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第十章 含时问题与散射问题

陈陈陈童童童

本章将系统地讨论量子力学系统的含时演化问题。并利用含时理论的

框架建立散射的一般性理论。
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第十章 含时问题与散射问题 3

薛定谔方程是一个关于量子态如何随着时间演化的方程，但是前面我

们关心得更多的是定态问题，这一节我们将要系统的考察量子态的时间

演化问题。如果系统的哈密顿算符H本身不显含时间t，那么量子态的时

间演化问题可以这样来求解，首先我们把初始t = 0时刻的量子态|ψ(0)⟩分
解成定态|En⟩的叠加的形式，即|ψ(0)⟩ =

∑
n cn|En⟩, 式中|En⟩是H的本征

态，本征值为En, 即H|En⟩ = En|En⟩。那么根据薛定谔方程，t时刻的量子
态|ψ(t)⟩将由下式给出，

|ψ(t)⟩ = exp

(
−iH

~
t

)
|ψ(0)⟩ =

∑
n

cne
−iH~ t|En⟩ =

∑
n

cne
−iEn

~ t|En⟩. (10.1)

由此我们就能求出t时刻的量子态，由这个|ψ(t)⟩态，我们就能求出|ψ(0)⟩态
在t时刻跃迁到某个|ϕ⟩态的概率(也就是t时刻我们在|ϕ⟩态上测量到系统的
概率)，这个概率由|⟨ϕ|ψ(t)⟩|2给出。
但，在很多时候，H的本征态不容易求解出来，或者甚至H本身就显

含时间t。这时候刚才说到的方法应用起来就不方便了。但如果这时候H能

够分解成H0 + V的形式，其中V可以显含时间t, 但H0不显含t, 并且其本征

态|n⟩相对容易知道，而且我们很容易将初始时刻的系统准备在H0的某个

本征态|n⟩上，同时也很容易对末尾时刻H0的本征态进行测量, 那么在实验

上我们就能测量系统从初始时刻的某个|n⟩态跃迁到末尾时刻的某个|m⟩态
的概率pn→m。这样的例子有很多，比如说原子的光谱就属于这种跃迁的

例子，对于原子和电磁场相互作用的系统，整个包含了相互作用的哈密

顿量H并不好求解，但忽略掉与电磁场的相互作用以后，原子本身的哈

密顿量H0是比较容易了解的，那就是原子的能级，而原子的光谱对应的

就是原子从一个能级|n⟩到另一个能级|m⟩的跃迁，光谱的强度就和跃迁概
率pn→m密切相关。那么，在这些情况下，有没有什么方便的方法计算这个

跃迁概率呢？

这一章我们将发展两种计算这一跃迁概率的重要方法。第一种方法

就是微扰论的方法(通常将这一方法称作含时微扰论)，也就是当相互作

用V (t)可以看成是一个微扰，并且这个微扰有效起作用的时间不是过于长

的时候适用的方法。应用这种方法，我们研究了原子对光的辐射和吸收过

程，并利用所得到的结果解释了激光的核心原理。第二种方法是时间尺度

可以任意长，甚至V也不必是一个微扰，但是系统近似处于两个状态|n⟩态
和|m⟩态共振情形下的求解方法，通过应用这种方法，我们解释了著名的拉
比振荡现象。



第十章 含时问题与散射问题 4

另一方面，自从卢瑟福最早使用α粒子去轰击金箔，并进而推断出原子

的内部结构以后，物理学家就开始学会了用一些入射粒子(包括入射光)去

探测研究对象这一重要手段。比方说，在凝聚态物理中，人们常常用X射

线在晶体上的散射来了解晶体结构，或者用中子散射去研究物质结构和微

观动力学性质。再比方说，在高能粒子物理中，人们常常将多个粒子加速，

并让它们相互碰撞(也就是相互散射)，以此推断微观粒子相互作用的基本

规律。因此，在这一章的最后两节，我们将利用含时微扰论发展一个关于

多粒子散射的一般性量子理论。这是因为多粒子散射常常可以自然地满足

含时微扰论的适用条件。我们假定有多个粒子(只有一个入射粒子的情况当

然也包含在内)从不同的方向入射，在无穷远过去, 即t → −∞时，入射粒
子离其目标的距离，以及它们相互之间的距离都比较遥远，因此所有的相

互作用都可以忽略，整个系统可以看成由哈密顿量H0描述，它是多个入射

自由粒子的哈密顿量之和。随着粒子离散射对象越来越近，或者不同粒子

之间的距离越来越近，相互作用V (V不显含t)才开始变得不可忽略，从而

就发生了粒子的散射，但是之后，出射粒子开始从散射区域飞离，随着出

射粒子的相互飞离，它们之间的距离又开始越来越大，从而相互作用再次

可以忽略，系统再次可以由自由粒子的哈密顿量之和H0来描述。可见，只

要相互作用V不太强，那么它就可以看成是对多个自由粒子系统的一种微

扰，同时，只要相互作用力的力程不是一个长程力(其实即使是长程力，比

如库仑力，我们有时候也可以将之看成是短程力的一种极限)，那么相互作

用V有效起作用的时间就不会过于长。因此，这时候多粒子的散射问题就

可以用含时微扰论来处理。我们就可以用含时微扰论来计算无穷远过去的

入射自由粒子初态，在无穷远将来(即t → ∞)跃迁为出射自由粒子末态的

跃迁概率。

10.1 量子力学含时微扰论

10.1.1 时间演化算符与含时微扰

首先让我们来回顾一下时间演化算符的概念。对于一个哈密顿算符

为H的量子系统，其量子态|ψ(t)⟩随时间的演化满足薛定谔方程

i~
∂

∂t
|ψ(t)⟩ = H|ψ(t)⟩. (10.2)

但很多时候用时间演化算符来描述量子态的演化是更加方便的，所谓的
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时间演化算符就是一组形如U(t, t0)这样的幺正算符，它描述的是量子系统

从t0时刻到t时刻的演化，也即是说，对于t0时刻的任何一个量子态|ψ(t0)⟩，
它演化到t时刻将变成量子态|ψ(t)⟩，

|ψ(t)⟩ = U(t, t0)|ψ(t0)⟩. (10.3)

假设我们让系统先从t0时刻演化到t1时刻，接着再从t1时刻演化到t时刻，那

么这个两阶段演化的总效果当然就是使得系统从t0时刻演化到了t时刻，因

此容易得到时间演化算符的一条基本性质，即

U(t, t0) = U(t, t1)U(t1, t0). (10.4)

另外，从t时刻到t时刻本身，系统当然没有发生任何演化，因此U(t, t) = 1。

把时间演化算符的定义(10.3)代入薛定谔方程(10.2), 我们就可以得到时间

演化算符所满足的微分方程

i~
d

dt
U(t, t0) = HU(t, t0), (10.5)

这个方程的初始条件就是U(t0, t0) = 1。

假设我们原来有一个了解得很清楚的系统，其哈密顿算符为H0(假

定H0不显含时间)。所谓了解得很清楚意思就是我们完全知道H0的所有本

征态{|n⟩, n = 1, 2, 3...}和相应的本征值En(注意，从这里开始，在这一章

中En都表示H0的本征值，而不是H的本征值), 也即是说

H0|n⟩ = En|n⟩. (10.6)

这里的|n⟩当然是不含时间的，完整的随时间演化的量子态|n, t⟩应该是|n, t⟩ =
e−iEn

~ t|n⟩。注意到定态薛定谔方程(10.6), 我们显然也可以将|n, t⟩重写成

|n, t⟩ = exp

(
−iH0

~
t

)
|n⟩. (10.7)

现在，假设在某个从t0到t的时间段，系统H0受到了一个比较复杂的微

扰V (t)，V (t)一般来说显含时间。因此，扰动作用以后的系统哈密顿量就

应该是

H(t) = H0 + V (t), (10.8)

相应的时间演化算符就是我们上面定义的U(t, t0)。因此，假设在扰动作

用之前我们有一个H0的定态|n, t0⟩，在扰动的作用下将它按照U(t, t0)演
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化到t时刻，我们就有一个t时刻的量子态|ψn(t)⟩, |ψn(t)⟩ = U(t, t0)|n, t0⟩,
我们想问的是，在t时刻(假设t时刻扰动已经结束了)我们在|m, t⟩态上
测到系统的概率是多少？由量子力学的基本原理，这个概率pn→m显然

由pn→m = |⟨m, t|ψn(t)⟩|2 = |⟨m, t|U(t, t0)|n, t0⟩|2给出。在物理上，pn→m就

是在微扰V的作用下，系统从|n, t0⟩态跃迁到|m, t⟩态的概率，相应的跃迁概
率幅(简称跃迁幅)就是⟨m, t|U(t, t0)|n, t0⟩。应用表达式(10.7)，我们很容易

