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第八章 全同性原理与多体量子力

学

陈陈陈童童童

通常教科书在处理全同性原理时作了一些默认的假定：第一，全同粒

子体系的任何物理状态在相差一个相因子的意义上由唯一一个数学上的态

矢量来描述。第二，全同粒子体系满足置换对称性。第三，在全同粒子置

换下所有物理可观测量都保持不变。这三条假设意味着，全同粒子的置换

对称性其实是一种特殊的规范对称性(而不是通常的对称性)，或者文小刚

老师所谓的规范结构。而要从逻辑上解释这种规范对称性的来源，最自然

的办法是使用路径积分。

然而，令人吃惊的是，路径积分的推导表明，在2 + 1维时空，全同粒

子的置换对称性可以被推广成编织操作。当然，这时候它就不再是一个对

称性概念了，但是编织操作允许2 + 1维时空出现既非玻色子又非费米子的

任意子。理论研究表明，有一些任意子可以帮助我们实现通用量子计算机，

从而在最近一些年引起了人们广泛的兴趣。而且任意子已经不再是一个理

论构想，最近的实验已经在两维系统中观测到了任意子。

本章除了讨论2+ 1维的任意子统计和3+ 1的玻色-费米统计之外，我们

还将一般性地解释自旋-统计定理。而且我们也会讨论在理论上如何更方便

地处理多个全同玻色子的体系或者多个全同费米子的体系的量子力学。但

是，本章的很多讨论在理论上偏深，对于初学者来说，我我我们们们建建建议议议仅仅仅仅仅仅阅阅阅读读读

本本本章章章的的的(8.5)节节节玻玻玻色色色子子子和和和费费费米米米子子子，等到日后想要更深入地理解全同性原理

和多体量子力学时再阅读其它各节。
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有一个哲学观点说，世界上没有两件完全一样的事物，莱布尼茨将这

个观点简化为，“世界上没有完全相同的两片树叶”。但在量子世界里，这

个观点是错的！量子客体可以完全相同，比方说，世界上所有的电子都完

全相同，世界上所有的光子也完全相同。更具体一点说，假设有两个电子，

分别在A, B两地，那么除非你一直持续不断地追踪测量这两个电子的运动

轨迹，否则就无从区分A, B两地的电子分别是哪一个。但是，由于位置和

动量的不确定关系，在量子力学中，精确追踪电子的运动轨迹实际上是不

可能的。因此，从根本上来说，人们无法区分两个电子中哪个是哪个。这

一章我们要学习的就是这种量子全同性，以及相应的多体量子力学。

比方说，如图(8.1)所示，(1)、(2)两个全同粒子分别从左右两侧入射，

相互碰撞后其中一个粒子进入探测器D，但是探测器探测到的有可能是粒

子(1)(如图(8.1)(a))，也有可能是粒子(2)(如图(8.1)(b))，由于(1)、(2)两个

粒子全同，(a)、(b)这两种可能性无法分辨，最终探测器D探测到一个粒

子的概率幅应该是(a)、(b)两种情形的概率幅的叠加。 然而两个概率幅的

图 8.1: 从左右两侧入射的两个全同粒子碰撞以后，探测器D探测到粒子的

概率幅应该是(a)和(b)两种情况的叠加。

线性叠加有无穷多种可能性，最终计算出来的概率通常都不相同，对于量

子全同粒子我们该使用哪种叠加方式呢？这就是全同性原理所要解决的问

题。

另一方面，虽然有时候研究单个微观粒子的量子力学就能得到关于世

界的一些重要规律。但是，从根本上说，决定我们这个世界的绝非单个粒

子，甚至也不是几个粒子，而是涉及到大量的全同粒子。比方说，分数量

子霍尔效应就涉及到大量电子的相互作用，如果我们仅仅研究单个电子在

磁场中的规律，那就无法解释分数量子霍尔效应。因此我们也有必有研究

如何才能更方便地处理多个全同粒子的体系的量子力学。
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8.1 *时间演化算符与路径积分

8.1.1 坐标表象中的时间演化算符

在前面的第二章中我们已经知道，一个量子系统的动力学演化规

律完全由时间演化算符U(tf , ti)决定。U(tf , ti)是一个幺正算符，当将

它作用在ti时刻的初态|ψ(ti)⟩上，我们就可以得到系统在tf时刻的量子
态|ψ(tf )⟩，即|ψ(tf )⟩ = U(tf , ti)|ψ(ti)⟩。很显然，U(t, t) = 1，并且我们也

知道U(tf , ti) = exp
(
− iH(tf − ti)/~

)
。一般地，时间演化算符满足如下基

本方程

U(tf , ti) = U(tf , t)U(t, ti), (8.1)

这个方程的含义非常简单，即，先将系统从ti时刻演化到某个中间t时刻，

接着再从t时刻演化到tf时刻，其效果就相当于将系统从ti时刻演化到tf时

刻。

所有量子系统的时间演化算符都必须满足方程(8.1)，同时还得是一个

幺正算符。在理论上，给出一个量子系统就是要给出它的时间演化算符表

达式，而幺正性和方程(8.1)就是对这些时间演化算符的基本限制。换言之，

只有满足方程(8.1)的时间演化算符才能从理论上定义一个量子系统。

有哪些可能的时间演化算符可以满足方程(8.1)呢？ U(tf , ti) = exp
(
−

iH(tf − ti)/~
)
显然是一个回答，这个回答是用哈密顿量来给出的，从第二

章中我们已经知道，这个回答可以方便地给出薛定谔方程，而且在这一回

答中，由于哈密顿算符是厄密算符，所以相应的时间演化算符必然是幺正

的1。但实际上，人们也可以在坐标表象中利用拉格朗日量来回答这个问

题，这就是所谓的量子力学的路径积分表述。当然，对于路径积分给出来

的坐标表象时间演化概率幅，我们需要额外证明其幺正性。对于单粒子情

形，在本章附录中我们通过直接从哈密顿量形式的时间演化算符(它必然幺

正) 推导出路径积分形式的时间演化公式完成了这一证明。

具体来说，为了得出路径积分形式的时间演化公式，我们首先要取坐

标表象(更一般的，也就是取量子系统基本动力学变量的本征态表象)。对

于一个N个全同粒子的体系，我们以有序坐标组{x1,x2, ...,xN}表示这N个
1在第二章中，我们实际上是反过来利用时间演化算符的幺正性一般性地证明哈密顿算

符是厄密算符。
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粒子的坐标，并将这一组坐标笼统地简记为{x}，称之为系统的一个位形2。

当然，一个粒子的动力学变量除了有坐标之外，还可能携带有自旋等等内

部自由度，为了符号简洁起见，我们将标记粒子局域内部自由度的量子数

也包括在坐标记号x里面，比方说，对于一个自旋量子数为ms的粒子，我

们的x其实是代表(x,ms)这一对变量。推而广之，我们这里的x实际上刻画

了粒子所携带的所有局域信息，这些局域信息是和粒子一起运动的。总之，

系统的坐标本征态可以记为|{x}⟩, 它满足如下完备性关系∑
{x}

|{x}⟩⟨{x}| = 1. (8.2)

式中的求和号
∑

{x}代表对每一个粒子的坐标进行全空间积分，同时对所有

离散的局域内部自由度量子数求和。

注意，我们会在两个略有区别的意义上使用自由度这个词，一是用来

指系统的动力学变量，另一方面我们也会将粒子本身称作自由度，当我们

在后一种意义上使用自由度这个词时，我们通常的说法是称作物理自由

度。

局局局域域域性性性与与与非非非局局局域域域性性性

坐标表象的好处之一是，我们很容易利用它来定义局域性(Locality)的

概念。物理学中关于局域性有各种不同的定义，为了帮助读者直观理解局

域性，我们这里直接将局域定义成时空局部或者说时空邻域3。因此所谓

的局域物理自由度，就是坐标在同一个时空邻域内的那些物理自由度，比

如A点附近的一个点粒子就是A点附近的一个局域物理自由度。如果A点附

近有好几个靠得很近的粒子，那么它们都属于A附近的局域物理自由度。

当然，有时候我们也直接将点粒子本身称作局域物理自由度，因为在坐标

表象中，每个时刻点粒子都只能待在一个局域时空点附近。

另外，我们还要引入局局局域域域信信信息息息和和和非非非局局局域域域信信信息息息的概念。所谓的局域信

息，就是单独一个时空邻域内的局域物理自由度所携带的信息。但是，前

面第二章中我们学习过量子纠缠，我们知道，两个不同空间点的粒子可以

通过纠缠处于一个整体的纠缠态，这时候每一个粒子本身都不携带这个纠

缠态的信息，两个不同空间点的粒子作为一个整体才携带了纠缠态的信息。

2这只是一种方便的说法，由于粒子全同性，真正的位形应该是{x}在所有可能置换下
的等价类。

3考虑到相对论的话，时空邻域的概念其实需要进一步精确化。
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这种由类空相间的两个不同时空邻域内的局域物理自由度作为一个整体携

带的纠缠态信息就是一种非局域信息。类空相间当然是一个比较精确的说

法，它即是指这样的两个邻域之间无法传递信息。在非相对论量子力学中，

由于光速非常大，这时候与类空相间对应的概念其实就是给定时刻，两个

距离比较远的空间邻域。两体纠缠能够产生非局域信息，多体纠缠当然也

能产生非局域信息。当然，如果我们将处于纠缠态的一对粒子放到一起，

使得它们处于同一个时空邻域内，那这时候这个纠缠态的信息就变成了局

域信息，这时候我们就可以通过对邻域内的这一对电子进行联合测量来提

取这个局域信息。注意，如果纠缠的这一对粒子离得很远，类空相间，那

它们的纠缠态信息就是非局域信息，这时候没有仪器可以实现对两者的联

合测量，这其实是一种更深层次的局域性原理。

总之，对量子纠缠的学习告诉我们，即使是在局域的坐标表象中，量

子系统依然可能产生非局域信息。当然，量子纠缠的非局域信息是将多个

局域物理自由度纠缠起来产生的，比方说你让一对电子处于某个贝尔态中，

然后将这两个电子分别局域在不相邻近的A、B两个不同点，这时候，这个

贝尔态的量子信息当然是非局域的，但作为一个整体携带这种非局域信息

的两个电子各自都是局域的。正因为如此，在最基本的层次上，量子纠缠

态的信息和局域信息并不完全相互独立，这种不相互独立就是可以利用量

子纠缠来进行量子隐形传态将局域信息从A地隐形传送到B地的关键。

但是，可以设想我们考察的不是一个量子系统最基本的物理自由度，

而是系统的有效物理自由度，比方说在分数量子霍尔效应中我们不考察最

基本的电子，而考察系统的任意子激发。这时候系统的某些非局域信息就

完全有可能和这些有效物理自由度的局域信息相互独立。

回到我们前面研究的N个全同粒子的系统。上面的分析告诉我们，如

果我们考察的这N个全同粒子是有效物理自由度的话，那就有可能还有一

些与局域信息{x}完全独立的非局域信息。我们用一个独立的量子数n来区
分这些非局域信息，n = 1, 2, 3...M。如此一来，我们的坐标表象本征态就

应该进一步推广成|{x}, n⟩，而原来的完备性关系(8.2)就应该推广成，∑
{x},n

|{x}, n⟩⟨{x}, n| = 1. (8.3)

在这个坐标表象下，我们可以把时间演化算符U(tb, ta)表示成

⟨{x}b,m|U(tb, ta)|{x}a, n⟩ = ⟨{x}b,m, tb|{x}a, n, ta⟩. (8.4)
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等式右边|{x}, n, t⟩这样的记号表示|{x}, n, t⟩ = exp(iHt/~)|{x}, n⟩, 它其实
是海森堡绘景中坐标算符的本征态(海森堡绘景中坐标算符要随着时间演

化，因此其本征态也依赖于时间) 4。通过利用完备性关系(8.3), 现在我们

就可以把时间演化算符的基本方程(8.1)重新表示成

⟨{x}f ,m|U(tf , ti)|{x}i, n⟩
=

∑
{x}b,k

⟨{x}f ,m|U(tf , tb)|{x}b, k⟩⟨{x}b, k|U(tb, ti)|{x}i, n⟩. (8.5)

或者也可以用等式(8.4)右边的记号重写为5

⟨{x}f ,m, tf |{x}i, n, ti⟩ =
∑
{x}b,k

⟨{x}f ,m, tf |{x}b, k, tb⟩⟨{x}b, k, tb|{x}i, n, ti⟩.(8.6)

只要知道了⟨{x}f ,m, tf |{x}i, n, ti⟩, 我们就很容易求出任何波函数的时
间演化。这是因为，根据|ψ(tf )⟩ = U(tf , ti)|ψ(ti)⟩, 我们可以得到

⟨{x}f ,m|ψ(tf )⟩ =
∑
{x}i,n

⟨{x}f ,m|U(tf , ti)|{x}i, n⟩⟨{x}i, n|ψ(ti)⟩

=
∑
{x}i,n

⟨{x}f ,m, tf |{x}i, n, ti⟩⟨{x}i, n|ψ(ti)⟩. (8.7)

式中⟨{x}, n|ψ(t)⟩ = ψ({x}, n, t)就是系统的波函数，而上面这个方程给出
的就是波函数的时间演化规律。

8.1.2 单粒子路径积分

路径积分不是直接告诉我们量子态如何随时间演化，而是利用作用量

给出时间演化算符U(tb, ta)在坐标表象下的矩阵元⟨{x}b,m, tb|{x}a, n, ta⟩的
计算公式。下面我们先就单粒子情形阐述费曼得出路径积分公式的基本思

想，然后给出单粒子情形的费曼路径积分公式，并解释这个公式的由来，

4如果用我们在第二章第4节《补充材料：海森堡是怎么想到矩阵相乘的》的语言来说，

那么{{x}, n, t}就代表系统t时刻的一组特定的可确定区分可能性完备集，而等式(8.4)右边

的⟨{x}b,m, tb|{x}a, n, ta⟩其实就是ta时刻到tb时刻的一个跃迁幅。因此，第二章第4节中

跃迁幅的概念其实就是时间演化算符的矩阵表示。
5这个方程其实就是我们在第二章第4节《补充材料：海森堡是怎么想到矩阵相乘的》

中通过1的自身等于1 以及海森堡和费曼的跃迁元乘法规则所导出来的跃迁幅的基本性质。
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最后再具体验证它满足基本方程(8.6)。至于对路径积分幺正性的证明，我

们放在附录中进行。

如果整个系统只有一个粒子，那所有的信息都只能由这个粒子携带，

从而都必定是局域信息，因此标记非局域信息的量子数这时候实际上不存

在。这时候坐标表象本征态可以简单记为|x⟩, x就是这个粒子的坐标(包括

一些可能的局域内部自由度量子数)。而时间演化算符在坐标表象下的矩阵

元就是⟨xb, tb|xa, ta⟩, 它描述的就是，ta时刻粒子从位置xa出发，在tb时刻演

化到xb位置的概率幅。根据(8.6)，⟨xb, tb|xa, ta⟩满足如下基本方程

⟨xf , tf |xi, ti⟩ =
∑
xb

⟨xf , tf |xb, tb⟩⟨xb, tb|xi, ti⟩. (8.8)

