/m。特别的，如果取n = m，最终就会得到

统计相因子e−imπ，由于m是一个奇数，所以最终的相位等于−1，是费米统

计。这就意味着m个准空穴绑在一起反而成了一个普通的费米子！
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9.3 附录：贝里相位

贝里相位是现代量子力学的一个重要发现，在与量子物理相关的许多

物理学方向上都有重要应用，在这个附录中，我们将对它进行一个简单介

绍。

考虑一个量子系统，假定其哈密顿量H依赖于一些控制参数(λ1, λ2, ...)，

记为H(λ)，并记参数空间为M。现在假设我们很缓慢地调节各控制参
数，使得它在参数空间画出一条路径C。再假设系统处在某个能量本征

态|ψ(λ)⟩ = |un(λ)⟩上(|un(λ)⟩表示第n个能量本征态)，并且假设在路径C所

对应的各参数点上，相应的能级没有产生交叉。则，如果我们对参数

的调节足够缓慢的话，那系统将会始终待在瞬时本征态|ψ(λ(t))⟩上。然
而我们也知道，任何量子态都可以相差一个相位因子，因此瞬时本征

态|ψ(λ(t))⟩依然可以相差一个待定的相位因子。贝里发现，在一些物理情
形中，即使扣除动力学相位，这个相位因子也不能为零，称作贝里相位。

系统的瞬时能量本征方程是

H(λ)|ψ(λ)⟩ = E(λ)|ψ(λ)⟩. (9.50)

式中E(λ) = En(λ)为这第n个能量本征态的本征能量。根据上一段所说，只

要对参数的调节进行得足够缓慢，我们就可以将系统随着时间演化的量子

态写成如下形式

|Ψ(t)⟩ = eiγ(t)|ψ(λ(t))⟩. (9.51)

式中的eiγ(t)就是上一段所说的待定相位因子。

将时间演化态|Ψ(t)⟩代入时间演化的薛定谔方程i~ ∂
∂t
|Ψ(t)⟩ = H(λ(t))|Ψ(t)⟩,

我们就可以得到

[−~γ̇ + i~
∂

∂t
]|ψ(λ(t))⟩ = E(λ(t))|ψ(λ(t))⟩. (9.52)

用左矢|ψ(λ(t))⟩去和这个方程作内积，就可以得到

γ̇ = −E(λ(t))/~− i⟨ψ(λ(t))| ∂
∂t

|ψ(λ(t))⟩. (9.53)

将这个方程对时间积分，即有

γ(tf )− γ(ti) = −
∫ tf

ti

E(λ(t))dt/~− i

∫ tf

ti

dt⟨ψ(λ(t))| ∂
∂t

|ψ(λ(t))⟩

= −
∫ tf

ti

E(λ(t))dt/~− i

∫
C

dλi⟨ψ(λ)|
∂

∂λi
|ψ(λ)⟩. (9.54)
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这个最终表达式的第一项就是普通的动力学演化相位，第二项称之为几何

相位，因为它只依赖于参数空间的几何路径C。在写这个最终表达式时，

我们应用了求和约定，即默认对重复出现的i指标求和，实际上，本附录我

们对i, j指标始终默认求和约定。

特别的，我们可以调节参数在参数空间走一圈，然后又回到起始位置，

那这时候上面的几何相位就可以写成

γC = −i
∮
C

dλi⟨ψ(λ)|
∂

∂λi
|ψ(λ)⟩. (9.55)

这就是贝里相位，贝里发现它不仅可能非零，而且甚至很重要。

习惯上，人们通常将1形式−idλi⟨ψ(λ)| ∂
∂λi

|ψ(λ)⟩记为A，称之为贝里联
络，

A = Aidλi = −idλi⟨ψ(λ)|
∂

∂λi
|ψ(λ)⟩.

= −i⟨ψ(λ)|d|ψ(λ)⟩. (9.56)

式中Ai = −i⟨ψ| ∂
∂λi

|ψ⟩是贝里联络的第i分量。利用贝里联络我们就可以将
贝里相位的计算公式重写为

γC =

∮
C

A =

∫
S

dA. (9.57)

式中dA表示在参数空间对A进行外微分，S就是回路C在参数空间所包围的
曲面，这个式子的第二个等号我们当然是用了微分形式的斯托克斯公式。

通常把Fn = dA称作贝里曲率。利用公式(9.56)我们容易得到

Fn = −i⟨dψ(λ)| ∧ |dψ(λ)⟩ = −i⟨dun(λ)| ∧ |dun(λ)⟩. (9.58)

式中|dψ⟩ = d|ψ⟩, ⟨dψ| = d⟨ψ| = |dψ⟩†, 式中的第二个等号我们已经
将|ψ(λ)⟩取作第n能量本征态|un(λ)⟩了。我们可以将哈密顿量对参数的微
分dH = ∂iHdλi看作是一个微扰(式中∂iH = ∂

∂λi
H(λ)), 进而可以由定态微

扰论中波函数的一阶微扰修正公式得到

|dun(λ)⟩ =
∑
m̸=n

⟨um|dH|un⟩
En − Em

|um⟩. (9.59)

将之代入贝里曲率公式(9.58)，就可以得到

Fn = −i
∑
m̸=n

⟨un|dH|um⟩ ∧ ⟨um|dH|un⟩
(En − Em)2

= −i
∑
m̸=n

⟨un|∂iH|um⟩⟨um|∂jH|un⟩
(En − Em)2

dλi ∧ dλj. (9.60)
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