将这个跃迁幅重新表达为

⟨m, t|U(t, t0)|n, t0⟩ = ⟨m| exp
(
i
H0

~
t

)
U(t, t0) exp

(
−iH0

~
t0

)
|n⟩, (10.9)

注意这个表达式右边的|n⟩, |m⟩都不依赖于时间。习惯上，人们通常定义一
个新的时间演化算符UI(t, t0), 它的定义是

UI(t, t0) = exp

(
i
H0

~
t

)
U(t, t0) exp

(
−iH0

~
t0

)
. (10.10)

UI(t, t0)也是一个幺正算符，它常常被称为相互作用绘景下的时间演

化算符，人们很容易验证它满足时间演化算符的基本性质UI(t, t0) =

UI(t, t1)UI(t1, t0), 以及UI(t0, t0) = 1。很显然，根据(10.9)式可以知道，跃

迁概率pn→m可以由下式给出

pn→m = |⟨m|UI(t, t0)|n⟩|2. (10.11)

因此，为了计算跃迁概率，我们需要进一步研究时间演化算符UI(t, t0)。

利用UI(t, t0)的定义式(10.10)，以及U(t, t0)(注意不是UI(t, t0))所满足的方

程(10.5), 我们容易得到微分方程

i~
d

dt
UI(t, t0) = VI(t)UI(t, t0), (10.12)

式中(注意H0与V (t)一般来说不对易)

VI(t) = exp

(
i
H0

~
t

)
V (t) exp

(
−iH0

~
t

)
. (10.13)

VI(t)通常被称作相互作用绘景中的微扰算符。

将方程(10.12)对时间积分，并利用UI(t0, t0) = 1，就可以得到

UI(t, t0) = 1− i

~

∫ t

t0

VI(t
′)UI(t

′, t0)dt
′, (10.14)
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将这个方程进行迭代就可以得到UI(t, t0)关于微扰VI的级数展开

UI(t, t0) = 1 + (− i

~
)

∫ t

t0

VI(t1)dt1 + (− i

~
)2
∫ t

t0

dt2

∫ t2

t0

dt1VI(t2)VI(t1)

+ (− i

~
)3
∫ t

t0

dt3

∫ t3

t0

dt2

∫ t2

t0

dt1VI(t3)VI(t2)VI(t1) + ... (10.15)

这个级数(10.15)通常称作戴森级数。根据公式(10.11)，为了用微扰展开

的办法计算出跃迁概率pn→m, 最主要的就是要逐级地将戴森级数在|m⟩态
和|n⟩态上的矩阵元计算出来。
特别的，如果末态|m⟩与初态|n⟩不同，即m ̸= n, 则由正交性，戴森级

数的0阶项⟨m|1|n⟩ = 0，为了计算跃迁概率，我们首先要计算戴森级数的

一阶微扰项，(− i
~)
∫ t

t0
dt1⟨m|VI(t1)|n⟩ = (− i

~)
∫ t

t0
dt1e

iωmnt1⟨m|V (t1)|n⟩, 式
中ωmn = (Em−En)/~,而且我们利用了VI(t)的定义式(10.13)。因此这时候，

在一阶微扰近似的意义上，跃迁概率pn→m为

pn→m =
1

~2

∣∣∣∣∫ t

t0

dt1e
iωmnt1⟨m|V (t1)|n⟩

∣∣∣∣2 . (10.16)

值得说明的是，微扰V (t)具体是何时加上的，又是何时结束的，这些

其实并不是要点，要点是在t0时刻我们能准备一个H0的本征态|n⟩作为初态,

并在最后的t时刻我们能测量H0的本征态|m⟩，以此作为末态。这两个要求
只需要我们在初末两个时刻都能测量H0的本征态就能实现。前文论述中之

所以假定微扰只在[t0, t]的时间范围之内起作用，是因为在这种情况下，系

统t0时刻(微扰起作用之前)和t时刻(微扰结束以后)的哈密顿量都是H0，因

此我们只需要测量系统的能量就能实现测量H0的本征态的要求。但也有

很多情况，即使微扰一直都存在，但H0本身却总是系统的一个很容易测量

的物理量，在这种情况下，我们无论何时都能方便地测量H0的本征态，因

此就无需假定微扰只在[t0, t]的时间范围之内起作用了。因此后文我们将不

再强调V (t)起作用的时间范围，而是默认这两种情况(V只在[t0, t]之内起作

用，或者我们总能方便地测量H0) 必定有一种得以满足。

10.1.2 恒定微扰

作为一个重要的例子，这一节我们将把上面发展的含时微扰论应用于

恒定微扰的情形。所谓的恒定微扰，我们指的是微扰算符V不显含时间t。

我们将把系统初态记为|i⟩, 跃迁末态记为|f⟩, 当然|i⟩, |f⟩都是H0的本征态，
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本征值分别为Ei, Ef。我们将区分两种情形，其一是|i⟩和|f⟩为两个离散能
级的情形，另一种情形是，末态|f⟩属于一个连续谱的情形。

离散能级情形

对于离散能级的情况，为了方便，我们常常取初始时刻t0为0，即t0 =

0，取末尾时刻为t时刻。根据一阶含时微扰论的公式(10.16), 为了计算

从|i⟩态到|f⟩态的跃迁概率pi→f , 我们需要计算
∫ t

0
dt1e

iωfit1⟨f |V |i⟩(式中ωfi =

(Ef − Ei)/~), 由于V不显含时间，很容易得到计算结果⟨f |V |i⟩ e
iωfit−1
iωfi

=

⟨f |V |i⟩ei 12ωfit sin(ωfit/2)

ωfi/2
。因此跃迁概率pi→f将是

pi→f =
1

~2
|⟨f |V |i⟩|2

[
sin(ωfit/2)

ωfi/2

]2
. (10.17)

其中对于给定的时间t，
[
sin(ωfit/2)

ωfi/2

]2
作为ωfi的函数图像如图(10.1)所示。 从

图 10.1: F (ωfi) =
[
sin(ωfiT/2)

ωfi/2

]2
的函数图像.

图中可以看出来，当ωfi = 0时(即初末态能量相等时)，跃迁概率达到最

大，为pi→f = 1
~2 |⟨f |V |i⟩|2t2。但是当然，不同态之间的跃迁概率一定是小

于1的，并且一阶微扰近似要有效的话，这个跃迁概率还得远小于1，因此

我们可以得到离散能级时一阶含时微扰近似必须满足的条件，

|⟨f |V |i⟩|t≪ ~. (10.18)
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末态为连续谱的情形

末态|f⟩属于一个连续谱情形的不同之处在于，这时候末态指标f实际
上是一个连续指标，因此按照公式(10.16)求出来的pi→f实际上是关于末态

的一个概率密度，而不是概率，因此为了得到概率，我们需要对末态谱进

行适当的积分。这个对末态谱的积分当然可以直接在公式(10.17)的基础上

进行，只不过一般来说我们无法得到一个解析的积分结果。但是，对于实

际应用中需要计算跃迁到末态连续谱的情形，情况可以简化。这是因为，

末态连续谱和离散能级不同，正如后文我们将要研究的，离散能级即使

在ωfi = 0时，它在一个充分长时间的微扰作用之下依然有可能发生初末态

之间的振荡行为，这时候微扰论的分析是不成立的，这就是为什么对于离

散能级我们的一阶微扰公式需要满足条件(10.18)的原因。但是，当末态是

连续谱时，只要这个连续谱的宽度足够，那么系统一旦离开初态跃迁到末

态连续谱以后，它将不会和原来的态发生振荡(在本章的最后一节，我们将

给出这一结论的证明)，这一结论的自然推论就是，只要连续谱足够宽，连

续谱中的态不会和任何其它态发生振荡，因为任何态只要跃迁到连续谱就

不能再跃迁回来了。形象地说，连续谱就好比一个泥潭，量子态跃迁进去

就被“粘住”回不来了。因此，对于末态是连续谱的情形，在实际中我们

总是可以测量一个充分长的时间段中的跃迁概率，也即是说，这时候我们

真正关心的其实总是t→ ∞的情形，这时候结果就可以进一步简化。
为了强调末态指标的连续性，我们将末态指标f改写成αf。αf只是一

个示意性的指标，一般来说它可能包含多个连续指标，我们假定不同末态

归一化到标准的δ函数上，即对于两个不同末态|αf⟩和|α′
f⟩我们有

⟨α′
f |αf⟩ = δ(αf − α′

f ). (10.19)

因此，为了得到跃迁概率，我们需要把按照公式(10.16)计算出来的概率密

度pi→αf
对αf进行一个合适的积分∫

Df

pi→αf
dαf , (10.20)