如果这个粒子是一个经典粒子，我们知道它将遵循最小作用量原理，

在ta时刻从xa出发，tb时刻到达xb位置的所有可能路径中，它将走使得作

用量泛函S[x]取极值的那条路径，也就是经典路径。注意，这里出现了作

用量这个量，这其实是一个提示，它告诉我们当我们在量子力学层次上计

算⟨xb, tb|xa, ta⟩时，作用量S也可能很重要。最早注意到这个提示的是狄拉
克，但直到费曼才将这个提示发展成一个关于量子力学的自洽理论，也就

是路径积分。费曼注意到，对于一个量子粒子而言，由于其位置和动量不

可同时确定，所以在量子的层次上，粒子的运动路径任何情况下都无法确

定(因为确定了一条运动路径就意味着位置和速度，或者说动量，的同时确

定)。海森堡同样知道这一点，但海森堡的看法是，这说明粒子的运动路径

不可观测，这个概念应该从量子力学理论中抛弃掉。海森堡当然并没有错，

在量子力学中，运动路径的确不再是一种可观测的物理实在，在这个意义

上，确定的路径确实是不存在的！

但是费曼认为，作为一个发展理论的概念，路径可以被保留。这就

有点像电动力学中，矢量势也不可观测，但矢量势的概念对于电动力学

理论依然很重要。费曼认识到量子力学的不确定性来自于叠加，如果电

子自旋的z分量无法确定，那就意味着电子处在叠加态，需要将电子的自

旋1/2态和自旋−1/2态叠加起来。类似的，费曼认为，粒子运动路径的无

法确定意味着有许多运动路径都对概率幅⟨xb, tb|xa, ta⟩有贡献，而我们需
要把这些不同路径的贡献叠加起来。这是因为，如果只有一条运动路径

对⟨xb, tb|xa, ta⟩有贡献，就像经典力学里面的最小作用量路径一样，那粒子
的运动路径就确定了，而这就和量子力学矛盾了。不过，与电子自旋叠加

态的不同之处在于，电子的自旋1/2态和−1/2态本身都可观测，所以我们
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可以讨论这两个自旋态本身的叠加。但是，任何一条确定路径本身在物理

观测上都不存在，所以当然也并没有不同路径本身相叠加的概念，我们叠

加的是按不同路径计算出来的对⟨xb, tb|xa, ta⟩这个量的贡献。
进一步，费曼认为，如果我们完全不限制粒子的演化过程，那它

的运动路径就会具有最大的量子不确定性，这时候所有可能路径都会

对⟨xb, tb|xa, ta⟩有贡献，相应的我们就应该将所有这些贡献都加起来。
每一条运动路径对⟨xb, tb|xa, ta⟩的贡献是多少呢？费曼在狄拉克的工作

基础上提出，贡献是eiS[x]/~, S[x]就表示这条路径的作用量。因此费曼提出

他的路径积分公式

⟨xb, tb|xa, ta⟩ =
∑
x(t)

ei
S[x(t)]

~ . (8.9)

式中的求和是对所有可能路径求和，x(t)表示一条ta时刻起于xa, tb时刻到

达xb的运动路径，S[x(t)]表示这条路径的作用量，它是拉格朗日量的时间

积分

S[x(t)] =

∫ tb

ta

dtL(x(t), ẋ(t), t). (8.10)

至于如何对所有路径进行求和，这其实是一个重要的数学问题，我们将会

在本章附录中进一步讨论。

为什么每条路径的贡献是eiS[x]/~呢？大致的解释如下：首先，为了使

得路径求和最终计算出来的结果⟨xb, tb|xa, ta⟩ 满足基本方程(8.8), 每条路径

的贡献就必须要取eiS/~这样的指数形式，而且指数上的S应该是某个量沿

着路径的时间积分。进一步，为了满足幺正性，这个S只能是相应路径的

作用量，它是拉格朗日量的时间积分。关于S为什么要是作用量，在本章

的附录中我们将会看得很清楚，下面我们来具体验证(8.9)满足方程(8.8)。

为了表达清晰，我们引入一些记号，我们将一条ta时刻从xa发出，tb时

刻到达xb的路径x(t)记为，x(t) : a → b, 称之为{ta,xa} → {tb,xb}路径，相
应的作用量记为Sa→b[x(t)]。则根据费曼的路径积分公式(8.9), 我们有∑

xb

⟨xf , tf |xb, tb⟩⟨xb, tb|xi, ti⟩

=
∑
xb

( ∑
x(t):b→f

ei
Sb→f [x(t)]

~
)( ∑

x(t):i→b

ei
Si→b[x(t)]

~
)

=
∑
xb

∑
x(t):i→b→f

ei
(
Si→b[x(t)]+Sb→f [x(t)]

)
/~. (8.11)
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式中求和下标x(t) : i → b → f表示由一条{ti,xi} → {tb,xb}路径结
合一条{tb,xb} → {tf ,xf}路径所形成的路径，它其实是一条{ti,xi} →
{tf ,xf}路径，只不过这条路径中间的{tb,xb}点被固定了，式(8.11)中的求

和号
∑

x(t):i→b→f就是表示对所有这种路径求和。但是，当我们如式(8.11)中

那样进一步对所有xb求和时，那这个中间{tb,xb}点就不再是固定的了，因
此实际上(8.11)中的两个求和号

∑
xb

∑
x(t):i→b→f联合起来所代表的，就是对

所有{ti,xi} → {tf ,xf}路径求和，因此就是
∑

x(t):i→f。另一方面，注意到

Si→b[x(t)] + Sb→f [x(t)] =

=

∫ tb,xb

ti,xi

dtL(x, ẋ, t) +

∫ tf ,xf

tb,xb

dtL(x, ẋ, t)

=

∫ tf ,xf

ti,xi

dtL(x, ẋ, t) = Si→f [x(t)]. (8.12)

所以我们可以将(8.11)式重写成∑
xb

⟨xf , tf |xb, tb⟩⟨xb, tb|xi, ti⟩

=
∑

x(t):i→f

eiSi→f [x(t)]/~ = ⟨xf , tf |xi, ti⟩. (8.13)

很显然，结果正好给出(8.8)。因此这就验证了费曼路径积分公式(8.9) 的确

满足时间演化的基本方程。

以上就是对于单粒子坐标表象下的时间演化算符的路径积分表述。这

个表述和薛定谔方程其实是等价的，原则上，只要我们利用费曼给出来的

公式(8.9) 计算出任意⟨xb, tb|xa, ta⟩，那根据方程(8.7), 我们就能得到波函数

的时间演化

ψ(x, t) =
∑
x′

⟨x, t|x′, t′⟩ψ(x′, t′). (8.14)

这和求解薛定谔波动方程所得到的波函数演化完全等价。

对于多个全同粒子情形，人们同样可以找到相应⟨{x}f ,m, tf |{x}i, n, ti⟩
的路径积分公式。不过这时候情况要稍微复杂一些，时间演化的基本方

程(8.6)以及幺正性的要求允许⟨{x}f ,m, tf |{x}i, n, ti⟩有更多的可能性。下
一节我们将开始探讨这一问题。
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8.2 *路径的拓扑类和编织

首先说说说明明明一下，这一节标题中的编织英文是Braid，在文献中它通常

是特指2 + 1维情形的，在中文里通常将相应的群(后面会定义这个概念)翻

译成编织群或者辫子群，两者没有区别。但我们这里是要统一处理2 + 1维

情形和3 + 1维情形，所以我们这几节中的编织具有更广一些的含义，为了

以示区别，我们将把2 + 1维情形的相应群称作辫子群，而将2 + 1维情形

和3 + 1维情形的群统称为编织群(虽然在3 + 1维它其实是一个置换群)。

假设我们将N个全同粒子在ta时刻的N个位置标记为{x1,a,x2,a, ...,xN,a}，
同样将在tb时刻的N个位置标记为{x1,b,x2,b, ...,xN,b}。并且对于这些粒
子从ta时刻的位形{x}a = {x1,a,x2,a, ...,xN,a}运动到tb时刻的位形{x}b =

{x1,b,x2,b, ...,xN,b}, 假设我们在时空中画出每一个粒子的运动路径，很明显
这些路径可能会如图(8.2)所示。 但是由于全同粒子不可分辨，所以我们其

图 8.2: 多个全同粒子从ta时刻到tb时刻的可能路径。

实根本不可能知道tb时刻的哪个位置来源于ta时刻的哪个粒子，这些粒子完

全有可能中途发生置换，因此图(8.3)所示的路径同样可能， 而且我们实际

图 8.3: 多个全同粒子从ta时刻到tb时刻的另一种可能路径。

上无法在物理上将它们和图(8.2)所示的路径区分开来。实际上，从{x}a位
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形到{x}b位形，图(8.3)这样的有比较复杂交叉关系的路径才是典型的。

为了方便下面的分析，现在我们将图(8.3)所示的典型路径进行连续形

变，但是保持路径之间的交叉关系不变，读者很容易看出，我们总可以

将图(8.3)这样的路径连续变形为图(8.4)所示的这种比较标准的形式。 实

图 8.4: 全同粒子路径的标准形式。

际上，多个全同粒子从ta时刻{x}a位形到tb时刻{x}b位形的任何路径，我们
总是可以在保持路径之间交叉关系的前提下，将它们连续变形为类似于

图(8.4)所示的这种标准形式。在数学上，对于两组起末两端固定的路径，

如果在保持交叉关系的前提下可以让它们通过路径的连续形变相互过渡，

我们就说这两两两组组组路路路径径径在在在拓拓拓扑扑扑上上上等等等价价价，或者说它们属于全同粒子路径的同

一个拓扑等价类！根据这个定义图(8.3)所示的路径与图(8.4)所示拓扑等价，

属于同一拓扑等价类。相反，图(8.2)所示的路径与图(8.3)所示的路径就属

于两个不同的拓扑等价类。因此，给定ta时刻与tb时刻的位形，全同粒子的

路径可以分成多个不同的拓扑等价类，每一个拓扑等价类的路径都可以连

续形变为类似于图(8.4)这样的标准形式。

从图(8.4)中我们可以发现，如果我们在纸面上表现全同粒子的路径，

那这些标准路径非常有规律，实际上，你很容易发现它可以由对路径的一

些基本编织操作生成。为了让读者看得更清楚一点，下面我们来定义这些

基本编织操作，首先我们把N个空间坐标标记成1, 2, ..., N，并按照从左到

右的顺序排成一行表现在纸面上。我们定义编织操作σi为将第i个位置处的

路径逆时针与相临的第i + 1位置的路径交换顺序，如图(8.5)左边这幅图所

示。如果这种顺序交换是按照顺时针方式进行，如图(8.5)右边这幅图所示，

那我们就将之定义成σ−1
i ，称作σi的逆操作，至于为什么是逆操作我们很快

就能看到。 如果忘记时间坐标，只关心这两个编织操作在空间上形成的轨

道，那从上方往下俯视，σi和σ
−1
i 将如图(8.6)所示。
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图 8.5: 左图是σi，右图是σ
−1
i .(图片来自于网络)

图 8.6: 左图是σi，右图是σ
−1
i .

我们将时间上先后进行的两个编织操作定义为这两个编织操作相乘，

先进行的编织操作写在乘式的右边，后进行的编织操作写在乘式的左边。

当然，有时候两个编织操作的先后顺序对结果并没有影响。我们定义任

何两个编织操作相乘的结果依然是一个编织操作(通常是更复杂一点的

编织操作)。利用这样的编织乘法，我们就可以把图(8.4)所对应的编织操

作写成(σ4σ2)(σ
−1
3 σ1)(σ2)，如图(8.7)所示。 根据这样的编织乘法，读者很

图 8.7: 编织操作(σ4σ2)(σ
−1
3 σ1)(σ2).

容易验证，σiσ
−1
i 以及σ

−1
i σi的结果在拓扑上都等价于不进行任何编织，如

图(8.8)所示, 我们记为σiσ
−1
i = σ−1

i σi = 1，这就是为什么我们称σ−1
i 为σi的

逆操作的原因。

通过将路径进行连续形变，我们很容易证明如图(8.9)所示的等价关系。
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图 8.8: σ−1
i σi = 1.

我们可以将这两个等价关系写成如下方程

图 8.9: 左图表示当|i − j| ≥ 2时，σiσj = σjσi。右图表示σiσi+1σi =

σi+1σiσi+1。(图片来自于网络)

σiσj = σjσi, for |i− j| ≥ 2

σiσi+1σi = σi+1σiσi+1. (8.15)

上面这个式子的后一个方程尤为基本和重要，虽然我们依然是用纸面上的

基本关系来表达它，但正是因为有了这个方程，我们在纸面上表现的这些

路径才能算是2 + 1维时空或者3 + 1维时空中的路径，而不仅仅只是纸面上

的路径。

每一个编织操作我们称之为一个编织群元，很显然，所有的编织群

元都可以通过将一些σi或者σ
−1
i 这样的基本编织群元乘起来生成。比方说

图(8.4)所对应的编织操作(σ4σ2)(σ
−1
3 σ1)(σ2)就是一个编织群元。两个编织

群元g1和g2的乘积g2g1就定义为相应的两个编织操作相乘，g2g1依然是对路

径的一种编织，因此也是一个编织群元。也即是说，所有可能的编织群元

的集合在乘积关系下是封闭的。不进行任何编织就称为单位群元，记为1。

读者想一下就能明白，对于任何一种复杂的编织操作g，我们都可以找到

一个“反向编织操作”g−1，使得两者乘起来的结果拓扑等价于1，我们
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称g−1为g的逆。因此，任何一个编织群元都有一个逆元。在数学上，一个

集合，如果其元素之间可以进行某种乘法运算6，并且集合本身在这种乘法

下保持封闭，而且集合中存在一个单位元，且任何元素都有一个乘法逆元，

这样的集合数学家称之为群，集合中的元素就称之为群元。因此，对N个

粒子的路径的所有可能编织操作构成了一个群，我们可以称之为编编编织织织群群群。

σi就称为编织群的生成元，它们满足基本代数关系(8.15)。

但是，2维空间(加上一维时间就是2 + 1维时空)中粒子的编织群和3维

空间粒子的编织群不一样！下面我们就来研究这两者的区别。

辫辫辫子子子群群群与与与置置置换换换群群群，，，2 + 1维维维与与与3 + 1维维维的的的区区区别别别

编织群由一些基本的编织操作σi生成，σi表示将一对相邻粒子逆时

针交换位置，如果是顺时针交换位置我们就称之为σ−1
i ，如图(8.6)所示。

但是，逆时针编织和顺时针编织的区别是2 + 1维时空的特殊情况，如果

在3 + 1维时空，那这两者实际上拓扑等价，即σ−1
i = σi，也即是说这时候

图(8.5)中左右两种情况实际上拓扑等价(之所以左右两边的图形看起来不等

价，是因为我们无法在纸面上在表现出时间维的同时表现出3维空间)。换

言之，对于3 + 1维时空，编织群的生成元额外满足如下代数关系

σ2
i = 1. (8.16)

即，将同一个基本编织操作连续进行两次等价于不编织，或者说，将两个

粒子连续交换位置两次等价于不交换。

为了证明(8.16)式，我们注意到σ2
i实际上就等价于将一个粒子围绕着另

外一个粒子转一圈。如果我们忘记时间维，将注意力集中在这种编织操作

的空间轨道上，我们就能发现，在2维空间，一个粒子围绕着另一个粒子转

一圈不能拓扑等价于不转圈，如图(8.10)右图所示。但是，在3维以上空间，

由于空间维度更多，给轨道的拓扑形变留下了足够的余地，所以一个粒子

围绕着另外一个粒子转一圈完全可以连续变形为不转圈，如图(8.10)左图所

示。 因此，这就证明了在3维以及3维以上空间，σ2
i = 1。

正是因为在3 + 1维时空基本编织操作额外满足代数关系式(8.16)，即

将两个粒子逆时针交换位置还是顺时针交换位置其实没有区别，所以这时

候的路径编织在一定意义上是平凡的，我们只需要用N个粒子之间的位置

置换来考虑问题就足够了。这时候的编织群实际上就是位置置换群，通常

6注意，一般来说群的乘法不一定满足交换律。
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图 8.10: 图片来源：5W Infographics / Quanta Magazine

记作SN。只有在2 + 1维时空，对路径的编织关系才是非平凡的，这时候

对N个粒子路径的编织群我们称之为辫子群(Braid Group)，记为BN , 因为

这时候对路径编织的结果很像发辫。

很明显，N个全同粒子从ta时刻的{x}a位形演化到tb时刻的{x}b，其所
有可能演化路径可以分成许多个不同的拓扑等价类，每一个拓扑等价类的

路径图都可以用类似于图(8.4)这样的标准形式来代表，因此与编织群的群

元g一一对应。对于2 + 1维时空，g ∈ BN，而对于3 + 1维时空，g ∈ SN。

粒子从ti时刻经过g1类路径演化到tb时刻，接着再从tb时刻经过g2类路径演

化到tf时刻，其总效果就是粒子从ti时刻经过g2g1类路径直接演化到tf时刻，

可以写成

i
g1−→ b

g2−→ f ⇔ i
g2g1−−→ f. (8.17)

这里我们定义g1和g2两类路径相乘为将它们的标准路径图在时间上先后对

接起来，如此一来，这这这种种种路路路径径径拓拓拓扑扑扑类类类的的的乘乘乘法法法与与与相相相应应应编编编织织织群群群元元元的的的乘乘乘法法法刚刚刚好好好

一一一一一一对对对应应应。

编织群作为一个群，它在数学上允许一种美妙的附加结构，称之为群

的表示。具体来说，就是对于每一个群元g，我们都将它对应到希尔伯特空

间的一个幺正算符U(g)，并且让这种对应保持群的乘法关系，即满足

U(g2)U(g1) = U(g2g1). (8.18)

这种满足(8.18)式的从一个群到希尔伯特空间幺正算符的映射关系就称为

群的幺正表示。当然，这种幺正表示有可能是平凡的，比方说U(g) = 1显

然满足(8.18)式，从而构成编织群的幺正表示，但这个幺正表示显然是一个

平凡的表示。然而编织群，无论是2 + 1维的BN还是3 + 1维的SN，都可以
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有非平凡的幺正表示。正因为编织群可以有这些非平凡的幺正表示，就使

得多个全同粒子的路径积分有了更多的可能性。

8.3 *全同粒子统计

8.3.1 全同粒子路径积分

下面我们来考察N个全同粒子的路径积分公式。首先，假设我们将粒

子的所有路径按照拓扑等价关系分类，每一类对应一个编织群元g，并且假

设我们可以引入一个非平凡的U(g)。由于U(g)只依赖于路径的拓扑类，在

路径的连续形变下将保持不变，而路径的连续形变是一种局域操作，它会

改变系统的局域信息，这就说明U(g)对系统的局域信息不能有作用，它只

能作用在非局域信息的指标n = 1, 2, ...,M上。考虑到这一点我们就可以给

出如下路径积分公式

⟨{x}b,m, tb|{x}a, n, ta⟩ =
1

G

∑
g

[
⟨m|U(g)|n⟩

∑
{x(t)}∈g:a→b

eiSa→b[{x(t)}∈g]/~
]
.(8.19)

式中下标{x(t)} ∈ g表示属于拓扑类g的一组路径，式中最后的求和
∑

g表示

对所有的路径拓扑类求和，也即是对编织群的所有群元求和，式中的G表

示编织群的群元总数目。

相比于单粒子路径积分公式，(8.19)的关键不同之处在于将多粒子路

径按照拓扑等价类来处理了，一个等价类之内的每一条路径对路径积分的

贡献和单粒子情形类似，都是eiS/~，但这不是全部贡献，对于每一个等价

类g，我们还要额外乘以幺正表示U(g)。

根据我们在附录中关于单粒子路径积分幺正性的证明可以类似地知

道，
∑

g

∑
{x(t)}∈g:a→b e

iSa→b[{x(t)}∈g]/~是幺正的，又由于U(g)是幺正算符，所

以我们可以知道(8.19)给出来的⟨{x}b,m, tb|{x}a, n, ta⟩ 是幺正的。这就证明
了路径积分公式(8.19)的幺正性。

下面我们来验证(8.19)式满足时间演化的基本方程(8.6)。首先我们注意

到由方程(8.18)容易有∑
k

⟨m|U(g2)|k⟩⟨k|U(g1)|n⟩ = ⟨m|U(g2g1)|n⟩. (8.20)
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其次，根据(8.19)式我们有∑
{x}b,k

⟨{x}f ,m, tf |{x}b, k, tb⟩⟨{x}b, k, tb|{x}i, n, ti⟩

=
1

G2

∑
g1,g2

∑
k

[
⟨m|U(g2)|k⟩⟨k|U(g1)|n⟩

×
∑
{x}b

( ∑
{x(t)}∈g2:b→f

eiSb→f [{x(t)}∈g2]/~
)( ∑

{x(t)}∈g1:i→b

eiSi→b[{x(t)}∈g1]/~
)]

=
1

G2

∑
g1,g2

[
⟨m|U(g2g1)|n⟩ ×

( ∑
{x(t)}∈g2g1:i→f

eiSi→f [{x(t)}∈g2g1]/~
)]
. (8.21)

式中的第二个等于号我们利用了路径拓扑类的乘法，以及我们在单粒子

路径积分中相关推导的经验。现在，在(8.21)式中令g2g1 = g, 并利用g2 =

gg−1
1 消去g2, 则

∑
g1,g2

=
∑

g,g1
, 而(8.21)式最后的式子就可以写成

1

G2

∑
g,g1

[
⟨m|U(g)|n⟩ ×

( ∑
{x(t)}∈g:i→f

eiSi→f [{x(t)}∈g]/~
)]
. (8.22)

注意到(8.22)式的被求和式子实际上与g1无关，因此对所有g1的求和就简单

地等于群元数目G，刚好将表达式中的 1
G2抵消成

1
G
。

综合以上这些结果，我们就能得到∑
{x}b,k

⟨{x}f ,m, tf |{x}b, k, tb⟩⟨{x}b, k, tb|{x}i, n, ti⟩

=
1

G

∑
g

[
⟨m|U(g)|n⟩ ×

( ∑
{x(t)}∈g:i→f

eiSi→f [{x(t)}∈g]/~
)]

= ⟨{x}f ,m, tf |{x}i, n, ti⟩. (8.23)

这样就完成了对方程(8.6)的验证。

8.3.2 2 + 1维以及3 + 1维的讨论

正如我们已经说过的，多粒子路径编织群的幺正表示U(g)作用在与

局域信息相互独立的非局域信息空间上，数学上称这样的希尔伯特空间

为编织群的幺正表示空间，这个空间的基矢量是|n⟩, n = 1, 2, ...,M，空间

维数M称之为幺正表示的维数。由于假定这样的表示空间和系统的局域

信息相互独立，因此系统的任何局域扰动对它都不会产生影响，这就意
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味着这样的表示空间不会在对系统的局域扰动之下分裂成多个更小的表

示空间。数学上常常称具有这种性质的表示空间为不可约表示空间。矩

阵⟨m|U(g)|n⟩就称为不可约表示矩阵，或者简称为不可约表示。M就是这
个不可约表示的维数。

数学家告诉我们，由于要满足方程(8.20)，并非任意维度的希尔伯特空

间都能构成编织群BN或者SN的不可约表示空间。最简单的不可约表示当

然就是1维表示，即M = 1。由于1行1列的幺正矩阵必定是一个相位因子，

因此这时候幺正算符U(g)在这样的1维表示空间的作用只能是一个相位因

子，可以记为e−iφ(g)。很显然的是，无论是BN还是SN都有一个平凡的一维

表示，这时候U(g)在这个1维表示空间上的作用恒等于1, 我们称这样的表

示为恒等表示。

2 + 1维维维情情情形形形

但是对于2 + 1维情形，这时候编织群是辫子群BN , 而BN有非常多

的不平凡一维表示。不妨假设逆时针编织σi在某个一维表示中被表示成

了e−iθi , 则很显然顺时针编织σ−1
i 将被表示成e

iθi。由于编织群的表示要保持

乘法关系，特别的是要保持(8.15)式的乘法关系,则我们有e−iθie−iθi+1e−iθi =

e−iθi+1e−iθie−iθi+1 , 即有

e−iθi = e−iθi+1 = ... = e−iθ. (8.24)

但是，除此之外，辫子群BN无法对θ施加更多的约束，也就是说任何相位

因子e−iθ都是允许的。这就告诉我们，在一维表示情形中，当我们将两个

邻近的2 + 1维全同粒子逆时针交换顺序时(即逆时针编织)，波函数可以多

出一个任意的相位因子e−iθ，而顺时针交换顺序则会多出eiθ。由于θ任意7，

所以人们将这样的2 + 1维全同粒子称作任意子！严格一点说是阿贝尔任意

子。所谓的阿贝尔是指，在这种一维表示情形下，BN的表示矩阵是相位因

子，它们满足乘法交换律，在群理论中，阿贝尔作为形容词指的就是满足

乘法交换律！

对阿贝尔任意子的阐述很容易使我们想到，如果BN的不可约表示空间

不是一维，而是2维以上，那这时候表示矩阵⟨m|U(g)|n⟩就真是一个矩阵而
不是可交换的复数了，矩阵不满足乘法交换律，所以对于这种情形人们就

把相应的全同粒子称作非阿贝尔任意子。

7实际上，在编织张量范畴理论中可以证明，θ只能取2πp/m(p,m是两个互素的整数)的

形式。
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任意子这种神奇的粒子最早完全是理论凝聚态物理学家的一个预言，

但是最近的实验表明，阿贝尔任意子在特定的两维系统中真的存在，人们

已经在实验中发现它们了。不仅阿贝尔任意子，许多凝聚态物理学家相

信非阿贝尔任意子也能在某些特定的两维系统(比如某些分数量子霍尔系

统)中存在。关于哪些系统中可能找到非阿贝尔任意子，理论学家已经有了

不少预言，然而由于对实验要求很高，到目前为止，虽然有些观测迹象表

明它们的确存在，但人们还没有找到很确凿的证据。然而非阿贝尔任意子

比阿贝尔任意子更为神奇，也更为重要，其中的一个原因在于，理论研究

表明，有一些非阿贝尔任意子可以用来实现通用的容错量子计算！从长远

来看，这也许是最有希望的量子计算实现方案。

非阿贝尔任意子实现容错量子计算的原理其实不难理解。为了说清楚

这一点，让我们设想对处于|{x}, n⟩态的这N个任意子进行一个编织操作g，
编织完了之后让这N个全同任意子的位形回到{x}，因此整个过程的效果
类似于图(8.4)所示。很显然，这样的编织操作只会影响指标n标记的非局

域信息，具体来说，这样的编织操作g其实就相当于在|{x}, n⟩上作用U(g)，
从而有

|{x}, n⟩ → U(g)|{x}, n⟩ =
∑
m

|{x},m⟩⟨m|U(g)|n⟩. (8.25)

现在，设想我们将要进行计算处理的量子态编码成非局域信息|{x}, ψ⟩ =∑
n ψn|{x}, n⟩, 式中复叠加系数ψn所包含的就是我们要处理的量子信息。

则在编织操作g之下我们将有

|{x}, ψ⟩ → U(g)|{x}, ψ⟩ =
∑
m

|{x},m⟩
∑
n

⟨m|U(g)|n⟩ψn. (8.26)

很显然，编织操作g相当于对量子信息ψn进行了如下计算

ψm →
∑
n

⟨m|U(g)|n⟩ψn. (8.27)

因此，只要合适地利用对非阿贝尔任意子的编织操作，我们就能实现想要

的量子计算。

这种计算的幺正矩阵⟨m|U(g)|n⟩是非局域的，系统的任何局域扰动都
不能影响它。这一点正是利用非阿贝尔任意子进行量子计算的巨大优点，

因为这样的计算过程将会天然对环境的退相干效应产生免疫。这是因为，

退相干主要就是因为系统和环境之间存在大量的局域相互作用而产生的，
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现在既然这样的局域相互作用没法影响⟨m|U(g)|n⟩，那这样的量子计算当
然就会对退相干免疫。寻找有合适非阿贝尔任意子的量子系统以及如何利

用编织操作进行具体的量子计算，这些就是当前拓扑量子计算研究的核

心课题。在拓扑量子计算中，所谓的计算其实就是一连串的编织操作，如

图(8.11)所示(注意图中水平方向才是时间方向)。

图 8.11: 摘自Collins, Graham P. ”Computing with quantum knots.” Scien-

tific American 294.4(2006):56-63

然而，一个存在任意子的两维系统通常不会只有一种类型的任意子，

而是可以有多种不同的任意子类型，不同类型的任意子当然不是全同粒

子，因此我们这里描述的全同粒子理论其实不能完整地描写任意子系统。

对任意子系统的理论描述需要新的数学，这就是所谓的编织张量范畴理

论，这是一个非常抽象的数学理论，它当然大大超出了我们这本书的范围，

一个相对比较容易入门的读物是Steven H. Simon 的在线讲义“Topological

Quantum”8。

回到我们的N个全同粒子系统。由于张成辫子群不可约表示空间的这

些非局域信息也是由这N个全同任意子作为一个整体携带的，因此可以想

见，至少在N足够大时，不可约表示空间的维数M将随着N的数目指数增

长，即有

M ∼ dN . (8.28)

类似这种关系我们其实很熟悉，比方说，每个量子比特的希尔伯特空间

是2维，因此N个量子比特的总希尔伯特空间就是2N维。所以式(8.28)中

的d可以理解为每个任意子的非局域信息的维数，称作非阿贝尔任意子的量

子维数。但是，不可思议的是，非阿贝尔任意子的d可以不是整数，甚至可

8http://oxfordtopquantum.tiddlyspot.com/
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以是无理数，比方说有一种被称作斐波那契任意子的非阿贝尔任意子，它

的d = 1+
√
5

2
。

3 + 1维维维情情情形形形

3维空间或者3维以上空间和2维情形有根本性的不同，这时候编织群

是SN，即基本编织操作σi要额外满足代数关系σi = σ−1
i ，或者说将两个粒

子逆时针交换顺序和顺时针交换顺序结果是一样的，因此唯一体现路径

编织的地方其实仅仅在于粒子的位置置换，SN其实就是N个粒子的置换

群。这会带来一些根本性的不同，最大的不同在于，2 + 1维的编织由于逆

时针编织和顺时针编织不同，所以必须跟随整个编织操作的时间演化，我

们无法在一个固定的时刻定义2 + 1维编织操作。但是，对于粒子的位置

置换来说，我们无需追究具体是如何置换的，或者说将两个粒子的位置坐

标交换一下这样的操作可以在任何一个固定时刻都有定义。这使得我们

可以定义作用在固定时刻量子态空间的置换算符，正如后文我们将要看

到的，这样的算符其实是对量子态的一个对称变换，从而使得位置置换成

为3 + 1维全同粒子系统的一种对称性，而置换群SN就可以看成是一个对称

群。而2+ 1维的辫子群BN就不能简单理解为对称性，而是一个比对称性更

抽象的概念，完整的数学描述要用编织张量范畴。

不过在具体定义3 + 1维的置换对称性之前，我们是统一用路径编织的

概念来看待2 + 1维和3 + 1维的，只不过3 + 1维得额外满足σ2
i = 1。对于编

织群的一维表示e−iθ来说，这意味着3 + 1维要额外满足(
e−iθ

)2
= 1. (8.29)

这意味着e−iθ不能取任意值，而是仅仅只有e−iθ = ±1这两种可能性。在数

学上，这两种可能性分别对应置换群SN仅有的两种1维不可约表示。

由于在3 + 1维，σi就是将两个粒子的位置对换，而N个粒子的任意位

置置换总能通过一系列的两两对换来实现(这里请读者自己用3个或者4个粒

子的位置置换为例来看清这个结论的普遍性)，所以e−iθ = 1的可能性就意

味着，对N个粒子进行任意置换所产生的影响都是不变的因子1，即对于任

何g，相应的一维表示相位因子均为e−iφ(g) = 1，这其实就是置换群的恒等

表示。这种情形所描述的全同粒子就是所谓的全同玻色子。

而对于e−iθ = −1这种情形，它必然意味着N个粒子的任何偶置换都

产生因子1(即相应的e−iφ(g) = 1)，而任何奇置换都产生因子−1(即相应

的e−iφ(g) = −1)。所谓偶置换就是可以实现为偶数个两两对换相乘的置换，
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而所谓奇置换就是可以实现为奇数个对换相乘的置换。在我们现在的情

形中，每个对换会贡献一个−1，所以偶数个对换相乘产生的因子就是1，

而奇数个对换相乘产生的因子就是−1。这种情形称作置换群SN的交错表

示(alternating representation)。这种情形所描述的全同粒子就是所谓的全

同费米子。

当然，3 + 1维编织群SN也有2维以上的不可约表示。但是考虑到真实

物理系统的一些附加限制，人们可以证明所有这些高于1维的不可约表示

都不能描述真实的3 + 1维全同粒子系统。证明中所需要的额外物理限制主

要有两个：1. 任意粒子都有其反粒子，人们可以产生一对正反粒子，也可

以让一对正反粒子相互湮灭。这一条物理限制当然早就被实验验证了，反

粒子和反物质的概念可以说是现代物理学的常识。在历史上，反粒子的存

在最早是狄拉克1928年在理论上预言的，1932年被C.D.安德森用实验证实。

2. 粒子间的相互作用具有局域性。这也就是说，在同一时刻北京产生或者

湮灭一对正反粒子对于南昌的实验结果不应该有任何影响。具体的证明过

程非常复杂，原始论文9过于长我也不推荐读者阅读。大体思想也许是证明

在上述两个物理约束下，编织群为SN的全同粒子体系携带的所有信息在一

定意义上都不能与局域信息相互独立，因此独立非局域信息的维度M = 1，

从而只能构成SN的1维不可约表示，高于1维的不可约表示都不可行10。

一般来说，物理学和数学有很大的不同，物理学的不可行定理(No go

theorem)的前提假设很容易出漏洞，人们不只一次地找到过各种物理学不

可行定理的例外，因此这么复杂抽象的证明物理学家不一定会真正重视，

这可能就是为什么曾经有一段时间有很多人在研究2维以上的不可约表示，

称之为准统计(parastatistics)。不过在后来的理论物理研究进展中，人们发

现高于1维的不可约表示的确没有出现过，没有人发现过任何自洽的物理理

论可以容得下它们，实验中更是没有发现有需要准统计的迹象。也许有极

小的可能出现意外，但今天人们已经普遍接受3 + 1维只有玻色子和费米子

这两种一维表示的结论了。值得注意的是，3 + 1维的这种情况和2 + 1维非

阿贝尔任意子情形有根本性的不同，后者的确是有丰富物理内涵的。

9S. Doplicher, R. Haag, and J. E. Roberts. Local observables and particle statistics. I.