式中dαf可以理解成一个αf指标微元内所包含的末态数目，而积分区

域Df的选取则和我们具体如何测量跃迁概率密切相关。

比方说，在实际测量中，我们的仪器对末态能量会有一个分辨率∆, 那

么积分区域Df中就必须包含一个以能量Ef为中心宽度为∆的能谱(按照假

定这是一个连续谱)区间∆(Ef )，因此这就需要我们将末态指标从归一化



第十章 含时问题与散射问题 10

到δ函数的指标αf变换到以连续能量Ef为代表的指标。当然能量指标可能

还不足以区分不同的末态，这时候我们就还需要一些额外的指标χf。这种

末态指标的变换会满足

dαf = ρ(Ef , χf )dEfdχf , (10.21)

其中指标变换的雅可比行列式ρ(Ef , χf )又称为末态态密度，因为它表示单

位能量区间和单位χ指标区间之内的末态数目。

比方说，如果H0是一个自由粒子哈密顿量，即H0 = p2

2m
，因此末态是

一个自由粒子，它可以用归一化到δ函数的动量本征态|p⟩来标记(它当然

也是H0的本征态), 这时候末态数目就是d3p。变换到动量空间的球坐标，

就有d3p = p2dpdΩ = m
√
2mEdEdΩ, 式中p = |p|表示末态粒子动量大小，

E表示末态粒子能量，Ω是立体角，dΩ就相当于前面一般公式中的dχ。因

此，在这种情况下末态态密度ρ(E)就是

ρ(E) = m
√
2mE. (10.22)

根据一阶含时微扰的公式(10.16)，为了计算跃迁概率密度pi→αf
, 我们

需要计算
∫ t

t0
dt1e

iωfit1⟨αf |V |i⟩ = ⟨αf |V |i⟩
∫ t

t0
dt1e

iωfit1。不过，为了后面的数

学处理更方便，对于末态是连续谱的情形，我们常常取初始时刻t0 = −t/2，
同时取末尾时刻为t/2时刻(因此整个过程持续的时间依然是t)，因此我们要

计算的实际上是⟨αf |V |i⟩
∫ t/2

−t/2
dt1e

iωfit1。前面说过，对于末态是连续谱的情

形，实际中关心的其实总是t → ∞时(严格来说是t充分大时)的结果，因此

这时候我们就有⟨αf |V |i⟩ limt→∞
∫ t/2

−t/2
dt1e

iωfit1 = ⟨αf |V |i⟩2πδ(ωfi)。这里我

们利用了数学公式 ∫ +∞

−∞
dteiωt = 2πδ(ω). (10.23)

但是为了计算跃迁概率密度，我们需要将跃迁概率幅进行模方，这就

涉及到δ函数的平方该如何处理的问题。物理学家常常采用下面这种数学上

不太严格，但是很有效很方便的处理方法。那就是

(δ(ω))2 = δ(ω)δ(ω) = δ(ω) lim
t→∞

∫ t/2

−t/2

dt1
2π
eiωt1 = δ(ω) lim

t→∞

∫ t/2

−t/2

dt1
2π
ei·0·t1

= δ(ω) lim
t→∞

∫ t/2

−t/2

dt1
2π

· 1 = δ(ω)
t

2π
|t→∞, (10.24)
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式中第三个等号我们利用了δ函数的公式δ(ω)F (ω) = δ(ω)F (0)(F (ω)为ω的

一个任意函数)。上面的推导告诉我们，当t充分大时，我们有

(δ(ω))2 = δ(ω)
t

2π
, (10.25)

这里的ω当然是一个频率变量。

利用公式(10.25)以及之前对跃迁概率幅的计算结果− i
~⟨αf |V |i⟩2πδ(ωfi),

我们马上就可以得到跃迁概率密度pi→αf
为

pi→αf
=

2π

~
|⟨αf |V |i⟩|2δ(Ef − Ei) · t, (10.26)

为了得到这个式子我们还利用了δ函数的关系式δ(x)/a = δ(ax)，其中x为变

量，a > 0为常数。将这个概率密度乘上末态数目dαf，并对以Ef = Ei为

中心的末态能谱区间∆(Ef )积分(这也就是测量仪器的精度区间)，注意

到δ(Ef − Ei)的积分是1，我们就得到跃迁概率(还是记作pi→f )

pi→f =
2π

~
|⟨αf |V |i⟩|2ρ(Ef , χf )|Ef=Ei

dχf · t. (10.27)

注意到这个跃迁概率正比于微扰作用的时间t，因此，单位时间的跃迁概

率wi→f = dpi→f/dt为，

wi→f =
2π

~
|⟨αf |V |i⟩|2ρ(Ef , χf )|Ef=Ei

dχf . (10.28)

以上这个结果，常常被称为费米黄金规则。有时候人们也直接用单位时间

的跃迁概率密度wi→αf
将这一规则表达成

wi→αf
=

2π

~
|⟨αf |V |i⟩|2δ(Ef − Ei). (10.29)

式中的δ(Ef −Ei)意味着，在恒定微扰的作用之下，末态的能量必然和初态

的能量相等，因此这样的量子跃迁满足能量守恒。

我们也可以计算t时间之内，从初态|i⟩出发到所有可能末态(当然不包

括|i⟩态本身)的跃迁总概率, 显然它是t · 2π
~

∫
|⟨αf |V |i⟩|2ρ(Ef , χf )|Ef=Ei

dχf ,

式中的积分表示对所有可能的dχf (也就是整个末态相空间)积分。这个总概

率必定要小于1(因为|i⟩有一定的概率不跃迁)，并且为了保证一阶微扰成立

实际上应该远小于1。注意到这个跃迁总概率正比于t，因此这实际上说明

了，前面我们取t → ∞其实只是一种近似，真实的t其实是微扰有效作用的
时间，考虑到|⟨αf |V |i⟩|2是一个二阶小量，因此这个时间可以充分大(以使

得前面t → ∞的近似处理成立)，但并不能真正趋于无穷，实际上跃迁总概

率小于1的条件告诉我们，真实的微扰有效作用的时间并不能过于长，否则

我们的含时微扰论将不能适用。
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势散射理论初论

作为恒定微扰的一个例子，让我们来考虑一个粒子在一个固定势场中

的散射问题，我们将把势能V (x)看成是对自由粒子哈密顿量的微扰，我们

假定V (x)在空间无穷远处衰减得足够快，最重要的是V (x)不显含时间，因

此是一个恒定微扰。系统的哈密顿量是H = H0 + V (x)，其中H0 = P2

2m
是

自由粒子的哈密顿量。假设入射粒子处在H0的本征态|pi⟩, pi表示入射粒子

动量，因此入射粒子的能量是Ei =
p2
i

2m
。类似的假设出射粒子处在H0的本

征态|pf⟩，|pf⟩同时为动量本征态，满足归一化关系⟨pf |p′
f⟩ = δ(pf − p′

f )，

出射粒子能量为Ef =
p2
f

2m
。因此势散射问题其实就是粒子从初态|pi⟩跃迁

到末态|pf⟩的跃迁问题。由于在这里末态显然是一个连续谱，所以可以认
为入射粒子是在−t/2 → −∞的无穷远过去入射，在t/2 → ∞的无穷远将
来出射，因此在一阶微扰上，我们最终会有前面推导出来的费米黄金规

则(10.28)。

为了使用费米黄金规则(10.28)，我们需要计算末态态密度，根据我

们前面的计算(10.22)，结果是ρ(Ef ) = m
√
2mEf = mpf , 式中pf = |pf |为

末态动量的大小。另外，我们还需要计算矩阵元⟨pf |V (x)|pi⟩, 利用位
置本征态的封闭性关系，我们有⟨pf |V (x)|pi⟩ =

∫
d3x⟨pf |V (x)|x⟩⟨x|pi⟩ =∫

d3xV (x)⟨pf |x⟩⟨x|pi⟩ = 1
(2π~)3

∫
d3xV (x)ei(

pi−pf
~ )·x,式中我们利用了⟨x|p⟩ =

1
(2π~)3/2 e

ip~ ·x。因此根据费米黄金规则(10.28)，我们可以得到单位时间粒子

从|pi⟩态散射到|pf⟩态的概率,

wi→f =
2π

~
1

(2π~)6

∣∣∣∣∫ d3xV (x)ei(
pi−pf

~ )·x
∣∣∣∣2mpfdΩ, (10.30)

式中Ω为出射粒子的立体角，并且整个散射过程要满足能量守恒，即

Ef = Ei. (10.31)

但是实验上测量的其实是一个和wi→f密切相关的量，叫做微分散射截

面，记作dσ, 它的定义是单位时间的散射概率wi→f比上入射粒子概率流密

度的大小Ji，即

dσ =
wi→f

Ji
. (10.32)

由于概率流密度的物理含义是单位时间在单位横截面积上粒子通过的概率，

所以微分散射截面的物理含义实际上是：最后被散射到立体角dΩ之内的粒
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子数(实验上入射粒子并不是一个，而是一束相同的粒子) 与单位时间单位