Comm. Math. Phys., 23:199–230, 1971. S. Doplicher, R. Haag, and J. E. Roberts. Local

observables and particle statistics. II. Comm. Math. Phys., 35:49–85, 1974.
10一个等价的说法是，高于1维表示的准统计实际上等价于一些具有额外局域内部自由

度的玻色或者费米子统计。
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8.3.3 作为规范对称性的置换对称性

这一节我们将深入探讨置换是如何成为3 + 1维全同粒子体系的一种对

称性的。这里主要涉及到如下几个问题：1. 如何定义置换算符。2. 置换算

符在全同粒子波函数上如何作用。3. 为什么全同粒子置换是一种特殊的规

范对称性。

置置置换换换算算算符符符

前面我们说过，在3 + 1维中编织群是一个置换群SN。而对全同粒子

的置换操作并不依赖于具体的置换过程，而是可以在任何一个瞬时定义。

比方说，我们可以考察一个两粒子系统的位置本征态|x1,x2⟩，注意，由于
上面讨论过的原因，对于3 + 1维情形，我们可以假定独立非局域信息的维

数M = 1，因此无需引入额外的量子数来区分不同的独立非局域信息。假

设我们将这两个粒子分别标记为1、2，并规定狄拉克符号里第一个位置总

是用来标记第1个粒子的状态，第二个位置总是用来标记第2个粒子的状态，

因此|x1,x2⟩就表示一个第1个粒子处在x1位置，第2个粒子处在x2位置的状

态(当然，如我们前面说过的，类似于x位置这样的说法是一个简化说法，

实际上x这样的符号中还可以包含粒子的自旋等内部量子数)。从而我们就

可以定义置换算符P12

P12|x1,x2⟩ = |x2,x1⟩. (8.30)

P12的作用就是把两个粒子相互对换。我们也可以把这个对换理解为对这

两个粒子瞬时进行的一个编织。注意，这和2 + 1维中的编织操作有根本性

的不同，后者依赖于我们具体是逆时针编织还是顺时针编织，因此必须考

虑具体编织过程，像(8.30)这样的式子对于2 + 1维的辫子群BN是没有意义

的。

根据(8.30)式的这个定义我们显然有P 2
12|x1,x2⟩ = P12|x2,x1⟩ = |x1,x2⟩，

即有算符方程

P 2
12 = 1. (8.31)

这个结果相应于3 + 1维中基本编织操作所满足的σ2
i = 1。另一方面，根

据(8.30)式我们也很容易看到

⟨x′
1,x

′
2|x1,x2⟩ = δ(x′

2 − x2)δ(x
′
1 − x1) = ⟨x′

2,x
′
1|x2,x1⟩

= ⟨x′
1,x

′
2|P

†
12P12|x1,x2⟩. (8.32)
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这就意味着P †
12P12 = 1, 从而(8.30)式定义的置换算符P12是一个幺正算符，

结合(8.31)式我们就有

P †
12 = P12 = P−1

12 . (8.33)

(8.30)式很容易推广到对N个粒子的任意置换。为此我们以g表示

对{1, 2, ..., N}的一个置换，记这个置换的作用方式为，g : i → g(i)，即

将i置换为g(i)。则可以仿照(8.30)式定义对N个粒子的置换算符Pg如下
11

Pg|x1,x2, ...,xN⟩ = |xg(1),xg(2), ...,xg(N)⟩. (8.34)

完全类似于两个粒子的情形，我们也可以证明Pg必定为幺正算符。

另一方面，正如我们前面提到过的，N个粒子的任意置换必定可以分

解成相继进行的一连串两两对换，因此对N个粒子的任意置换算符必定也

可以写成一连串的两粒子对换算符的乘积。比方说，对于3个粒子情形，假

设我们考虑如下置换

g : {1, 2, 3} → {2, 3, 1}. (8.35)

很容易看出来，这个置换操作和下面一串操作的效果是一样的

{1, 2, 3} → {2, 1, 3} → {2, 3, 1}. (8.36)

按照群乘法的定义，相继进行的两个操作对应于两个群元相乘，根据

我们前面的约定，先进行的操作在乘号的右边，后进行的操作在乘号的

左边，因此(8.36)中的这一串操作就可以写成(13)(12)。这里符号(ij)表示

将i, j对换。也即是说，(8.35)式的g = (13)(12)，很明显这是一个偶置换。

置换算符当然也要满足置换群乘法，因此相应的置换算符也必然可以写

成Pg = P13P12。由于前面证明过两个粒子的对换算符是幺正算符，从而这

里的Pg也必定为幺正算符，这是另一种证明置换算符为幺正算符的方法。

实际上，我们定义的置换算符构成了置换群的幺正表示。

将任意置换分解成一串两两对换相乘也有助于我们求出它的逆操

作，为此我们只要注意到任何对换的逆操作是它本身。以上一段中的g =

11非常细心的读者可能会注意到一个不重要的细节，即对粒子本身的置换和对局域变

量x的置换其实是有区别的，但在我们的处理中故意混淆了这个细节性的区别，因为否则

的话这里关于置换算符的定义以及后面关于置换算符在全同粒子波函数上如何作用的推理

过程都会变得更复杂，这会不利于读者理解相关思路。更何况，这个细节其实并不会影响

我们将要得到的关键性结论(8.46)式。
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(13)(12)为例，其逆元是g−1 = [(13)(12)]−1 = (12)−1(13)−1 = (12)(13)。对

于相应的置换算符就有Pg−1 = P12P13 = [P13P12]
−1 = P−1

g = P †
g。很显然，

偶置换的逆元将依然是一个偶置换，而奇置换的逆元也是一个奇置换。一

般地，由于置换算符是置换群的幺正表示，所以我们有

Pg−1 = P−1
g = P †

g . (8.37)

假设置换算符Pg在任意量子态|ψ⟩上的作用结果为Pg|ψ⟩ = |ψ′⟩，记
相应的坐标表象表达式为P̂gψ(x1,x2, ...,xN) = ψ′(x1,x2, ...,xN)。则根

据(8.37)式和(8.34)式，我们容易有⟨x1,x2, ...,xN |Pg = ⟨x1,x2, ...,xN |P †
g−1 =

⟨xg−1(1),xg−1(2), ...,xg−1(N)|, 从而可以得到置换算符在波函数上的作用结果
为

P̂gψ(x1,x2, ...,xN) = ψ′(x1,x2, ...,xN) = ⟨x1,x2, ...,xN |Pg|ψ⟩
= ⟨xg−1(1),xg−1(2), ...,xg−1(N)|ψ⟩ = ψ(xg−1(1),xg−1(2), ...,xg−1(N)).(8.38)

由于g置换将原来的{xg−1(1),xg−1(2), ...,xg−1(N)}置换到了{x1,x2, ...,xN}，所
以上面这个式子的含义其实就是，置换算符作用以后{x1,x2, ...,xN}位置的
波函数其实就是原来{xg−1(1),xg−1(2), ...,xg−1(N)}位置的波函数。记多粒子
位形{x1,x2, ...,xN} = {x}, 则有ψ(x1,x2, ...,xN) = ψ({x})。再示意性地记

{xg−1(1),xg−1(2), ...,xg−1(N)} = g−1{x}. (8.39)

则可将(8.38)式重写成,

P̂gψ({x}) = ψ(g−1{x}). (8.40)

置置置换换换算算算符符符在在在全全全同同同粒粒粒子子子波波波函函函数数数上上上的的的作作作用用用

以上讨论的是置换算符在任意N粒子体系上的作用，这些粒子其实不

必是全同粒子。对于全同粒子体系来说，情况会有些特殊，因为这时候体

系的波函数并不是任意多变量函数，而是由全同粒子路径积分给出来的波

函数。

具体来说，根据(8.7)式我们知道，任意t时刻的波函数ψ({x}, t)总是由
某个初始t0时刻的波函数按照下式演化而来

ψ({x}, t) = ⟨{x}|ψ(t)⟩ =
∑
{x}0

⟨{x}, t|{x}0, t0⟩ψ({x}0, t0). (8.41)
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代入全同粒子的路径积分公式(8.19)即有，

ψ({x}, t) = 1

G

∑
g1

[
U(g1)

∑
{x}0

∑
{x}0

g1−→{x}

eiS[{x(t)}∈g1]/~ψ({x}0, t0)
]
. (8.42)

式中
∑

{x}0
g1−→{x}

表示对从{{x}0, t0}到{{x}, t}的所有属于拓扑类g1的路径求
和。另外，由于我们只需考虑置换群的1维表示，所以式中的U(g1)实际上

是一个相位因子，即U(g1) = e−iφ(g1)。

下面我们考虑置换算符Pg在波函数上的作用，根据(8.40)式我们有,

P̂gψ({x}, t) = ψ(g−1{x}, t), 对等号右边应用全同粒子波函数的路径积分公
式(8.42)则有

P̂gψ({x}, t) =
1

G

∑
g1

[
U(g1)

∑
{x}0

∑
{x}0

g1−→g−1{x}

eiS[{x(t)}∈g1]/~ψ({x}0, t0)
]
.(8.43)

然而很显然，路径{x}0
g1−→ g−1{x}和路径{x}0

g−1g1−−−→ {x}是一回事，所以上
面的表达式又可以写成

P̂gψ({x}, t) =
1

G

∑
g1

[
U(g1)

∑
{x}0

∑
{x}0

g−1g1−−−→{x}

eiS[{x(t)}∈g
−1g1]/~ψ({x}0, t0)

]
.(8.44)

令g−1g1 = g2, 利用g1 = gg2将上式中的g1代换成g2，进而将对g1的求和代换

成对g2的求和，从而即有

P̂gψ({x}, t) =
1

G

∑
g2

[
U(gg2)

∑
{x}0

∑
{x}0

g2−→{x}

eiS[{x(t)}∈g2]/~ψ({x}0, t0)
]

= U(g)
1

G

∑
g2

[
U(g2)

∑
{x}0

∑
{x}0

g2−→{x}

eiS[{x(t)}∈g2]/~ψ({x}0, t0)
]

= U(g)ψ({x}, t). (8.45)

式中第2个等号我们利用了群表示关系U(gg2) = U(g)U(g2), 最后一个等号

则是再次代入了波函数的路径积分公式(8.42)。

小结一下，上面的推导结果告诉我们，在置换算符的作用下，3 + 1维

中的全同粒子波函数必定满足

P̂gψ({x}, t) = ψ(g−1{x}, t) = U(g)ψ({x}, t). (8.46)
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注意到这里的U(g) = e−iφ(g)是置换群的一维表示，因此这个结果告诉我

们，3 + 1维全同粒子波函数仅有两种不同的可能性，对于全同玻色子，其

波函数在任意置换下都将保持不变，我们称之为对称波函数。而对于全同

费米子，其波函数在任何偶置换下将保持不变，但是在奇置换下都将出一

个负号，特别的，对于任意两个粒子的对换，全同费米子波函数将相差一

个负号，这样的波函数称之为反对称波函数。值得再次强调的是，这里诸

如xi这样的位置坐标只是一个示意性的记号，它同时指代第i个粒子的坐标

和自旋量子数等一切局域信息指标，因此我们的置换操作不仅仅是作用在

坐标变量上，而是同时也作用在自旋量子数等变量上。当我们说全同粒子

波函数是对称波函数或者反对称波函数时，我们指的不是波函数对于坐标

变量的置换对称或者反对称，而是指它对所有局域变量的同时置换对称或

反对称。

(8.46)式是一个坐标表象下的表达式，我们当然也可以写出与之相应的

抽象希尔伯特空间表达式。利用P̂gψ({x}) = ⟨{x}|Pg|ψ⟩, 很容易看出这个
抽象表达式为

Pg|ψ⟩ = U(g)|ψ⟩. (8.47)

这是3 + 1维全同粒子体系的任何量子态|ψ⟩都必须满足的表达式。对于一
个N粒子体系而言，并非所有数学上可能的量子态都满足(8.47)，而只有满

足(8.47)式的量子态才可能描写全同粒子体系的物理状态。假设记一个N粒

子体系所有数学上可能的量子态集合为希尔伯特空间H, 则很容易看出来，

满足(8.47)式能描述全同粒子体系的量子态集合为H的一个子空间。对于
全同玻色子体系而言，U(g) = e−iφ(g) = 1，因此这个子空间中的任何量

子态在置换算符Pg的作用下都得保持不变，我们称这样的子空间为对称

态子空间，记为HS。而对于全同费米子体系而言，通常记相应的相位因

子U(g) = e−iφ(g) = ε(g)，对于偶置换ε(g) = 1，对于奇置换ε(g) = −1, 因此

相应希尔伯特子空间中的任何量子态|ψ⟩都得满足Pg|ψ⟩ = ε(g)|ψ⟩，这样的
希尔伯特子空间称作反对称态子空间，记为HA。

比方说，对于一个两粒子体系，|x1,x2⟩态显然属于H, 但它并不满

足(8.47)式，从而既不属于HS，也不属于HA，因此它不能描写两个全同粒

子的系统。但是，很容易验证|x1,x2⟩ + |x2,x1⟩态在两粒子置换算符的作
用下是不变的，因此它属于HS，能够描写两全同玻色子的某个物理状态。

类似的也容易验证|x1,x2⟩ − |x2,x1⟩属于HA，可以描写两全同费米子系统

的某个物理状态。一个重要的问题是，给定一个N粒子系统的希尔伯特空
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间H, 如何构建它的对称态子空间HS以及反对称态子空间HA, 我们将在下

一节中具体讨论这个问题。

置置置换换换对对对称称称性性性

置换其实是3 + 1维全同粒子系统的一种对称性，而且是一种规范对

称性。为了看清楚这一点，我们先来考察⟨{x}f |P−1
g U(tf , ti)Pg|{x}i⟩, 根

据(8.34)式，我们显然有

⟨{x}f |P−1
g U(tf , ti)Pg|{x}i⟩ = ⟨{x}f |P †

gU(tf , ti)Pg|{x}i⟩
= ⟨g{x}f |U(tf , ti)|g{x}i⟩ = ⟨g{x}f , tf |g{x}i, ti⟩. (8.48)

式中g{x} = {xg(1),xg(2), ...,xg(N)}。很明显，⟨g{x}f , tf |g{x}i, ti⟩其实就是
同步地将初末态的N个坐标进行了一个1, 2, ..., N → g(1), g(2), ..., g(N) 的

置换。仔细想一下人们就能明白，这样的初末态同步置换根本不会影响

路径的拓扑分类，也不会影响路径的作用量(或者说，由于全同粒子不可

区分，作用量在粒子置换下将不变)，因此，根据路径积分公式(8.19), 我

们将有⟨g{x}f , tf |g{x}i, ti⟩ = ⟨{x}f , tf |{x}i, ti⟩ = ⟨{x}f |U(tf , ti)|{x}i⟩。代
入(8.48)式即有

⟨{x}f |P−1
g U(tf , ti)Pg|{x}i⟩ = ⟨{x}f |U(tf , ti)|{x}i⟩

⇔ P−1
g U(tf , ti)Pg = U(tf , ti). (8.49)

即置换算符与时间演化算符对易。按照第六章中关于对称性的定义，这就

说明，3 + 1维全同粒子体系具有置换对称性，置换算符Pg就是相应的幺正

对称变换。特别的，由于U(tf , ti) = exp(−iH(tf − ti)/~), 所以由(8.49)式我

们必然还有[Pg, H] = 0。

类似的，对于海森堡绘景中的任何物理可观测量算符O(t)，我们可

以考察⟨{x}f , tf |P−1
g O(t)Pg|{x}i, ti⟩ = ⟨g{x}f , tf |O(t)|g{x}i, ti⟩。这个结果

同样可以用路径积分公式来计算，办法就是在⟨g{x}f , tf |g{x}i, ti⟩的路径
积分计算中插入一个表达式O(t)。很明显，对于全同粒子体系，将初

末态坐标进行同步置换对于这个中间时刻t的表达式O(t)不会有任何影

响，因此和上一段的论证完全一样，我们将有⟨g{x}f , tf |O(t)|g{x}i, ti⟩ =

⟨{x}f , tf |O(t)|{x}i, ti⟩, 进一步就能得到

P−1
g O(t)Pg = O(t). (8.50)
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即置换算符和所有物理可观测量均对易。换言之，全同粒子体系的任何物

理可观测量在粒子置换下都得保持不变。这意味着，对于全同粒子体系，

有一些很简单的算符其实是不可观测的，比方说位置算符X1就不是可观测

量，因为在位置置换下它无法不变，但是算符(X1 +X2 + ...+XN)/N却是

可观测的，因为它在粒子置换下显然不变。这其实很好理解，由于全同粒

子的不可区辨性，人们测量粒子坐标的时候实际上无法知道测量结果来自

于N个粒子中的哪一个，因此结果是只能测到(X1 +X2 + ...+XN)/N这类

算符的本征值，而根本无法测量到X1的本征值。

由于置换算符与全同粒子体系的所有物理可观测量均对易，因此我

们就可以把这些可观测量算符限制在对称态子空间HS 或者限制在反对称

态子空间HA上，也即是说，任意可观测量O作用在任何对称态上结果将
依然是对称态，同样，可观测量O作用在任何反对称态上结果必然依然是
反对称态。证明非常简单，不妨以反对称态的情况为例，假设|ψ⟩ ∈ HA,

即|ψ⟩满足Pg|ψ⟩ = ε(g)|ψ⟩, 设O在|ψ⟩上的作用结果为|ψ′⟩, 即|ψ′⟩ = O|ψ⟩,
则由于(8.50)，我们有Pg|ψ′⟩ = PgO|ψ⟩ = OPg|ψ⟩ = ε(g)O|ψ⟩ = ε(g)|ψ′⟩, 可
见|ψ′⟩依然是反对称态。我们说过，对称态描述的是全同玻色子，反对称态
描述的是全同费米子，因此刚才的结果意味着，是玻色子还是费米子这是

微观粒子的本质属性，任何物理过程和物理测量都无法改变这一属性。正

是根据这种本质属性我们才可以将三维空间的微观粒子分成玻色子和费米

子两大类。

(8.50)也意味着，置换操作不仅是3+1维全同粒子体系的对称性，而且

是一种非常特殊的对称性。对于普通的对称变换来说，它只是不改变系统

的动力学演化规律，也即是与时间演化算符对易，但与其它的物理量并不

一定对易，因此一般来说，我们可以通过观测其它物理量的变化而观测到

对称变换对系统的影响。但是，如果一个对称变换与所有的物理量都对易，

那它的作用结果就是不可观测的，这样的对称性我们通常称之为规范对称

性。这就是为什么我们说3 + 1维全同粒子系统的置换对称性是一种规范对

称性的原因。前面的章节中我们还碰到过另一个规范对称性的例子，即电

荷守恒的U(1)相位变换，而且我们也知道，电荷U(1)相位变换同样也与所

有的物理可观测量都对易。

8.4 *自旋统计定理

这一节我们依然统一讨论2 + 1维情形和3 + 1维情形。我们的目标是建
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立两个全同粒子之间的基本编织操作和空间旋转操作之间的关系。一般来

说，这两者之间并没有什么明确的关系，但是，在一种特殊的情形中，全

同粒子编织和空间旋转的确密切相关，这种特殊情形允许我们将2 + 1维全

同阿贝尔任意子的编织与空间旋转等同起来，也允许我们建立3 + 1维玻

色-费米统计与粒子自旋之间的关系，所以叫自旋统计定理。

这种特殊情形其实非常简单，考虑一个荷为a的粒子在时空中的演化路

径，如图(8.12)所示，图中左边的a粒子在某个时空局域上受到一个复杂的

作用，使它在这个局域上“打了个圈”，虽然如此，局域性原理告诉我们，

左边的态本质上依然是a粒子态，因此只能和右边的标准a粒子态相差一个

相位e−iθa。

图 8.12: 左边的a粒子在某个时空局域上受到一个复杂的作用，使它在这个

局域上“打了个圈”，虽然如此，局域性原理告诉我们，左边的态本质上

依然是a粒子态，因此只能和右边的标准a粒子态相差一个相位e−iθa。

另一方面，由于a粒子有内部自由度，所以我们不妨将它的时空路径

画成一条带子，如图(8.13)所示。在这幅图中，我们把前面a粒子“打了个

圈”的演化路径画成了一条时空带子，拉直这条带子就得到图(8.13)右边的

那条带子，但是右边的这条带子显然是a粒子逆时针自转2π角的结果。 这

也即是说，a粒子“打了个圈”所多出来的相因子应该刚好等于逆时针自

转2π角的exp(−2πiJa/~)，Ja是a粒子自旋角动量。结合这两段的结果我们
就得到

e−iθa = exp(−2πiJa/~). (8.51)

现在只差一步我们就可以得到自旋-统计定理了，这一步涉及到

对e−iθa的解释。为此我们又得注意到图(8.12)和图(8.13)中a粒子“打了个
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图 8.13: 左边的a粒子时空带子拉直后就变成右边的带子，但是右边的带子

显然等于a粒子逆时针自转2π角。

圈”的演化路径其实非常奇特，奇特之处就在于，我们知道，竖直向上方

向是时间轴，但是你看图(8.12)和图(8.13)中a粒子“打了个圈”的路径，它

有一部分是逆着时间走的。对于微观粒子来说，这好像也没有什么问题，

因为对于微观世界而言，时间正方向和负方向地位完全平等。但是，对于

我们宏观的观察者而言，时间只能沿着正方向流逝，为此我们就得重新

解释图(8.12)中a粒子演化路径的逆时间部分。注意到电荷的运动方向与反

电荷的反向运动方向对于产生电流来说完全一样，因此我们可以将逆时

间的那一部分a路径解释成a的反粒子a在顺着时间方向走。如此一来，我

们就可以将图(8.12)中a粒子“打了个圈”的路径重新解释成(如图(8.14)所

示)：C地有一个a粒子随着时间演化，突然A地产生了一对正反a粒子，其

中正a粒子与C地运动过来的a粒子作了个逆时针编织，之后，A地产生的粒

子对中的反a粒子与C地过来的a粒子在B地湮灭，剩下一个A地粒子对中的

正a粒子飞向未来。 这样一分析我们就可以知道，前面的相因子e−iθa其实

正好来源于两个a粒子的逆时针编织。如此一来，方程(8.51)就将一类特殊

的全同粒子编织与粒子自旋联系了起来，因此可以称作自旋统计定理。

特别的，如果a是2 + 1维阿贝尔任意子，那刚才的相因子e−iθa必定是

基本编织操作的阿贝尔表示，方程(8.51)就把这个阿贝尔表示与2维空间

的2π角旋转联系了起来。值得注意的是，一般来说，2维空间的2π角旋转

并不一定等于1，因此阿贝尔任意子可以有非平凡的e−iθa。但是一般来说，

我们要求，2维空间虽然旋转一圈不等于恒等操作，但是旋转n圈总可以等

于恒等操作，即要求对于某个n，有exp(−n2πiJa/~) = 1, 或者利用自旋-统

计定理即有，

e−inθa = 1. (8.52)



第八章 全同性原理与多体量子力学 33

图 8.14: a粒子对产生，对湮灭，以及编织。图中的箭头方向可以重新解释

为荷的流动方向。

从而可见，阿贝尔任意子的统计角θa其实是2π乘以一个分数，所以又称之

为分数统计。

进一步，如果a是一个3 + 1维的粒子，那这时候空间旋转群就不是2维

空间的SO(2)群了，而是3维空间的SO(3)群。在前面的章节中我们系统研

究过这种旋转群的表示，我们发现，它有两种不同的表示，半整数表示和

整数表示，对于整数表示exp(−2πiJa/~) = U(2π) = 1，对于半整数表示，

exp(−2πiJa/~) = U(2π) = −1。根据自旋-统计定理(8.51)，这就意味着，

对于整数自旋粒子，必有e−iθa = 1，从而是玻色子，而对于半整数自旋粒

子，则必有e−iθa = −1，从而是费米子。这就是通常量子场论中证明的自

旋-统计定理。通常人们将这个定理概括成如下等式

U(2π) = (−)F. (8.53)

式中(−)F称为费米宇称算符，它作用在费米量子态上为−1，作用在玻色态

上为+1。

读者不妨回想一下前面章节中关于超对称的讨论，我们知道U(2π)与

超对称荷Q反对易，因此根据上面的自旋统计定理，就有

(−)FQ(−)F = −Q. (8.54)

这个结果就说明，超对称荷Q是一个费米算符。

8.5 玻色子和费米子

本章前面几节我们利用全同粒子路径积分系统地讨论了2 + 1维全同粒
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子体系和3 + 1维全同粒子体系。这些讨论除了本身能够导出一些神奇而重

要的结论之外，它对于深入理解全同性原理也非常有帮助，然而，对于初

学者来说，这些讨论可能有些过深。这一节我们将回到量子力学初学者的

角度，直接讨论3 + 1维时空中的全同性原理，讨论玻色子统计和费米子统

计，对于已经学过并理解了前几节内容的读者，本节的内容基本上可以看

成前几节的自然发展。不过，为了照顾到跳过了前几节的初学者，本节也

会用简化的处理重复前几节的少量必要内容。

从某个角度上说，3 + 1维时空的全同粒子体系当然更为基本，因为我

们的真实时空就是3 + 1维的。即使对所谓的两维材料，它们其实也都有

厚度，从微观上追究起来它们也都是由3维空间中的原子-分子-电子等等组

成，其两维特性其实是一种“有效”描述，仅当我们不使用足够高的能量

去探测它的微观结构时才成立。正因为如此，这一节和后面的第(8.6)节，

我们将专门地研究这种真实的3维空间中的全同粒子体系。

8.5.1 多体希尔伯特空间

全同粒子量子力学当然属于多体量子力学，本书前面部分也涉及过多

体量子力学，比如量子纠缠就不是单体量子现象，它至少要涉及到两个粒

子或者说两体。但是我们还没有专门地强调过多体量子力学的一些特性，

现在，让我们暂时忘记全同粒子，先看一下任何一个多体体系的希尔伯特

空间有何特性。

让我们从两体开始，假设一个量子系统由A, B两体组成，A, B各自

都可以有很复杂的内部结构，比方说各自本身可以是一个多体系统。假

设单独对于A来说，其量子态的希尔伯特空间为HA，单独对于B来说，希

尔伯特空间为HB，那么A, B作为一个整体其希尔伯特空间HAB是怎么样

的呢？虽然我们前面没有一般性地讨论过这个问题，但是我们已经见过

很多两体的例子，两个自由粒子，两个量子比特等等。仔细回想一下我们

怎么处理这些例子，就能明白下面的回答是非常自然的。首先，我们分别

取HA和HB各自的一组正交归一基{|iA⟩}, {|iB⟩}, 那么整个系统的任何量子
态|ψ⟩都必定能写成如下的叠加形式，

|ψ⟩ =
∑
iA,iB

ψiA,iB |iA, iB⟩ =
∑
iA,iB

ψiA,iB |iA⟩|iB⟩. (8.55)

式中ψiA,iB是叠加系数，所有这类量子态的集合就构成了整个系统的希尔伯

特空间HAB。数学上，对于这样构造出来的希尔伯特空间有一个专门的名
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称，称之为HA和HB的张量积，记为HA ⊗HB，因此

HAB = HA ⊗HB. (8.56)

值得说明的是，张量积是一个重要的数学概念，它的基本含义就是将

两个东西并置在一起，在数学上它并不是必须按照(8.55)式来定义，实际

上，在所谓的张量范畴论中，(8.55)式定义的张量积是一种“平凡”的张量

积。但是在线性代数中以及我们的这本量子力学书中，我们只需关心这种

“平凡”的张量积就足够了。之所以出现这种“平凡”的张量积，是因为

我们的A、B两个子系统有某种局域性，也即是说，仅仅对A的某个物理量

进行测量，和仅仅对B的某个物理量进行测量，两者之间不会有任何相互

影响。

张量积的概念当然可以推广到一般的多体情形。假设A,B,C,D....等多

个子系统构成一个大量子系统，则这个大量子系统的希尔伯特空间就是各

个子系统希尔伯特空间的张量积，可以记为HA ⊗HB ⊗HC ⊗ ...., 它是所有

形如下式的量子态的集合

|ψ⟩ =
∑

iA,iB ,iC ,...

ψiA,iB ,iC ...|iA, iB, iC ...⟩

=
∑

iA,iB ,iC ,...