截面积上入射的粒子数的比值。由于wi→f是时间的负一次方量纲，而Ji的

量纲是时间的负一次方乘上面积的负一次方，因此微分散射截面有面积的

量纲，所以称作截面。

对于归一化到δ函数的入射平面波, 其波函数是 1
(2π~)3/2 e

i
pi·x
~ , 因此人们

容易求得入射概率流密度的大小Ji为

Ji =
1

(2π~)3
pi
m
. (10.33)

将这个结果和之前得到的wi→f的结果(10.30)代入微分截面的定义式，我们

就能得到

dσ =
( m

2π~2
)2 ∣∣∣∣∫ d3xV (x)ei(

pi−pf
~ )·x

∣∣∣∣2 dΩ, (10.34)

其中我们利用了能量守恒关系pf = pi。注意，这个结果(10.34)只是一阶微

扰论的结果，通常称作玻恩近似的结果。在本章的最后两节我们将把这样

的结论推广到微扰论的任意阶。

微分散射截面的概念不仅适用于单个入射粒子受一个固定势场散射的

情形。也适用于两体散射情形，也就是两个粒子相互飞近，然后发生相互

作用，再相互散射开来的情形。这时候入射粒子是两个粒子，散射以后出

射的依然是这两个粒子。但是由于总动量守恒，两体问题总是可以化约为

单体问题。这个结论我们在理论力学里就已经知道了，结论是，我们可以

选取质心系(从而使得我们可以完全忽略质心的运动)，然后考察一个粒子

相对于另一个粒子的运动，即引入相对坐标x = x1 − x2, 并将质量替换成

约化质量mR = m1m2/(m1 +m2)就可以了。因此对于两体散射问题，我们

也可以选取质心系，并把其中的一个粒子称作靶粒子，把另外一个相对于

靶粒子运动的粒子称作散射粒子，然后引入散射粒子相对于靶粒子的相对

坐标x和约化质量，问题就依然归结为散射粒子受靶粒子势场V (x)散射的

问题。这时候前文中的入射粒子动量pi以及出射粒子动量pf就应该理解为

散射粒子在质心系中散射前后的动量(靶粒子的动量可以不用管，因为在质

心系中，它一定和散射粒子的动量相反)。散射粒子入射时的概率流密度现

在是J = 1
(2π~)3

p
mR

= 1
(2π~)3 |

p
m1

+ p
m2

| = 1
(2π~)3 |

p1

m1
− p2

m2
| = 1

(2π~)3 |v1 −v2|, 这里
我们利用了在质心系中，散射粒子动量p1 = p，靶粒子动量p2 = −p。也

就是说，散射粒子相对于靶粒子的概率流密度由它们的相对速度决定。

但是，值得注意的是，散射截面的概念在3个粒子散射，或者更多粒子

相互散射的情形中是不适用的。这时候人们往往需要直接测量跃迁概率。
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不过这样的情形在实验上相对难以实现，也相对没有那么重要。即使在量

子场论中，也由于粒子可以湮灭和产生，散射末态的粒子可以和初态粒子

不同，甚至可以有很多末态粒子，因此更多粒子的相互作用规律往往可以

通过两个粒子碰撞产生很多末态粒子来观测，在这种情形下由于初态只有

两个粒子，因此散射截面的概念依然适用。实际上，高能物理的粒子对撞

机都是研究两粒子的对撞。

下面我们用玻恩近似(10.34)计算一个具体的散射截面，我们假设散射

势能函数取如下形式

V (x) = V0
e−

r
a

r
. (10.35)

式中r是散射粒子的径向坐标，V0和a都是常数，并且a > 0。V0表示这个势

的强度，我们假设|V0|足够小，以致于玻恩近似可以成立。a其实描写的是
这个势相互作用的力程，如果散射粒子的距离r比a大很多，那实际上它所

受到的相互作用力就可以忽略不计了，因此这个势描写的是一种短程力。

但是如果我们取力程a → +∞的极限，那这个势能显然就变成一个库伦势
了。

(10.35)式给出来的这个势称作汤川势。汤川首先想到用这样一个相互

作用势描写力程约为一个费米的核力，为了解释这个势的来源，他不得不

假设π介子的存在，后来，人们的确在实验上发现了π介子，汤川也为此得

了诺贝尔奖。

为了计算出汤川势的散射截面，我们记入射粒子的波矢量为ki = pi/~,
记这个粒子在末态出射时的波矢量为kf = pf/~，记散射中的波矢量转移
为k = kf − ki = (pf − pi)/~, 因此根据公式(10.34), 我们需要计算

V0

∫
d3xe−ik·x e

− r
a

r

= V02π

∫ ∞

0

r2dr

∫ π

0

sin θdθe−i|k|r cos θ e
− r

a

r

= V0
4π

|k|

∫ ∞

0

dr sin(|k|r)e−
r
a

= V0
4π

|k|
Im

∫ ∞

0

drei|k|re−
r
a

= V0
4π

|k|
Im

(
1

1
a
− i|k|

)
=

4πV0
( 1
a
)2 + |k|2

. (10.36)
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将这个结果代入微分截面的公式(10.34)，就可以得到

dσ =
4m2V 2

0

~4
1

[( 1
a
)2 + |k|2]2

dΩ. (10.37)

注意到|pi| = pi = pf = |pf |,进而由图(10.2)很容易看出|k| = 2(pi/~) sin( θ2) =

图 10.2: 散射前后波矢量的变化.

2(
√
2mE/~) sin( θ

2
), 其中的θ不是刚才算积分的过程中涉及到的θ, 而是散射

角，即出射方向和入射方向的夹角, 而E则是入射粒子动能，当然由于能量

守恒，也是出射粒子动能。将这些代入(10.37), 就可以得到

dσ =
4m2V 2

0

~4
1

[( 1
a
)2 + 8mE

~2 sin2( θ
2
)]2
dΩ. (10.38)

如果在上面的结果中取a → +∞的极限，并取V0 = Z1Z2e2

4πϵ0
= Z1Z2e

2
s(式

中e2s =
e2

4πϵ0
)，那么汤川势就变成了两个序数分别为Z1和Z2的原子核之间的

库伦排斥势能，这时候上面的结果(10.38)就变成著名的卢瑟福公式

dσ =
Z2

1Z
2
2e

4
s

16E2 sin4( θ
2
)
dΩ. (10.39)

注意，在卢瑟福公式里，所有的普朗克常数~全都消去了，这就是为什么卢
瑟福用经典力学的推导也能正确地得到这个公式的原因。

10.1.3 简谐振荡微扰

下面我们考察另外一种重要的微扰，简谐振荡微扰，即以固定频率ω随

时间振荡的微扰，其微扰相互作用V (t)可以写成

V (t) = We−iωt +W †eiωt, (10.40)

其中算符W及其厄米共轭算符W †都不显含时间。我们将首先处理末态是连

续谱的情形，然后再讨论初末态都是离散能级的情形。
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末态为连续谱的情形

对于末态是连续谱的情形，和恒定微扰的讨论一样，人们实际关心的

总是一个充分长的时间，因此我们可以近似认为初始时刻是在−∞的无穷
远过去，而末尾时刻是在+∞的无穷远将来，也即是说，整个微扰作用过
程持续的时间t充分长。

首先我们要利用公式(10.16)计算跃迁概率密度pi→αf
。为此我们需要计

算
∫ +∞
−∞ dt1e

iωfit1⟨αf |V (t1)|i⟩, 代入振荡微扰的一般形式(10.40)，我们可以得

到结果是
∫ +∞
−∞ dt1

[
ei(ωfi−ω)t1⟨αf |W |i⟩+ ei(ωfi+ω)t1⟨αf |W †|i⟩

]
=Wfi2πδ(ωfi−

ω) +W ∗
if2πδ(ωfi + ω), 式中Wfi = ⟨αf |W |i⟩, 并且我们利用了(W †)fi = W ∗

if。

类似于恒定微扰的情形，通过利用数学公式(10.25)，并注意到δ(ωfi −
ω)δ(ωfi + ω) = 0(因为无论ω取多少，这两个δ函数至少有一个会等于0)，我

们可以得到单位时间的跃迁概率密度wi→αf
=

dpi→αf

dt
，结果完全类似于费米

黄金规则

wi→αf
=

2π

~
[
|Wfi|2δ(Ef − Ei − ~ω) + |Wif |2δ(Ef − Ei + ~ω)

]
. (10.41)

这个结论的物理意义很清楚，等式右边的第一项仅在末态能量Ef比初态

能量Ei高~ω时才非0，因此表示的是系统从微扰中吸收能量~ω进而跃迁到
更高能级的过程，相反，等式右边的第二项表示的是系统释放能量~ω，进
而从最初的更高能级Ei跃迁到低能级Ef的过程，当然，等式(10.41)右边

的两个δ函数不可能同时非0，因此这两个过程不可能同时实现。和恒定

微扰情形一样，为了得到单位时间的跃迁概率wi→f，我们需要将概率密

度wi→αf
对末态能谱作一个合适的积分，所有的处理都和恒定微扰情形完

全一样，因此我们这里不再赘述。

离散能级情形

下面我们来考察初末态都是离散能级的情形，根据我们在恒定微扰中

的讨论，这时候微扰作用的时间t不再能当作无穷大来处理，为此这时候

我们不妨将初始时刻取为t0 = 0，末尾时刻取为有限时刻t。并且这时候要

计算的直接就是跃迁概率pi→f而不再是概率密度。为了利用公式(10.16)计

算pi→f，我们首先需要计算
∫ t

0
dt1e

iωfit1⟨f |V (t1)|i⟩。代入振荡微扰的一般形
式(10.40)，我们要计算的其实是∫ t

0

dt1
[
ei(ωfi−ω)t1Wfi + ei(ωfi+ω)t1W ∗

if

]
, (10.42)
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式中Wfi = ⟨f |W |i⟩。
由于算符W不显含时间, 所以(10.42)式的积分当然可以很容易计算出

来。但是对于这种一般情形，由于(10.42)式两项之间的复杂干涉，结果的

物理图像其实并不是很清晰。为了看清楚物理图像，人们通常考察所谓的

共振近似(也叫做旋波近似)，即我们分别考察ω ∼ ωfi(由于假定ω > 0，因

此这时候当然需要Ef > Ei)和ω ∼ ωif = −ωfi(这时候当然需要Ef < Ei)两

种特殊情形。并假定微扰作用的时间t比较长(虽然不能近似成无穷长)，以

至于

ωt ∼ |ωfi|t≫ 1. (10.43)

不妨以ω ∼ ωfi的情形为例。这时候公式(10.42)的两项中，第一项

随时间的振荡频率为|ωfi − ω| ≪ ω, 因此是一个很缓慢的振荡，而第二

项的振荡频率为ωfi + ω ∼ 2ω, 因此是一个相对比较快速的振荡，实际

上，根据近似条件(10.43), 在微扰的作用时间之内这个快速振荡项其实

振荡了非常多次，因此实际上这一项对结果的贡献将会平均为0(由于多

次振荡会相互抵消)，也就是说，在ω ∼ ωfi并满足近似条件(10.43)时，我

们其实可以完全忽略公式(10.42)中第二项这个快速振荡项。因此近似的

有
∫ t

0
dt1e

iωfit1⟨f |V (t1)|i⟩ ≈
∫ t

0
dt1e

i(ωfi−ω)t1Wfi = Wfie
i 1
2
ωfit sin((ωfi−ω)t/2)

(ωfi−ω)/2
。因

此，这时候跃迁概率pi→f将近似为

pi→f ≈ 1

~2
|Wfi|2

[
sin((ωfi − ω)t/2)

(ωfi − ω)/2

]2
. (10.44)

这个结果完全类似于恒定微扰离散能级时的结果, 由于这时候Ef > Ei，

所以这个跃迁概率代表的是系统与微扰共振并吸收能量的情形。当ω =

ωfi时，跃迁概率达到最大，为
1
~2 |Wfi|2t2，一阶微扰近似适用的条件要求这

个概率要远小于1，因此我们得到第二个近似条件,

|Wfi|t/~ ≪ 1. (10.45)

与共振近似条件(10.43)不同，这个近似条件来源于微扰论的适用条件。为

了能同时满足近似条件(10.43)和(10.45), 显然要求微扰算符W满足

|Wfi| ≪ ~|ωfi| = |Ef − Ei|. (10.46)

类似的，人们也可以讨论ω ∼ −ωfi的情形。这时候可以得到，跃迁概

率近似为

pi→f ≈ 1

~2
|Wif |2

[
sin((ωfi + ω)t/2)

(ωfi + ω)/2

]2
. (10.47)
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由于这时候Ef < Ei, 因此它代表的是系统与微扰共振但是释放能量的情

形。

以上就是在一阶微扰的框架下对于离散能级与微扰共振的处理，值得

再次强调的是，这种一阶微扰的处理办法需要满足微扰近似条件(10.45)。

因此如果微扰起作用的时间t过于长，以至于(10.45)不成立时，一阶微扰的

处理将会失效，本章后面在关于量子共振的一般性研究中，我们将会进一

步考察这时候该如何处理问题。

10.2 光的辐射与吸收

10.2.1 原子对光的辐射与吸收

这一节我们将应用前面发展的含时微扰论来研究原子与电磁场的相互

作用，具体来说就是研究原子对光的辐射和吸收所导致的能级跃迁过程。

研究光的辐射和吸收过程不仅可以使得我们理解光和物质相互作用的规律，

而且在技术上也很重要，比方说激光就是这一研究的重要产物。我们的激

光打印机、商场的条形码扫描器、我们通过光纤网络浏览视频等等，都离

不开激光，我们几乎每天都在使用激光。但要理解激光的工作原理就需要

用量子力学来研究光的辐射和吸收过程。激光在自然界中原本是不存在的，

完全是因为人们深入理解了光的辐射和吸收机理才人为制造了出来。

早在1917年爱因斯坦就迈出了理解光的辐射和吸收机理的关键一步，

也正是爱因斯坦迈出的这一步才使得激光成为可能。爱因斯坦提出，光的

辐射和吸收可以分成三个基本过程，如图(10.3)所示：自发辐射过程、吸收

过程、以及受激辐射过程。 吸收过程就是原子吸收一个光子进而跃迁到高

能级的过程。自发辐射过程就是原子自发地从高能级跃迁到低能级并放出

一个光子的过程。原子通过自发辐射过程发出来的光就是普通的光，如日

光灯的光，霓虹灯的光等等，其特点是辐射光的频率、偏振方向、以及相

位都很不一致。但是，如果原子受外来光子的诱导而从高能级跃迁到低能

级并辐射出光子，那辐射出来的光子就会和诱导它的外来光子在频率、位

相、以及传播方向等方面都完全一致，因此可以说，外来光被相干地放大

了。这样一个有很好的相干性的发光过程就是受激辐射过程。

当然，上面所描述的受激辐射图像是后人在爱因斯坦的基础上进一步

发展的结果，是一幅完全量子的图像。爱因斯坦关于光的辐射和吸收的原

始模型里面并没有充分指出受激辐射的相干性。完整地处理这一量子图像
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图 10.3: 光的辐射和吸收的三个基本过程：(a)自发辐射过程. (b)吸收过程.

(c)受激辐射过程.

需要量子光学或者量子电动力学的知识，也就是说，需要我们不仅用量子

力学的方式处理原子，同时也要用量子力学的方式处理电磁场。然而将电

磁场进行量子化超出了本书的范围(不过在下一节中，我们将研究一个特殊

的模型，在那个模型中，电磁场会被处理成量子谐振子)，因此我们这里将

采用半经典的处理，也就是说我们将依然把电磁场看成是一个经典场，而

仅仅将电磁场中的原子当作量子力学客体。

这种半经典的处理将使得我们仅仅只能直接研究原子对电磁波的吸收

过程和受激辐射过程，因为这两种过程都可以看成是在一个预先存在的电

磁场背景下发生的，用经典的方式来处理这个背景电磁场并不会实质性地

改变物理结论(当然，要深入理解受激辐射的相干性也还是需要量子光学的

处理)。然而，原子的自发辐射过程却有所不同，这时候并没有一个预先存

在的背景电磁场，为了直接研究原子的自发辐射过程，我们必须同时将电

磁场量子化。不过，爱因斯坦原始模型的一个经典结果将自发辐射系数和

受激辐射联系了起来，这使得人们可以绕过电磁场的量子化得到自发辐射

系数，结果与量子场论的直接推导完全吻合。值得指出的是，在历史上，

第一个完全用量子场的方式推导出自发辐射系数的是狄拉克。

为了研究原子与背景电磁场的相互作用，我们假设电磁场的波长远大

于原子的尺寸(由于原子的能级差通常是eV量级，因此原子辐射和吸收的

电磁波波长λ大致在几百个纳米到上千个纳米，即λ ∼ 10−6m, 而原子的尺
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寸大致是10−10m，因此这个假设是成立的)。因此，在原子的尺寸上，我们

可以忽略电磁场随着空间的变化，进而将原子看成是与一个均匀电磁场(场

强为E(t),B(t))耦合的电偶极子和磁偶极子，我们将原子的电偶极矩算符

记作d，将磁偶极矩算符记作m。因此原子与电磁场的相互作用项V (t)为

V (t) = −d · E(t)−m ·B(t). (10.48)