ψiA,iB ,iC ...|iA⟩|iB⟩|iC⟩... (8.57)

对于N个全同粒子的体系，由于这些粒子不可区分，所以描写单个粒

子的正交归一基矢量对于所有粒子都应该一样，不妨记这样的正交归一基

矢量为|ui⟩, 指标i = 1, 2, 3, ...用来区分不同的基矢量。为了描写整个多粒

子态，我们需要将这些全同粒子进行标记，设分别标记为1, 2, 3..., N。当

然，这样的标记是任意的，而且由于这些粒子严格不可区分，所以这些标

记实际上也不是物理的，它仅仅是为了构造全同粒子量子态而引入的数学

描述。作了这样的标记以后我们就可以将第n个粒子的正交归一基矢量记

为|ui(n)⟩。根据我们刚才的描述，整个N粒子体系的希尔伯特空间H将是各
粒子希尔伯特空间的张量积，它的基矢量可以取为|ui(1), uj(2), ..., uk(N)⟩,
但是，正如我们将要看到的，这样的基矢量虽然可以直接描写非全同的多

粒子体系，但却不能直接描写全同多粒子体系。实际上全同N粒子体系的

希尔伯特空间将是H的某个特定子空间，下面我们将要讨论如何构造这样
的子空间。
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8.5.2 置换对称性

两两两全全全同同同粒粒粒子子子情情情形形形

我们先来讨论两个全同粒子的情形。将这两个粒子标记为1, 2，记相应

的两粒子态希尔伯特空间为H,根据前面的讨论，H的矢量基为|ui(1), uj(2)⟩。
由于我们讨论的是两个全同粒子，我们现在非物理地将这两个粒子分别标

记为1, 2，但实际在物理上，1, 2是不可区分的，这就意味着，如果我们将

这两个粒子相互置换一下，在物理上系统将不会发生任何改变。这有两层

含义，第一，置换前后系统的物理状态不会改变。第二，这样的置换操作

不会引起任何物理可观测量的改变。这两点实际上就意味着，这样的置换

操作是这两个全同粒子体系的一种特殊对称性。

我们定义两粒子的置换算符P12如下，

P12|ui(1), uj(2)⟩ = |ui(2), uj(1)⟩ = |uj(1), ui(2)⟩, (8.58)

上式的最后一个等号来源于习惯上我们常常将标记为第1个粒子的量子态写

在狄拉克符号的第1个位置。读者可以验证，这样定义的置换算符是一个

幺正算符，即它保持态的内积不变。且对于希尔伯特空间H里的任意量子
态|ψ⟩ =

∑
i,j ψi,j|ui(1), uj(2)⟩, 我们有

P12|ψ⟩ =
∑
i,j

ψi,j|uj(1), ui(2)⟩ =
∑
i,j

ψj,i|ui(1), uj(2)⟩ (8.59)

上式的最后一个等号来自于求和指标的重命名。很显然，置换算符对两粒

子量子态的作用相当于将叠加系数ψi,j的两个下标互换，即ψi,j → ψj,i。很

明显，连续进行两次置换相当于不进行任何操作，即有P 2
12 = 1。

现在，如果这两个粒子是两个全同粒子，则由于置换操作不会改变系

统的物理状态，所以必有

P12|ψ⟩ = e−iφ|ψ⟩, (8.60)

即置换算符作用之后的量子态只能和原来的量子态相差一个相位。又

由于P 2
12 = 1，从而有(e−iφ)2 = 1, 所以这个相位只有两种可能性，要么

取+1，要么取−1。对于+1的情形，我们就说这两个全同粒子为全同玻

色子，对于−1的情形，我们就说这两个粒子为全同费米子。另外，根据

上一段的讨论我们又知道，用量子态的展开系数来说，P12的作用相当
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于P12 : ψi,j → ψj,i。因此对于全同玻色子，由于量子态在置换算符的作

用下要保持不变，从而我们必有ψi,j = ψj,i，而对于全同费米子则必有，

ψj,i = −ψi,j。人们常常称这个结果为：全同玻色子的波函数必定为对称波

函数，全同费米子的波函数必定为反对称波函数。

两粒子希尔伯特空间H中，所有对称波函数所构成的希尔伯特子空间
为全同玻色子的对称态空间，记为HS，而所有反对称波函数所构成的希

尔伯特子空间为全同费米子的反对称态空间，记为HA。读者容易验证，

HS的基矢量可以取为

|ui, uj⟩S = |ui(1), uj(2)⟩+ |ui(2), uj(1)⟩ = (1 + P12)|ui(1), uj(2)⟩. (8.61)

这是因为，|ui, uj⟩S的任意线性叠加态
∑

i,j ci,j|ui, uj⟩S =
∑

i,j ci,j|ui(1), uj(2)⟩+∑
i,j ci,j|ui(2), uj(1)⟩ =

∑
i,j(ci,j + cj,i)|ui(1), uj(2)⟩，很明显(ci,j + cj,i) =

ψi,j是一个对称波函数，因此在原来的希尔伯特空间H中来看，这样的叠加
态当然都是对称态。类似的，两全同费米子反对称态空间HA的基矢量可以

取为

|ui, uj⟩A = (1− P12)|ui(1), uj(2)⟩. (8.62)

关于两全同费米子的反对称态，有一个特别重要的情形值得单独考

察。这情形就是，假如我们在公式(8.62)中令i = j，很显然，结果必然

是|ui, ui⟩A = 0。也即是说，对于全同费米子系统，两个粒子不能处在同一

个单粒子态上。这其实就是著名的泡利不相容原理。在前面的章节中我们

讲过，正是因为有泡利不相容原理，我们才能正确地解释元素周期表。不

仅如此，泡利不相容原理也是维持我们这个物质世界稳定性的根本原理之

一，假如没有泡利不相容原理，那原子的核外电子都会占据到最低单电子

能级上去，如此一来所有原子都会坍缩。两个费米子不能占据同一个单粒

子态，这在效果上，就好像两个费米子之间有一个排斥力一样，对于大量

全同费米子的系统，费米子之间的这种排斥力就称之为费米子的简并压。

比方说，电子简并压正是使得白矮星能够抵抗自身的引力作用而稳定存

在的原因，钱德拉塞卡甚至具体计算出，在恒星质量未超过1.44个太阳质

量(钱德拉塞卡极限)时，电子简并压都能够阻止恒星在自身引力作用下的

坍缩。

什么粒子是玻色子，什么粒子是费米子呢？关于这一点我们有所谓的

自旋-统计定理。它告诉我们，整数自旋的粒子都是玻色子，而半整数自旋

的粒子都是费米子。比方说光子的自旋是1，因此是玻色子，而电子的自
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旋是1/2，因此是费米子。同样，质子中子也是费米子，而所谓的“上帝粒

子”Higgs玻色子，是一个标量粒子，自旋是零，因此是玻色子。

N个个个全全全同同同粒粒粒子子子的的的情情情形形形

以上关于两全同粒子置换对称性的讨论当然可以推广到任意N个

全同粒子情形，我们任意地将这N个全同粒子标记为1, 2, 3, ..., N。则对

这N个粒子的置换就表现为对这N个数的置换，我们记在置换操作g的作

用下，粒子n将被置换成粒子g(n), 则g本身就唯一由其在N个粒子上的作

用g : {1, 2, 3, ...., N} → {g(1), g(2), ..., g(N)}决定。最简单的置换操作当然
就是恒等置换，也就是不做任何置换，可以把相应的g简单记为1。另外我

们可以定义两个置换操作g1和g2的乘积g2g1为，先对N个粒子进行置换操

作g1，之后再在g1置换结果的基础上进行置换操作g2，很显然，按照这个

置换乘法的定义，g2g1仍然是一个置换操作。由此可见，N个全同粒子的

所有可能置换(包括恒等置换)的集合SN在置换乘法下是封闭的。不仅如此，

我们可以将任何置换过程逆转过来，从而得到任意置换操作g的逆操作g−1，

它满足g−1g = gg−1 = 1。也即是说，SN的每一个元素都可逆。满足这些性

质的集合SN就称之为一个群，元素g就是称作一个群元，SN就是N个粒子

的置换群，由于N个粒子有N !种置换，因此SN共有N !个群元。

置换操作中最简单的就是两粒子对换，通常记i, j两粒子的对换操作

为(ij)，很明显任何对换都满足(ij)2 = 1。数学上不难证明，N粒子的任意

置换群元g均可以写成一系列的两两对换的乘积。如果g对应于偶数个对换

相乘，我们就称g为偶置换，如果g相应于奇数个对换相乘，我们就称之为

奇置换。很容易证明偶置换的逆依然是偶置换，奇置换的逆依然是奇置换，

比方说偶置换g = (13)(12)的逆g−1 = (12)(13)显然依旧是偶置换。

对于N个全同粒子的系统，我们可以首先忽略其全同性，得到N个

粒子的希尔伯特空间H，其基矢量可以选为|ui1(1), ui2(2), ..., uiN (N)⟩, 式
中|ui⟩是单粒子希尔伯特空间的正交归一基矢量。仿照两粒子情形，我们可
以将对N个粒子的置换算符Pg定义成

Pg|ui1(1), ui2(2), ..., uiN (N)⟩ = |ui1(g(1)), ui2(g(2)), ..., uiN (g(N))⟩
= |uig−1(1)

(1), uig−1(2)
(2), ..., uig−1(N)

(N)⟩. (8.63)

上式的最后一个等号是将多粒子态重新排列一下，使得第1个粒子的态排在

狄拉克符号的第1个位置，以此类推。读者可以验证，这样定义出来的置换
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算符必定是一个幺正算符，即必定保持态的内积不变。另外，根据上面的

定义，读者很容易验证

Pg2Pg1 |ui1(1), ui2(2), ..., uiN (N)⟩
= |ui1(g2g1(1)), ui2(g2g1(2)), ..., uiN (g2g1(N))⟩
= Pg2g1 |ui1(1), ui2(2), ..., uiN (N)⟩. (8.64)

也即是说，置换算符满足如下关系

Pg2Pg1 = Pg2g1 . (8.65)

这一代数关系的实质就在于，它告诉我们置换算符会保持置换操作的乘法

关系，两个置换操作的乘积对应于两个相应置换算符的乘积。数学家称这

种保持乘法关系的从置换群SN到希尔伯特空间幺正算符的对应关系为置换

群的幺正表示。也即是说，我们定义的置换算符刚好构成了相应置换群的

幺正表示。

考虑到粒子的全同性，则有，置换算符的作用不会改变全同粒子系统

的物理状态，即置换算符作用以后的量子态和原来的量子态只能相差一个

相位。因此，N个全同粒子的物理态空间不是N粒子希尔伯特空间H，而
是它的一个子空间，这个子空间的态额外满足下面的约束条件

Pg|ψ⟩ = e−iφ(g)|ψ⟩. (8.66)

虽然我们现在考虑的是N个全同粒子，但是由于Pg得构成置换群的幺正表

示，所以这个约束方程的解其实和两全同粒子类似，即只有两个不同的解。

其中一个解描述全同玻色子，这时候对于任意g，恒有e−iφ(g) = 1。另一个

解描述全同费米子，这时候e−iφ(g) = ε(g)，记号ε(g)对于偶置换取1, 对于奇

置换取−1。这个一般性结论的证明其实并不难，关键点就在于要注意到：

(1)任意置换g总能写成一系列两粒子对换的乘积. (2)由于Pg是置换群的表

示，所以它也可以写成一系列两粒子对换算符的乘积。注意到这两点以后，

人们就可以轻易地将N个全同粒子的分析约化为对两个全同粒子的分析，

进而得出刚才所说的两个不同解。其中，玻色子的物理态空间称作对称态

子空间，记为HS，费米子的物理态空间称作反对称态子空间，记作HA。

与两全同粒子类似，假如我们将|ψ⟩用基矢量|ui1(1), ui2(2), ..., uiN (N)⟩
展开成

|ψ⟩ =
∑

i1,i2,...,iN

ψi1,i2,...,iN |ui1(1), ui2(2), ..., uiN (N)⟩. (8.67)
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则对于全同玻色子体系，叠加系数(波函数)将满足，ψi1,i2,...,iN对于N个指标

的任意置换都对称不变，这种波函数简称对称波函数，或者称为全对称波

函数。而对于全同费米子体系，ψi1,i2,...,iN对于任意两个指标的对换都反对

称，比方说ψi2,i1,...,iN = −ψi1,i2,...,iN , 这种波函数称作反对称波函数，或者称

作全反对称波函数。因此，对称态子空间HS其实就是所有对称波函数的空

间，而反对称态子空间HA则是所有反对称波函数的子空间。

与两全同粒子情形类似，对称态空间HS的基矢量可以按照如下方法构

造

|ui1 , ui2 , ..., uiN ⟩S =
∑
g

Pg|ui1(1), ui2(2), ..., uiN (N)⟩. (8.68)

证明其实非常简单，假如将某个置换算符Pg1作用在这样的基矢量上，则由

于Pg1

∑
g Pg =

∑
g Pg1Pg =

∑
g Pg1g =

∑
g′ Pg′(最后一个等号是令g1g = g′，

并将对g的求和替换成对g′的求和），因此我们将有

Pg1 |ui1 , ui2 , ..., uiN ⟩S = Pg1

∑
g

Pg|ui1(1), ui2(2), ..., uiN (N)⟩

=
∑
g′

Pg′|ui1(1), ui2(2), ..., uiN (N)⟩ = |ui1 , ui2 , ..., uiN ⟩S. (8.69)

这就证明了这样的基矢量在任何置换算符的作用下都保持不变，因此是对

称态空间的基矢量。

而反对称态空间HA的基矢量的构造方法则是

|ui1 , ui2 , ..., uiN ⟩A =
∑
g

ε(g)Pg|ui1(1), ui2(2), ..., uiN (N)⟩. (8.70)

要证明它是反对称态空间的基矢量，只需要注意到根据置换的奇偶性，

ε(g)满足如下关系

ε(g2)ε(g1) = ε(g2g1), ε(g−1) = ε(g). (8.71)

进而可以得出，

Pg1

(∑
g

ε(g)Pg

)
= ε(g1)

(∑
g′

ε(g′)Pg′
)
, (8.72)

具体的证明细节我们留给读者自己练习。
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全同费米子体系反对称态基矢量的构建公式(8.70)还可以写成一种更

常见的行列式形式

|ui1 , ui2 , ..., uiN ⟩A =
∑
g

ε(g)|ui1(g(1)), ui2(g(2)), ..., uiN (g(N))⟩.

=
∑
g

ε(g)|ui1(g(1))⟩|ui2(g(2))⟩...|uiN (g(N))⟩.

= det


|ui1(1)⟩ |ui1(2)⟩ ... |ui1(N)⟩
|ui2(1)⟩ |ui2(2)⟩ ... |ui2(N)⟩
... ... ... ...

|uiN (1)⟩ |uiN (2)⟩ ... |uiN (N)⟩

 (8.73)

在最后的行列式中，我们看到，每个单粒子态相应于行列式的一行，每个

被标记的粒子相应于行列式的一列。很明显，将任意两个粒子对换相应于

交换行列式的两列，因此当然是反对称的。这就再一次证明了，最终的行

列式的确能构成反对称态空间的基矢量。另外，从最终的行列式中还可以

轻易看出另一个重要结果，即一个单粒子态上不可能出现两个或两个以上

的全同费米子，否则的话，这个行列式就会有两行或者更多行是完全一样

的，而线性代数的知识告诉我们，这样的行列式必定为零，从而这种情况

在物理上不可能出现。这个结果就是我们前面提到过的泡利不相容原理。

对于全同粒子体系，置换算符的作用不仅不能改变系统的物理状态，

而且置换算符的作用效果应该是无法观测的，因为对于全同粒子体系而言，

将粒子作一个任意置换对于物理结果不应该有任何影响。这就意味着，置

换算符必须得和任意物理可观测量O均对易，即

PgO = OPg. (8.74)

特别的，置换算符得和全同粒子哈密顿量对易。从而置换操作是全同粒子

体系的一种特殊对称性。而且，由于置换算符与全同粒子哈密顿量对易，

因此它当然也和时间演化算符U(tf , ti)对易, 即

PgU(tf , ti) = U(tf , ti)Pg. (8.75)

在实际应用中，我们总是反过来应用公式(8.74)的，即我们总是将它

看成是对全同粒子物理可观测量的一个约束，只有满足这个约束的量才

可能是可观测量。比方说，根据这个约束，N个全同粒子体系的位置算

符X1 +X2 + ...+XN是可观测的，但是，X1是无法观测的。
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与与与时时时间间间演演演化化化算算算符符符分分分析析析方方方法法法的的的关关关系系系

这一个小节我们主要想解决两个问题：第一，以两全同费米子的散射

为例，分析全同粒子体系散射问题的特殊性。第二，将本节着重强调的置

换算符和置换对称性分析方法与本章前几节中的时间演化算符和路径积分

分析方法联系起来。

假设两全同费米子的散射初态为|ui1 , ui2⟩A态，根据前面的构造方法，

|ui1 , ui2⟩A =
1√
2
(1− P12)|ui1(1), ui2(2)⟩, (8.76)

式中 1√
2
为归一化因子。类似的，假设两全同费米子的散射末态为|vf1 , vf2⟩A态，

其构造为

|vf1 , vf2⟩A =
1√
2
(1− P12)|vf1(1), vf2(2)⟩. (8.77)

则两全同费米子的散射概率幅相应于时间演化算符的如下矩阵元

A⟨vf1 , vf2 |U(tf , ti)|ui1 , ui2⟩A. (8.78)

代入散射初态和散射末态的具体构造，我们就可以得到

A⟨vf1 , vf2 |U(tf , ti)|ui1 , ui2⟩A

=
1

2
⟨vf1(1), vf2(2)|(1− P †

12)U(tf , ti)(1− P12)|ui1(1), ui2(2)⟩ (8.79)

注意到P12与U(tf , ti)对易, 再进一步利用P †
12 = P−1

12 = P12(首先由于P12为幺

正算符，所以P †
12 = P−1

12 ，又由于P
2
12 = 1，所以P−1

12 = P12)。我们很轻易就

能推导出(8.79)等式右边的表达式等价于

⟨vf1(1), vf2(2)|U(tf , ti)|ui1(1), ui2(2)⟩
−⟨vf1(1), vf2(2)|P

†
12U(tf , ti)|ui1(1), ui2(2)⟩

= ⟨vf1(1), vf2(2)|U(tf , ti)|ui1(1), ui2(2)⟩
−⟨vf2(1), vf1(2)|U(tf , ti)|ui1(1), ui2(2)⟩. (8.80)

这就是两全同费米子散射幅的最终表达式，这个表达式有非常简单的解释，

它的两项分别对应于(8.15)中的左图和右图。 如果我们考察的是两个全同

玻色子的散射，那推导过程是完全类似的，只不过这时候，两幅图对应的
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图 8.15: 两 全 同 费 米 子 散 射， 左 图 相 应 于 散 射

幅⟨vf1(1), vf2(2)|U(tf , ti)|ui1(1), ui2(2)⟩， 右 图 相 应 于 散 射

幅⟨vf2(1), vf1(2)|U(tf , ti)|ui1(1), ui2(2)⟩.