这一近似通常称作偶极近似。

实际上，在低阶近似中，磁偶极矩和磁场的相互作用也可以忽略。不

妨以氢原子为例来分析其原因，这时候，原子与电磁场的耦合实际上是

核外电子与电磁场的耦合，因此d = −ex(x为电子的位置矢量), 其大小

在ea0 = e ~
mαc
的量级，这里a0为玻尔半径，α = e2/(4πϵ0~c) ≈ 1/137为精细

结构常数。类似的，这时候m = − e
2m

L(L为电子的角动量)，其大小在 e~
2m
的

量级。又由于对于电磁波而言，其磁场强度B的大小等于电场强度E的大小

除以c，即|B|/|E| = 1/c。因此我们有

|m ·B|
|d · E|

∼ 1

c
· ( e~
2m

)/(
e~
mαc

) = α ≈ 1/137. (10.49)

也就是说，磁偶极矩与磁场的相互作用大约比电偶极矩与电场的相互作用

小两个数量级。因此，作为低阶微扰近似，忽略掉原子的磁偶极矩和磁场

的相互作用是很合理的。

我们首先考虑一个单色电磁波与原子的耦合，假定E(t) = E0 cos(ωt),

式中E0是个常数，表示场强的振幅。那么相应的相互作用V (t)将是

V (t) = −d · E0

2
(e−iωt + eiωt). (10.50)

但是请注意，我们真正要讨论的其实并不是一个单色电磁波的情形，因为

在通常的条件下，原子受激辐射或者吸收电磁波的时候，实际的背景电磁

波其实不是一个单色波，而是形如E(t) =
∫
dωE(ω) cos(ωt)这样的一个单

色波的连续叠加，因此频率ω并不是给定的，而是一个连续变量。在这种

情况下，虽然原子的初末态可能都是离散能级，但是我们计算出来的单位

时间跃迁概率wi→f其实依然是一个概率密度，是关于微扰频率ω的概率密

度，而最终的跃迁概率是要对ω进行一个合适积分的。因此，前面关于连

续谱的那些讨论和公式在这里依然适用。相反，如果实际的电磁场真的是

一个单色波的话，那下面的讨论反而将不适用了。
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我们以原子吸收电磁波的情形为例来进行讨论。这时候，根据上一节

对于连续谱情形的讨论，单位时间之内原子从初态|i⟩跃迁到末态|f⟩的概
率wi→f (上面说过，实际上它是一个关于ω的概率密度)为，

wi→f =
2π

~
|⟨f |(d · E0)/2|i⟩|2δ(Ef − Ei − ~ω)

=
π

2~2
|⟨f |d · E0|i⟩|2δ(ωfi − ω). (10.51)

但是，这个结论处理的是一个有确定偏振方向E0的电磁波，考虑到

原子通常处在自然光条件下，而自然光是非极化的，因此我们需要

将E0的不同方向进行平均，也就是说要把上面结果中的|⟨f |d · E0|i⟩|2替换
成1

3
|E0|2|⟨f |d|i⟩|2,注意|E0|2是和方向无关的，并且式中|⟨f |d|i⟩|2 = ⟨f |d|i⟩ ·

⟨f |d|i⟩∗。因此最终的结果是

wi→f =
π

6~2
|E0|2|⟨f |d|i⟩|2δ(ωfi − ω). (10.52)

下面我们来考虑如何将上面的概率密度对ω进行一个适当的积分，

也就是考虑如何从一个单色波的结果过渡到不同单色波的连续叠加的

情形。我们注意到电场E(t) = E0 cos(ωt)的能量密度对一个振动周期的

平均值为1
2
ϵ0|E0|2 · 1

2
。由于电磁波的磁场能量密度对一个振动周期的

平均值总是和电场能量密度的平均值相等(电动力学的熟知结论)。所

以E(t) = E0 cos(ωt)的单色波所对应的电磁场能量密度平均值为
1
2
ϵ0|E0|2。

但这只是一个单色波的结果，要过渡到单色波的连续叠加情形的话，我

们就需要把这个能量密度替换成u(ω)dω，其中u(ω)表示电磁场在ω附近

的单位频率区间里的能量密度。因此最终我们需要在结果(10.52)中进

行1
2
ϵ0|E0|2 → u(ω)dω的替换，从而就会得到

wi→f =
π

3ϵ0~2
u(ω)dω|⟨f |d|i⟩|2δ(ωfi − ω). (10.53)

现在，将这个结果对ω积分，就会得到(我们依然使用了记号wi→f , 希望不

会引起读者的混淆)

wi→f =
π

3ϵ0~2
|⟨f |d|i⟩|2u(ωfi). (10.54)

由于这个单位时间跃迁概率正比于电磁场的能量密度u, 所以通常也写

作wi→f = Bfiu(ωfi), Bfi称为从|i⟩态吸收一个光子跃迁到高能级|f⟩态的吸
收系数，很显然它是

Bfi =
π

3ϵ0~2
|⟨f |d|i⟩|2. (10.55)
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特别的，对于氢原子，由于d = −ex，所以

Bfi =
(2π)2αc

3~
|⟨f |x|i⟩|2, (10.56)

这里α是精细结构常数。

类似的，假设原子原来处在高能级Ef，我们也可以考察它在背景

电磁场的作用下，在单位时间之内跃迁到低能级Ei, 并辐射出光子的概

率wf→i(即受激辐射的概率)，结果是与吸收光子的概率完全相等，即

wf→i = wi→f . (10.57)

这是因为，根据公式(10.41)，从|i⟩跃迁到|f⟩的辐射项正比于|Wfi|2，但现
在我们考察的是从|f⟩跃迁到|i⟩的辐射项，那当然还是正比于|Wfi|2, 因此
一切都和吸收光子从|i⟩跃迁到|f⟩的情形完全一样。历史上，受激辐射的
概念是1917年在量子力学的完整理论建立起来之前爱因斯坦首先提出来

的。爱因斯坦假设，在单位时间之内，原子在高能级|f⟩上受电磁场的诱
导跃迁到低能级|i⟩，进而辐射出一个光子的概率wf→i正比于电磁场的能量

密度u(ωfi)，爱因斯坦将之写作，wf→i = Bifu(ωfi), Bif称之为受激辐射系

数。因此方程(10.57)告诉我们的实际上是，

Bif = Bfi, (10.58)

即受激辐射系数和吸收系数相等。这个结果最早也是爱因斯坦通过其原子

辐射和吸收模型得到的。

10.2.2 爱因斯坦的受激辐射理论与激光

下面，让我们简单地回顾一下爱因斯坦的原始模型，我们的着重点在

于搞清楚原子的自发辐射如何与吸收以及受激辐射联系起来。爱因斯坦的

推理要点就在于考察当系统达到热平衡时，原子的吸收过程和辐射过程如

何相平衡。

设想在黑体辐射的空腔里有大量完全相同的原子在不断辐射和吸收电

磁波，并达到热平衡。假设我们以Nn表示热平衡时|n⟩能级的原子数目。则
热平衡时，单位时间之内通过吸收一个光子从|i⟩能级跃迁到高能级|f⟩的
原子数将是wfiNi = Bfiu(ωfi)Ni。相反，单位时间之内，从高能级|f⟩通过
辐射一个光子从而跃迁到低能级|i⟩的原子分成两类，一类是通过自发辐射
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跃迁到低能级的原子，自发辐射和空腔里的电磁场没有关系，因此单位

时间的跃迁概率是个常数，记作Aif，也称之为自发辐射系数，所以单位

时间之内通过自发辐射从|f⟩能级跃迁到|i⟩能级的原子数为AifNf。另一类

从|f⟩能级跃迁到|i⟩能级的原子是由于受到了空腔里的电磁场的诱导而产生
的辐射，这就是前面我们已经研究过了的受激辐射，单位时间之内通过受

激辐射从|f⟩能级跃迁到|i⟩能级的原子数是Bifu(ωfi)Nf。因此，单位时间之

内从|f⟩能级跃迁到|i⟩能级的总原子数是(Aif + Bifu(ωfi))Nf。很显然，如

果|i⟩到|f⟩的跃迁能和|f⟩到|i⟩的跃迁相平衡，即

Bfiu(ωfi)Ni = (Aif +Bifu(ωfi))Nf , (10.59)

那么系统就能维持在热平衡状态。

另一方面，根据统计物理的玻尔兹曼定律，在热平衡时，能量为E的

原子数目将正比于exp
(
− E

kT

)
, 式中k为玻尔兹曼常数，T为热平衡温度。因

此

Nf/Ni = exp

(
−Ef − Ei

kT

)
= exp

(
−~ωfi

kT

)
. (10.60)

而且，根据普朗克黑体辐射公式，

u(ωfi) =
~ω3

fi

π2c3
1

e
~ωfi
kT − 1

. (10.61)

将这些结果代入(10.59)就可以得到

Aif =
~ω3

fi

π2c3
1

e
~ωfi
kT − 1

[
Bfi exp

(
~ωfi

kT

)
−Bif

]
. (10.62)

由于这些系数Aif、Bfi以及Bif都与温度无关。因此为了让上式对于任何温

度都成立，就必定有

Bfi = Bif , Aif =
~ω3

fi

π2c3
Bif . (10.63)

其中，第一个结果我们已经通过微扰论推导出来了。而更重要的是第二个

结果，它使得我们可以避开对电磁场的量子化，直接从对Bfi的计算中得出

自发辐射系数Aif。

前面我们谈到受激辐射所发出的光有很好的相干性，这使得人们自然

想到利用受激辐射，的确，激光就是这一想法的产物。然而要想制造出激
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光，我们还需要克服一些困难。第一个困难是，在通常的条件下，受激辐

射其实很微弱，原子发光主要靠自发辐射。人们可以通过比较自发辐射的

跃迁概率Aif和受激辐射的跃迁概率Bifu(ωfi)来理解这一点，根据爱因斯坦

的模型导出来的结果，在热平衡时我们有

Aif

Bifu(ωfi)
= e

~ωfi
kT − 1 = 2ωfi/ωc(T ) − 1. (10.64)

式中，ωc(T ) = kT
~ log 2，当ωfi = ωc时，这两个跃迁概率相等。当ωfi大

于ωc时，自发辐射的概率与受激辐射概率的比值按照ωfi/ωc(T )的指数关

系增长。如果取T为室温的300K, 则ωc = 2.74 × 1013Hz, 相应于波长λc =

6.9× 10−5m。而可见光的波长在几百个纳米，即大约是10−2λc, 因此对于室

温下的可见光辐射，自发辐射的概率约是受激辐射概率的210
2
= 2100倍，因

此相比来说，受激辐射完全可以忽略。

由于受激辐射的概率正比于电磁场的能量密度，因此要增加受激辐射

的概率就需要增加辐射场的能量密度。在激光器中，这一点是通过一个谐

振腔来实现的，就是让受激辐射出来的相干光不断地在谐振腔中谐振，一

个光子通过受激辐射诱导出两个相干光子，两个相干光子再诱导出四个相

干光子，如此不断谐振使得相干光子数不断倍增，从而实现一个强辐射场，

其能量密度远大于热平衡时电磁场的能量密度。因此才能使得激光器中的

受激辐射超过自发辐射占据主导地位。

但即使是这样，也还不能实现激光的输出，原因在于，工作物质中

的原子不只会辐射光，它还会吸收光。前面我们已经知道，吸收的概率

是Bfiu(ωfi), 这个概率和受激辐射的概率是一样的。但是工作物质单位

时间之内对光的吸收率等于这个概率乘以低能级的原子数Ni，而辐射率

则等于这个概率乘以高能级原子数Nf。要实现激光的输出，就必须使得

辐射率超过吸收率，也即要让Nf > Ni。但是根据玻尔兹曼定律，在热

平衡时，Nf一定小于Ni。因此要实现激光的输出也必须远离热平衡，实

现高能级原子数Nf大于低能级原子数Ni的粒子数反转，也叫做集居数反

转(population inversion)。用来实现集居数反转的特殊介质，叫做增益介

质(gain medium)，给增益介质提供能量使其反生集居数反转的能量源，叫

做泵浦源(pumping source)。但是在不同类型的激光器中，往往会有不同的

泵浦方式来实现集居数反转，具体内容请读者参阅关于激光工作机理方面

的专业书籍。
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10.3 量子共振的一般性研究

这一节我们将在超越微扰论的意义上讨论离散能级之间的跃迁过程。

对于离散能级，我们前面讨论过，微扰展开的处理办法适用的一个必要条

件是|⟨m|V |n⟩|t/~ ≪ 1, 其中t表示我们所考察的整个过程的时间尺度，或者

也可以理解为微扰持续的时间，|n⟩和|m⟩是两个相互跃迁的能级。这个必
要条件意味着，仅在微扰相互作用比较微弱，并且时间尺度不过长的时候，

我们才可以用前面发展的含时微扰论来处理问题。但是实际中有大量的含

时演化问题超出了微扰论的这个适用范围，这时候我们又该如何处理问题

呢？

我们还是假设系统H可以分成H0和V两部分，并且H0部分所描述的物

理是我们已经了解清楚的，我们想讨论的是，含时相互作用V所引起的跃

迁。因此，前面我们定义的相互作用绘景下的时间演化算符UI(t, t0)依然适

用，跃迁幅⟨m|UI(t, t0)|n⟩和跃迁概率的概念也依然成立，UI(t, t0)所满足的

微分方程(10.12)也依然适用。但是，我们现在不再使用微扰展开的戴森级

数(10.15)了。现在，我们直接以方程(10.12)为基本出发点。

10.3.1 共振近似(旋波近似)

为了简单起见，我们不妨取初始时刻t0 = 0, 并将UI(t, 0)简记为UI(t) =

UI(t, 0)。假设系统的初态为|i⟩, 我们记t时刻系统跃迁到某个任意的|m⟩态
的概率幅为bm(t)，因此

bm(t) = ⟨m|UI(t)|i⟩, (10.65)

显然，bm(t)满足初始条件bm(0) = δmi。因此，t时刻系统跃迁到m态的

概率pi→m(t) = |bm(t)|2。为了推导bm(t)所满足的演化方程，我们利用
方程(10.12)，从而即有， dbm

dt
= ⟨m| d

dt
UI(t)|i⟩ = (− i

~)⟨m|VI(t)UI(t)|i⟩ =

(− i
~)
∑

n⟨m|VI(t)|n⟩⟨n|UI(t)|i⟩ = (− i
~)
∑

n⟨m|VI(t)|n⟩bn(t), 即

dbm
dt

= (− i

~
)
∑
n

⟨m|VI(t)|n⟩bn(t) = (− i

~
)
∑
n

eiωmnt⟨m|V (t)|n⟩bn(t).(10.66)

之后我们要做的就是直接求解这组方程。

下面我们以V =W †eiωt+We−iωt为例来说明在不做微扰展开的情况下，

如何作出必要的近似以简化方程组(10.66), 当然我们假设算符W和W †都不
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依赖于时间t。对于这种类型的含时相互作用V , 方程组(10.66) 变成

dbm
dt

= (− i

~
)
∑
n

[
ei(ωmn+ω)tW ∗

nmbn(t) + ei(ωmn−ω)tWmnbn(t)
]
, (10.67)

式中Wmn = ⟨m|W |n⟩, 并且我们利用了(W †)mn = W ∗
nm。现在，我们将

注意力集中在一种共振情形，即假设微扰的振荡频率ω接近于某个ωfi =

(Ef − Ei)/~, 即ω ∼ ωfi(具体来说，我们假设|ω − ωfi| ≪ ω), 式中i态就是

我们的初态，f态表示的是某个将与其共振的态，这里我们假设Ef > Ei,

因此ωfi > 0, 对于Ef < Ei的情形，人们可以类似地考虑ω ∼ ωif = −ωfi。

并且，我们进一步假设这样的共振能级f是唯一的，即对于所有(m,n) ̸=
(f, i) ∪ (i, f)都有|ω ± ωmn| ∼ ω。

在上面的近似条件之下，人们很容易看出，方程组(10.67)所包含的所

有项中，只有随时间的振荡频率为ωif + ω和ωfi − ω的项相对来说是振荡

得很缓慢的，其余的所有项相对来说都随着时间振荡得比较快。因此假设

我们考察一个很长的时间，t ≫ 1/ω，那么将只有那些缓慢振荡项是决定

性的，而所有的快速振荡项都会因为多次振荡而抵消掉了。因此，我们可

以直接忽略方程组(10.67)中的所有快速振荡项，进行得到下面的简化方程

组，

dbi
dt

= −i
W ∗

fi

~
ei(ω−ωfi)tbf (t)

dbf
dt

= −iWfi

~
ei(ωfi−ω)tbi(t). (10.68)

可见，在我们的共振近似下，只有相互共振的两个能级，i和f是相关的，

问题简化为求解由方程(10.68)所描述的二能级系统，由于i是演化初态，所

以初始条件是bi(0) = 1, bf (0) = 0。

10.3.2 Jaynes-Cummings模型

下面我们以一个更具体的物理例子来演示方程(10.68)的物理内涵，以

及对它的求解过程如何进行。我们要研究的这个物理例子描述的是一个原

子的二能级与激光场耦合共振的情形。我们把这两个能级中的低能级称作

“基态”(ground state), 记为|g⟩，把二能级中的高能级称作激发态(excited

state)，记为|e⟩，假设|e⟩态和|g⟩态的能级差为~ω0。假定激光场的频率为ω,

由于电磁场本身是一种简谐振动，所以激光场可以用一个谐振子来描写

（人们可以严格地通过将共振腔内的电磁场量子化来得到类似的结果），这
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个谐振子的第n能级我们记为|n⟩, 它描述的是n个光子处在完全相同的量子
态，每个光子的能量为~ω, 所以|n⟩态的能量为n~ω(由于零点能和我们将要
进行的讨论无关，所以我们忽略它)，多个光子相干性地处于完全相同的量