散射幅应该是相加而不是相减。至此为止，实际上我们就完全解决了本章

一开始提出来的问题。

总之，对于两全同费米子的散射幅，我们有

A⟨vf1 , vf2|U(tf , ti)|ui1 , ui2⟩A
= ⟨vf1(1), vf2(2)|U(tf , ti)|ui1(1), ui2(2)⟩
− ⟨vf2(1), vf1(2)|U(tf , ti)|ui1(1), ui2(2)⟩. (8.81)

对于全同玻色子情形，则应该将反对称态改为对称态，相应的公式右

边的两项应该是相加而不是相减。但是，前面的图(8.15)画的是粒子

的运动空间轨道图，如果我们画出粒子完整的时空路径图，那散射

幅A⟨vf1 , vf2 |U(tf , ti)|ui1 , ui2⟩A就应该示意性地表示为图(8.16)。 阅读了本

章前几节的读者一定已经发现，这个结果和我们前面用路径积分方法推导

出来的结果完全一致。

8.5.3 应用举例

ν = 1的的的整整整数数数量量量子子子霍霍霍尔尔尔效效效应应应基基基态态态波波波函函函数数数

在第四章中我们研究过朗道能级以及相应的量子霍尔效应。在那里我

们看到，电子最低朗道能级的单粒子态为

ui(w,w) = wie
− |w|2

4l2
B , (8.82)
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图 8.16: 左图相应于散射幅⟨vf1(1), vf2(2)|U(tf , ti)|ui1(1), ui2(2)⟩，右图相应
于散射幅⟨vf2(1), vf1(2)|U(tf , ti)|ui1(1), ui2(2)⟩。竖直方向为时间轴。

式中w = x + iy为两维平面的复坐标。当然这是一个2 + 1维的系统，但是

对于电子系统而言，它在2 + 1维所满足的统计和3 + 1维是一样的，都是全

同费米子统计。因此对于填满最低朗道能级的NΦ = eBS
2π~个电子而言，它们

的多体波函数必须是一个全反对称波函数，而且NΦ个电子填充到NΦ个态

上，填充方法是唯一的，因此相应的反对称态基矢量也是唯一的，由下面

的行列式给出(式中N = NΦ)

Ψ(x1,x2, ...,xN) = det


1 1 ... 1

w1 w2 ... wN

w2
1 w2

2 ... w2
N

... ... ... ...

wN−1
1 wN−1

2 ... wN−1
N


N∏

n=1

e
− |wn|2

4l2
B . (8.83)

这个行列式就是著名的范德蒙行列式，利用范德蒙行列式的标准计算结果，

我们可以将上面的多体波函数重新表达成

Ψ(x1,x2, ...,xN) =
∏

1≤n<m≤N

(wn − wm)
N∏

n=1

e
− |wn|2

4l2
B . (8.84)

显然，这个波函数在任意两个电子位置坐标的置换下都反对称。因而的确

符合全同费米子波函数的要求。这个波函数就是填充分数ν = 1的整数量子

霍尔效应的基态波函数。不仅如此，Laughling正是通过推广这个整数量子

霍尔效应波函数，从而给出了分数量子霍尔效应的一个理论解释。

单单单费费费米米米子子子近近近似似似
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下面我们考察一个特殊的N个全同费米子的系统，假设这些费米子之

间没有相互作用，因此整个系统的哈密顿量H可以写成

H = h(1) + h(2) + ....+ h(N). (8.85)

式中h(n)表示第n个费米子的哈密顿量，并且所有的h(n)形式都一样，因

此H与任意置换算符Pg均对易。

为了构造这个系统的态空间，我们可以首先考察单粒子态，设单粒子

哈密顿量h的本征方程为

h|ui⟩ = ei|ui⟩, (8.86)

式中ei为单粒子能量本征值，不妨设e1 < e2 < ... < eN < eN+1 < ....。由于

粒子间没有相互作用，则现在多体量子态的问题就转换为将N个全同费米

子填充进这些单粒子能级的问题。由于泡利不相容原理，每个费米子要占

据一个不同的能级。显然，总能量最低的情况是，前N个单粒子能级被占

据，系统的总能量为Eg = e1 + e2 + ....+ eN。这就构成了整个系统的基态，

其波函数是

|u1, u2, ..., uN⟩A =
∑
g

ε(g)|u1(g(1)), u2(g(2)), ..., uN(g(N))⟩. (8.87)

全同费米子系统基态所对应的最高被占据单粒子能级就称作费费费米米米能能能级级级，在

这里费米能级就是eN。

但是，如果我们考察的是全同玻色子体系，那情况将完全不同，这时

候没有泡利不相容原理，所以N个全同玻色子可以全都占据最低单粒子能

级e1，这就叫玻色-爱因斯坦凝聚。它告诉我们，当温度足够低时，玻色子

气体可以全都凝聚到最低单粒子能级上去。

空空空间间间波波波函函函数数数与与与自自自旋旋旋波波波函函函数数数分分分离离离的的的情情情形形形

对于有些全同费米子系统，它的空间动力学变量和自旋变量之间没有

耦合，简称没有自旋-轨道耦合。那这时候总的多体波函数就可以分离变量

成空间波函数与自旋波函数的乘积。对于这种情况的全同费米子系统，由

于全同性原理只要求总波函数是反对称波函数，所以我们既可以要求空间

波函数对称而自旋波函数反对称，也可以要求空间波函数反对称而自旋波

函数对称，这两种情况的总波函数均反对称，从而都可以满足全同性原理

的要求。
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比方说，对于一个类氢离子，其核外有两个电子（全同费米子），均处

于n = 1, l = m = 0的最低单粒子能级|ψ100⟩, 因此，系统的空间波函数必定
是对称的|ψ100, ψ100⟩, 从而这两个电子的自旋波函数必定反对称，也就是必
定处于自旋单态

(
| ↑↓⟩ − | ↓↑⟩

)
/
√
2, 从而系统的总波函数必定为

|ψ100, ψ100⟩
(
| ↑↓⟩ − | ↓↑⟩

)
/
√
2. (8.88)

8.6 *产生湮灭算符与全同粒子量子力学

前面我们描述全同N粒子系统时，我们是先把这N个粒子标记为1, 2, ..., N

再来处理的。这当然是一种表示N粒子置换对称性的方法，通过这种方法

我们可以把全同粒子希尔伯特空间构建为N粒子希尔伯特空间H的子空间。
相应的全同粒子体系的物理可观测量也可以表示为通常的N粒子体系的算

符。这样的处理方式当然能够解决问题，但却不是最好的描述全同粒子体

系的方式。这一节我们将看到，有一个巧妙的代数方法可以很方便地表示

全同玻色子体系或者全同费米子体系的置换对称性，从而直接了当地建立

它们的物理态空间和可观测量算符。顺便提一下，由于历史的原因，这种

代数方法有一个很夸张的名称，称之为二次量子化。二次量子化方法当然

没有其名字所暗示的那么夸张的物理内涵，它并不意味着我们要建立一个

量子力学的量子力学，实际上量子力学只有一个，二次量子化方法只是一

种描述全同粒子体系量子力学的巧妙代数方法而已，它的一部分重要性在

于，它可以自然地将我们引导向量子场论。

为了说清楚这种代数方法，我们首先引入一些记号，我们将单粒

子正交归一基矢量|ui⟩简记为|i⟩, 即|i⟩ = |ui⟩。从而全同玻色子的对称
态基矢量可以重记为|i1, i2, ..., iN⟩S = |ui1 , ui2 , ..., uiN ⟩S, 它在任意一对指
标交换下均保持对称不变。而全同费米子的反对称态基矢量可以重记

为|i1, i2, ..., iN⟩A = |ui1 , ui2 , ..., uiN ⟩A, 它在任意一对指标交换下均要出一个
负号，从而反对称。我们将这两种情况统一在一起，记作|i1, i2, ..., iN⟩ζ ,
ζ仅有两个取值±1，ζ = 1对应全同玻色子体系的对称态，ζ = −1对应全同

费米子体系的反对称态。

二二二次次次量量量子子子化化化方方方法法法中中中的的的多多多粒粒粒子子子态态态

二次量子化这种代数方法的关键点在于将不同粒子数目的全同粒子体

系放在一起（也就是放在同一个希尔伯特空间里）来考察，这也是它能自
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然引导向量子场论的关键，因为在量子场论中粒子可以产生和湮灭，其数

目通常无法固定。这个包含不同粒子数的希尔伯特空间通常称作Fock 空

间，记为F。
为了建立Fock 空间，首先我们定义0个全同粒子对应F里的一个量子

态|0⟩，称作真空态(注意它不是量子比特里的|0⟩态)。下面我们引入关键的

定义，我们定义单粒子态|i⟩为某个算符a†i作用在|0⟩态上产生的，即

a†i |0⟩ = |i⟩. (8.89)

同理可以定义多粒子态，比如2粒子态|i1, i2⟩ζ和3粒子态|i1, i2, i3⟩ζ可以简单
定义如下

|i1, i2⟩ζ = a†i1a
†
i2
|0⟩,

|i1, i2, i3⟩ζ = a†i1a
†
i2
a†i3 |0⟩. (8.90)

另一方面，根据对称态和反对称态的定义我们又有

|i1, i2⟩ζ = ζ|i2, i1⟩ζ = ζa†i2a
†
i1
|0⟩. (8.91)

由此可见，要让我们构造出来的多粒子态自动是对称态或者反对称态，我

们只需令算符a†i满足如下代数关系

a†i1a
†
i2
= ζa†i2a

†
i1
, (8.92)

ζ = 1的情形我们称相应的算符为玻色算符，它对应于两个a†算符对易，

ζ = −1的情形我们称相应的算符为费米算符，它对应于两个a†算符反对易。

因此通过令算符对易或者反对易，(8.92)这个简单的代数办法就解决了全同

粒子体系物理态的对称或反对称问题。

特别的，(8.92)式这个代数关系告诉我们，对于全同费米子体系(a†i )
2 =

−(a†i )
2 = 0, 这其实就对应|i, i⟩A = 0, 这也就是泡利不相容原理。

从前面的定义我们可以很清楚地看到，a†i算符的作用会将全同粒子的

数目增加1，或者说a†i的物理含义就是产生一个|i⟩态的粒子，所以称作产生
算符。当然，按照厄密共轭算符的定义，a†i的厄密共轭算符ai的作用就会

将全同粒子数目减少1，具体来说，ai会湮灭一个原本占据在|i⟩态上的粒
子，故称作湮灭算符。很快读者就可以看到，这里的产生-湮灭算符和我们

在前面的章节中求解线性谐振子时引入的产生-湮灭算符在数学上是一回

事，但是物理解释有所不同，这里我们处理的是多粒子量子力学，产生或
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湮灭的是一个粒子，而在求解线性谐振子时产生或湮灭的是一个能级量子

数。

和线性谐振子的这种类比启发我们按如下方法建立Fock空间的一组

基矢量。我们要解决的问题就是如何更方便地标记多个全同粒子的量

子态，或者说如何编码多粒子态。前面我们采用的方法是先把粒子标记

为1, 2, ..., N，然后按照粒子的顺序将多粒子态编码成|ui1(1), ui2(2), ....⟩的形
式，最后再要求对于全同粒子最终的物理态得全对称或者全反对称。现在

我们作一个关键的改变，我们换成按照单粒子态的某个排列顺序编码多粒

子态，也即是说，我们将单粒子态指标i排列成1, 2, 3, .....的顺序，然后依次

看第1个态上占据了多少个全同粒子，第2个态上又占据了多少个全同粒子，

依此类推。也就是说，我们将多粒子态编码成|n1, n2, n3, ....⟩这一串非负整
数，其中ni表示i态上占据的全同粒子数目，称作i态上的占据数。

知道了单粒子态的占据情况，再加上交换两个粒子时对称或者反对称

的要求，实际上就唯一确定了多个全同粒子的量子态，所以我们可以唯一

性地把全同多粒子态编码成|n1, n2, n3, ....⟩的形式，这就是Fock空间的一组

自然基矢量，相应的表象称作占据数表象。特别的，对于ζ = −1的全同费

米子情形，由于泡利不相容原理，一个单粒子态上不能有两个或两个以上

全同费米子占据，所以这时候，ni只有0或1这两种取值，即ni = 0, 1。当

然，对于全同玻色子体系，ni取多少没有什么限制，只要大于等于0就可以

了。

由于a†i是在单粒子态i上产生一个粒子，ai是将i态上原本占据的一个粒

子湮灭掉，所以很显然我们将有

a†i |n1, n2, ..., ni, ....⟩ ∝ |n1, n2, ..., ni + 1, ....⟩
ai|n1, n2, ..., ni, ....⟩ ∝ |n1, n2, ..., ni − 1, ....⟩. (8.93)

在上面的式子中，所有的占据数都应该大于等于0，如果某个占据数小于0，

则相应的表达式本身为0。对于全同费米子体系，占据数还应该小于等于1，

如果某个占据数大于1，则相应的表达式本身也为0。

类比于线性谐振子问题，我们可以知道，占据数ni应该是算符n̂i =

a†iai的本征值。由此类比于线性谐振子问题，我们可以知道

a†i |n1, n2, ..., ni, ....⟩ =
√
ni + 1ζsi|n1, n2, ..., ni + 1, ....⟩

ai|n1, n2, ..., ni, ....⟩ =
√
niζ

si|n1, n2, ..., ni − 1, ....⟩. (8.94)
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对于玻色算符情形，这就是线性谐振子问题中告诉我们的标准的产生-

湮灭算符作用关系。对于费米算符情形，这个公式多了一个因子ζsi，这

里si =
∑i−1

j=1 nj, 为i态前面的i − 1个态上的总占据数。多出这个因子其实

很好理解，因为这时候ai或者a
†
i要正确地作用在i态上，它必须先和i前面

的si个产生算符相交换，对于费米算符，每一次交换出一个因子ζ，最后多

出来的因子就是ζsi。

利用代数关系式(8.94)，我们容易推导如下产生湮灭算符之间应该满足

的标准代数关系式

[ai, a
†
j]ζ = δij. [a†i , a

†
j]ζ = 0, [ai, aj]ζ = 0. (8.95)

这里[A,B]ζ = AB − ζBA，即对于玻色算符它是普通的对易子，但是对于

费米算符，它其实是反对易子。(8.95)式的后两个等式没有任何新东西，它

们显然就是将(8.92)式重写一下。但(8.95)式的第一个等式是相当非平凡的，

特别的，对于全同费米子情形，它告诉我们

aia
†
i + a†iai = 1. (8.96)

这就是费米子产生湮灭算符所满足的反对易关系，它和玻色子的对易关

系aia
†
i − a†iai = 1 有本质区别。

二二二次次次量量量子子子化化化方方方法法法中中中的的的算算算符符符

如此一来，利用产生-湮灭算子的对易或反对易性质我们就表示了全同

玻色子或全同费米子的置换对称性，并且还建立了全同粒子体系的Fock 空

间。下面我们来讨论如何用产生-湮灭算子表示全同粒子体系的物理量算

符。

首先我们来看单体算符，即不涉及多体相互作用的算符。这样的算

符比方有动能算符等等。为简单起见，假设某个这样的单体算符O1在单

粒子希尔伯特空间中对应于算符ô, 假设在矢量基|i⟩ = |ui⟩中ô是对角化
的，本征值为oi，很明显oi = ⟨i|ô|i⟩。则在全同粒子的多体希尔伯特空间
中，O1的总本征值为每个粒子的本征值之和，也即是说，在Fock空间矢量

基|n1, n2, n3, ....⟩中，O1的本征值为∑
i

oini. (8.97)
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显然，为了得到这样的本征值，我们只需将O1表示成如下算符

O1 =
∑
i

oin̂i =
∑
i

⟨i|ô|i⟩a†iai. (8.98)

为了得到O1在任意单粒子矢量基中的表达式，我们利用单粒子希尔伯

特空间的基矢变换|i⟩ =
∑

α |α⟩⟨α|i⟩, 并定义a†α|0⟩ = |α⟩, a†i |0⟩ = |i⟩, 从而容
易有

a†i =
∑
α

a†α⟨α|i⟩, ai =
∑
α

⟨i|α⟩aα. (8.99)

利用这样的基矢变换，我们就能将(8.98)式变换到任意单粒子矢量基中，从

而有

O1 =
∑
α,β

⟨α|ô|β⟩a†αaβ. (8.100)

特别的，我们有总粒子数算符N =
∑

i a
†
iai =

∑
α a

†
αaα。这是最简单的

单体算符，其本征值
∑

i ni为系统的总粒子数目。很容易验证的是，以上的

任何单体算符都与粒子数算符N对易，即[N,O1] = 0。

下面我们来看两体相互作用算符O2。假设它在两体希尔伯特空间相应

于算符v̂, 假设v̂在两体矢量基|i, j⟩上的本征值为vij，即v̂|i, j⟩ = vij|i, j⟩，很
容易验证，这里无论|i, j⟩态是对称态还是反对称态，vij关于指标i, j均是对
称的。则在多粒子希尔伯特空间矢量基|n1, n2, n3, ....⟩中，两体算符O2的总

本征值为所有可能两体本征值的和，即为

1

2

∑
i̸=j

vijninj +
1

2

∑
i

viini(ni − 1), (8.101)

式中第1项来自两个不同单粒子态上的粒子相互作用，其中因子1/2是因

为i, j相互作用和j, i相互作用是一样的。式中第2项来自两个相同单粒子态

上的粒子相互作用。很容易看出来，上式的结果也可以重写成

1

2

∑
ij

vij(ninj − niδij). (8.102)

式中ninj − niδij是如下算符的本征值

a†iaia
†
jaj − a†iaiδij = a†i

(
δij + ζa†jai

)
aj − a†iaiδij

= ζa†ia
†
jaiaj = a†ia

†
jajai. (8.103)
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所以为了在Fock空间上取到本征值(8.102)，我们只需将两体算符O2取成

O2 =
1

2

∑
ij

vija
†
ia

†
jajai. (8.104)

注意到vij = ⟨i, j|v̂|i, j⟩，从而可以进一步将上式变换到任意单粒子矢量基
中，得到

O2 =
1

2

∑
αβγδ

⟨αβ|v̂|γδ⟩a†αa
†
βaδaγ. (8.105)

值得一提的是，人们很容易验证，任何以上形式的两体算符都和粒子

数算符N =
∑

i a
†
iai对易，即有[N,O2] = 0。

二二二次次次量量量子子子化化化与与与场场场

下面假设我们忽略粒子自旋，考察单粒子希尔伯特空间的一组特殊

矢量基，即坐标表象|x⟩，即在上文中取i = x, 相应的ai = ax现在我们

记作a(x)，对i的求和就变成了对x的积分，克隆内克符号δij就变成了狄拉

克δ函数。因此，(8.95)式现在应该是

[a(x), a†(x′)]ζ = δ(x− x′). (8.106)

很显然，粒子数算符N现在应该是

N =

∫
d3xa†(x)a(x). (8.107)

单粒子的能量算符ĥ现在应该是ĥ = p̂2

2m
+ V (x), V (x)为粒子受到的外势场

作用，代入单体算符O1的公式(8.100)，我们就能得到单体的哈密顿量

H0 =

∫
d3xa†(x)

[
− ~2

2m
∇2 + V (x)

]
a(x). (8.108)

类似的，对于两体相互作用算符，注意到i, j应该分别替换成x,x′，从

而前面的vij可以替换成相互作用势能vx,x′ , 这里记为V (x,x′)，进而可以将

两体相互作用算符(8.104)写成

V̂ =
1

2

∫
d3x

∫
d3x′a†(x)a†(x′)V (x,x′)a(x′)a(x). (8.109)
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假设仅仅只有这种两体相互作用，那么全同粒子体系完整的哈密顿量就应

该是H = H0 + V̂。前面我们说过，粒子数算符N与H0和V̂均对易，因此，

[N,H] = 0。这说明这样的全同粒子体系总粒子数是守恒的，我们可以限制

在一个确定粒子数目N的子空间里来讨论问题。

以上这些关于坐标表象的讨论很容易推广到包括粒子自旋的情形，相

应的推广我们留给读者。坐标表象的讨论自然将我们引导向一个结论，即

我们可以将a(x)和a†(x)看成是空间分布的场，如此一来，上面关于坐标表

象二次量子化方法的讨论就可以自然看成是某种量子场论。

Hubbard 模模模型型型

二次量子化方法应用非常广泛，比方说，在凝聚态物理中有大量的模

型都是用二次量子化方法表述的。下面我们简单介绍一下这些模型中也许

最著名的一个，即所谓的Hubbard 模型。

我们的任务是要描述一个电子系统(费米子)，只不过这个电子系统在

一个晶格上运动。电子的单粒子态主要由电子所处的晶格位置描述，比如

电子处在第i个格点，那就标记为|i⟩态，当然电子还有自旋，标记为可以取
两个不同值的指标σ, 即σ =↑, ↓。所以，我们用费米产生-湮灭算符aiσ, a

†
iσ来

描述这些电子，不过，文献中习惯将电子的产生-湮灭算符记为ciσ, c
†
iσ。

假设单个电子在|i⟩, |j⟩格点状态之间的哈密顿矩阵元为⟨i|ĥ|j⟩, 假设两
体相互作用的矩阵元为⟨lm|V |pn⟩, 式中l,m, p, n均为格点位置。则根据我们
在本节前面几个小节的论述可以知道，整个全同电子系统的哈密顿算符可

以写成

H =
∑
i,j,σ

⟨i|ĥ|j⟩c†iσcjσ +
1

2

∑
lmnp,σ,σ′

⟨lm|V |pn⟩c†lσc
†
mσ′cnσ′cpσ. (8.110)

Hubbard 模型就是对上面这个哈密顿量(8.110)的进一步简化。为了

完成这样的简化，我们得进一步假定：(1).电子处在当前格点时本身具有

能量ϵ, 即⟨i|ĥ|i⟩ = ϵ。(2). 电子隧穿到相邻格点上的能量矩阵元为−t。即
当i, j相邻时，⟨i|ĥ|j⟩ = −t。(3).除上面两种情况之外，⟨i|ĥ|j⟩ = 0。即电子

不能一次性隧穿到更远的格点上。最后我们还要假定, (4). 两电子间仅当处

于同一格点位置时才会有相互作用，即⟨lm|V |pn⟩仅在l = p = m = n时才

非零，非零值设为U。

根据上面假设，我们容易知道(8.110)中的相互作用项现在可以简化为

1

2
U

∑
i,σ,σ′

c†iσc
†
iσ′ciσ′ciσ = U

∑
i

n̂i↑n̂i↓. (8.111)
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式中n̂iσ = c†iσciσ, 而且在推导上式最终结果时我们已经用了泡利不相容原

理c2iσ = 0。因此，结合上面所有的简化假设，最终哈密顿量(8.110)就可以

被简化为

H = −t
∑
<i,j>

[
c†iσcjσ + c†jσciσ

]
+ ϵ

∑
iσ

c†iσciσ + U
∑
i

n̂i↑n̂i↓. (8.112)

这就是著名的Hubbard 模型，式中的
∑

<i,j>表示对相邻的格点求和。

8.7 *附录：单粒子路径积分公式推导

关于费曼路径积分，我们还有两个重要的问题有待解决，一是，对

所有路径进行求和该怎么求，毕竟路径可不是一个离散变量，甚至一条

路径也不是一个简单的实变量，而是一个关于时间t的函数，所以如何

定义这个求和其实是一个很困难的数学问题。第二，我们还要证明路径

积分给出来的结果是幺正的。本节我们就是要就单粒子情形解决这两个

问题。我们的解决方案很简单，就是直接从时间演化算符的哈密顿量表

述U(T, 0) = exp{−iHT/~}出发，导出其坐标表象下的路径积分公式。哈
密顿量表述的时间演化算符当然是幺正的，因此其最终导出来的路径积分

公式当然也满足幺正性。不仅如此，这种推导方式还会给出关于如何对路

径进行求和的一个定义。

本附录的处理方式基本上是跟随Polchinski，String Theory Volume I,

Appdendix A, A short course on path integrals的处理。更多的讨论请读者

参阅这份原始材料。关于路径积分，我们推荐的另一份入门材料是，R.

Shankar, Principles of Quantum Mechanics 中的相关内容。

下面我们以x̂表示一个粒子的正则坐标算符，以p̂表示相应的正则动量

算符。路径积分其实就是坐标表象下时间演化算符的计算公式。假设粒子

从0时刻的|xi⟩位置演化到T时刻的|xf⟩位置，则路径积分关心的就是如下概
率幅，

⟨xf | exp
(
− iHT/~

)
|xi⟩. (8.113)

在前面的章节中我们引入过海森堡绘景，对于算符O，其相应海森堡
绘景中的算符O(t)为

O(t) = exp(iHt/~)O exp(−iHt/~). (8.114)
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另外，引入海森堡绘景的位置本征态|x, t⟩对于我们来说是方便的，其定义
是

|x, t⟩ = exp(iHt/~)|x⟩. (8.115)

很容易验证，|x, t⟩满足x̂(t)|x, t⟩ = x|x, t⟩，式中x̂(t)为海森堡绘景中的位置
算符。很显然，路径积分所关心的坐标表象时间演化算符(8.113)又可以写

成

⟨xf , T |xi, 0⟩. (8.116)

通过在中间t时刻插入位置本征态的完备集，我们可以把路径积分关心

的概率幅改写成

⟨xf , T |xi, 0⟩ =
∫
dx⟨xf , T |x, t⟩⟨x, t|xi, 0⟩. (8.117)

显然，这个方程就是正文中所说的，时间演化算符所满足的基本方程。

图 8.17: 图片来自于Polchinski的书，图中的qi, qf在我们这里分别是xi, xf。

现在，我们如图(8.17)中所示的那样，将整个时间区间T等分成N个间距

为ϵ = T/N的小区间，其中各分割时刻分别为

tm = mϵ. (8.118)

则通过在每一个中间分割时刻都插入相应位置本征态的完备集，我们有

⟨xf , T |xi, 0⟩ =
∫
dxN−1...dx1

N−1∏
m=0

⟨xm+1, tm+1|xm, tm⟩. (8.119)



第八章 全同性原理与多体量子力学 55

式中x0 = xi, xN = xf。

根据我们的定义，有

⟨xm+1, tm+1|xm, tm⟩ = ⟨xm+1| exp
(
− iHϵ/~

)
|xm⟩

=

∫
dpm⟨xm+1|pm⟩⟨pm| exp

(
− iHϵ/~

)
|xm⟩.(8.120)

式中哈密顿算符H是一个关于坐标算符和动量算符的函数，H(p̂, x̂)。通过

算符对易关系我们总是可以将所有的p̂都放到H表达式的左边，而将所有

的x̂都对易到右边，从而有

⟨pm|H(p̂, x̂)|xm⟩ = H(pm, xm)⟨pm|xm⟩. (8.121)

从而根据(8.120)式我们有(精确到ϵ的一次方阶)

⟨xm+1, tm+1|xm, tm⟩ =
∫
dpm exp

[
− iH(pm, xm)ϵ/~

]
⟨xm+1|pm⟩⟨pm|xm⟩

=

∫
dpm
2π~

exp
{
− i

[
H(pm, xm)ϵ− pm(xm+1 − xm)

]
/~+O(ϵ2)

}
. (8.122)

将(8.122)式代入(8.119)式，就可以得到

⟨xf , T |xi, 0⟩ =
∫
dpN−1dxN−1

2π~
...
dp1dx1
2π~

dp0
2π~

× exp
{
− i

N−1∑
m=0

[
H(pm, xm)ϵ− pm(xm+1 − xm)

]
/~+O(ϵ2)

}
→

∫
[dpdx] exp

{ i
~

∫ T

0

dt
[
pẋ−H(p, x)

]}
. (8.123)

在上式的最后一行中，我们取了N → +∞，即ϵ → 0的极限。在这个极限

下，上式中的复杂多重积分相当于对所有以x(0) = xi, x(T ) = xf为端点的

相空间路径x(t), p(t)进行积分。上式最后表达式中的
∫
[dpdx]是对这个积分

测度的简记符号。

通常来说，哈密顿量H(p, x)关于正则动量p是一个二次型，所以(8.123)式

中关于p(t)的路径积分其实是一个高斯型积分，我们可以先把这个积分积

掉，根据高斯积分的一般结果我们知道，积掉p(t)首先是要将指数因子中

的p替换成满足下式的p，

0 =
∂

∂p
[pẋ−H(p, x)] = ẋ− ∂

∂p
H(p, x), (8.124)
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这样消去p以后，pẋ−H的结果实际上就是拉格朗日量L(x, ẋ), 这个过程其

实就是所谓的勒让德变换。因此，由(8.123)式我们就可以进一步得到

⟨xf , T |xi, 0⟩ =
∫
[dx] exp

{ i
~

∫ T

0

dtL(x, ẋ)
}
=

∑
x(t)

e
i
~S[x(t)]. (8.125)

这个式子就是坐标表象时间演化算符的路径积分公式，在这个式子的最后

我们已经示意性地将对所有路径的积分写成了对所有路径的求和。当然，

上面在对p(t)进行高斯积分时我们会得到一些积分值，在写出(8.125)式这

个结果时，我们已经把所有这些p(t)的积分值都吸收到积分测度[dx]的定义

中去了。

我们可以利用(8.125)式这个路径积分公式讨论量子力学与经典力学

间的对应关系。由于两条邻近路径的作用量之差近似为一阶变分δS，而

从(8.125)式的最后结果可以看出，当~ → 0时, 一般来说相邻路径的相位

差 δS
~ 是随着路径的微小变动快速振荡的，因此在~ → 0时，相邻路径通常

总是干涉相消的，除非我们考虑的是δS = 0这条路径的邻近路径。对于这

条δS = 0的路径，它和邻近路径的相位差近似为0，从而是干涉加强的。很

显然，这就是最小作用量原理，这条干涉加强的路径就是所谓的经典路径。

从这个讨论我们再一次看到，经典物理是量子物理在~ → 0时的极限。