子态正是激光的典型特征，所以我们才说与原子耦合的是一个激光场。我

们把描述激光场的这个谐振子的产生湮灭算符分别记为a†, a，相应的粒子

数算符N = a†a描述的当然就是光子数，因此N |n⟩ = n|n⟩。在物理上，我
们考察的这个原子和激光场的耦合系统需要把原子放置在量子光场的共振

腔中才能实现，它属于量子光学的基本研究内容。

描述这个二能级原子与激光场耦合的最简单模型是所谓的Jaynes-

Cummings模型，它是量子光学中一个极为重要也非常基本的模型。Jaynes-

Cummings模型的哈密顿量是，

H = ~ω0
σz
2

+ ~ωa†a+ λ~(a†σ− + aσ+). (10.69)

式中σz = |e⟩⟨e| − |g⟩⟨g|, 即满足σz|g⟩ = −|g⟩, σz|e⟩ = |e⟩, 因此~ω0
σz

2
正好

具有~ω0的能级差，而哈密顿量中的线性谐振子项~ωa†a当然描述的就是激
光场。另外，σ+ = |e⟩⟨g|, σ− = |g⟩⟨e|, 即满足σ+|g⟩ = |e⟩, σ−|e⟩ = |g⟩, 以
及σ2

+ = σ2
− = 0，也就是说，σ+的作用是描述原子从“基态”到激发态的

跃迁，而σ−描述的是原子从激发态到“基态”的跃迁。而且，从这几个算

符的定义很容易得到σ2
z = |e⟩⟨e|+ |g⟩⟨g| = 1(这里我们利用了两能级系统的

完备性关系), 以及σ−σz = σ−, σzσ− = −σ−，从而[σz, σ−] = −2σ−, 类似的，

[σz, σ+] = 2σ+。总之，σz, σ+, σ−这几个算符所满足的代数关系和我们很熟

悉的泡利算符σz, σ
†, σ其实是完全一样的，只不过这里我们将σ记成了σ−，

将σ†记成了σ+。

哈密顿量(10.69)中的λ~(a†σ−+aσ+)描述的就是原子二能级与激光场的
相互作用，λ~表示这种相互作用的强度，a†σ−描述的是原子从激发态跃迁
到“基态”，同时放出一个光子(因此光场的光子数增加1)，产生算符a†描

述的正是这个光子数增加1的作用。相反，aσ+描述的是原子从“基态”

跃迁到激发态，同时吸收一个光子(因此光子数减少1)，湮灭算符a描述的

正是这个光子数减少1的作用。如果我们假设整个系统最初处在|n, g⟩态，
即初始时光场处在能级|n⟩，原子处在“基态”|g⟩, 那么通过原子与光场
的相互作用，系统可以通过吸收一个光子跃迁到|n − 1, e⟩态，当然，原
子与光场的相互作用也可能反过来使得系统从|n − 1, e⟩态跃迁到|n, g⟩态。
因此，一般来说，Jaynes-Cummings的哈密顿量(10.69)会描述一个|n, g⟩态
与|n − 1, e⟩态之间的振荡，这就是著名的拉比振荡，我们可以示意性地表
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示为

|n, g⟩ 
 |n− 1, e⟩. (10.70)

下面我们就是要对这个拉比振荡过程进行精确的数学分析，我们假定系统

的初态是|n, g⟩态。
值得说明的是，Jaynes-Cummings模型可以从量子光场与原子相互作

用的一般性理论中通过一个前面所说的共振近似推导出来，人们也常常称

这样的近似为旋波近似(rotating wave approximation)。

我们取H0 = ~ω0
σz

2
+ ~ωa†a, V = λ~(a†σ− + aσ+)。很显然，|n, g⟩态

和|n− 1, e⟩态都是H0的本征态。为了应用基本方程(10.66), 我们需要计算出

相互作用绘景中的VI(t) = ei
H0
~ tV e−i

H0
~ t。为了将VI(t)的具体表达式计算出

来，我们首先注意到原子的算符和光场的算符是相互对易的，因为原子和

光场是两个不同的子系统。另外，我们再注意到下面的恒等式

eiθNae−iθN = e−iθa, eiθNa†e−iθN = eiθa†. (10.71)

这两个恒等式互为厄米共轭关系，因此只需证明其中的一个就够了，

在这里我们将给出第一个恒等式的直接证明。为此，我们定义一簇

依赖于参数θ的算符F (θ), F (θ) = eiθNae−iθN , 很显然F (0) = a。另一方

面，我们又有 d
dθ
F (θ) = ieiθNNae−iθN − ieiθNaNe−iθN = ieiθN [N, a]e−iθN =

−ieiθNae−iθN = −iF (θ), 式中倒数第二个等号我们利用了代数关系[N, a] =

−a。也就是说，F (θ)满足微分方程 d
dθ
F (θ) = −iF (θ), 而这一微分方程有唯

一解F (θ) = F (0)e−iθ = ae−iθ，因此这就证明了我们需要的恒等式。类似

的，我们也可以证明下面两个恒等式

eiθ
σz
2 σ−e

−iθ σz
2 = e−iθσ−, e

iθ σz
2 σ+e

−iθ σz
2 = eiθσ+, (10.72)

不过为了证明这两个恒等式我们需要用到的代数关系是[σz, σ−] = −2σ−。

根据VI(t)的定义，再利用上面的这些恒等式，我们可以算出

VI(t) = λ~(aσ+ei2δt + a†σ−e
−i2δt), (10.73)

式中2δ = ω0 − ω, 通常被称为失谐。注意到a|n⟩ =
√
n|n − 1⟩, a†|n − 1⟩ =

√
n|n⟩, 人们很容易计算出VI(t)的两个非0矩阵元，为

⟨n− 1, e|VI |n, g⟩ =
√
nλ~ei2δt, ⟨n, g|VI |n− 1, e⟩ =

√
nλ~e−i2δt. (10.74)
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定义跃迁概率幅bg(t) = ⟨n, g|UI(t)|n, g⟩, be(t) = ⟨n − 1, e|UI(t)|n, g⟩，
它们满足初始条件be(0) = 0, bg(0) = 1。由一般性的方程(10.66)和刚才计算

出来的VI(t)的非0矩阵元，我们有如下方程

dbg
dt

= −i
√
nλe−i2δtbe(t),

dbe
dt

= −i
√
nλei2δtbg(t). (10.75)

很显然，这个方程组和我们前面在共振近似下得到的一般性方程组(10.68)有

完全类似的数学结构，这表明Jaynes-Cummings模型所描写的光场和二

能级系统共振的物理图像是普适的，并且我们只需要求解出Jaynes-

Cummings模型的方程组(10.75)就能很容易地将解推广到一般情形(10.68)。

为了求解上面的方程组(10.75)，我们引入变量z+(t)和z−(t)，它们的定

义是z+(t) = eiδtbg(t) + ie−iδtbe(t), z−(t) = eiδtbg(t)− ie−iδtbe(t)，很显然，它

们满足初始条件z+(0) = z−(0) = 1。根据方程(10.75)，我们可以推导出新

变量z+(t)和z−(t)所满足的微分方程，

dz+
dt

= (
√
nλ+ iδ)z−(t),

dz−
dt

= −(
√
nλ− iδ)z+(t). (10.76)

由这两个方程我们很容易看出z±(t)均满足一个典型的谐振子方程，

d2z±
dt2

+ Ω2
nz±(t) = 0, Ωn =

√
nλ2 + δ2, (10.77)

Ωn就是这个谐振子的振荡频率，在这里称为拉比频率。由于z±(0) = 1, 从

而可知必有z±(t) = cos(Ωnt) + c± sin(Ωnt), 式中c±为两个待定常数。将这

个通解代入方程(10.76)，就可以得到c+ = (
√
nλ + iδ)/Ωn, c− = −(

√
nλ −

iδ)/Ωn。这样我们就完全确定了z±(t)，反过来我们就能得到bg(t)和be(t)，

它们为

eiδtbg(t) = cos(Ωnt) + i
δ

Ωn

sin(Ωnt), e
−iδtbe(t) = −i

√
nλ

Ωn

sin(Ωnt). (10.78)

利用这个最终解我们就可以计算出t时刻，系统从|n, g⟩态跃迁到|n− 1, e⟩态
的概率pg→e(t) = |be(t)|2, 为

pg→e(t) =
nλ2

nλ2 + δ2
sin2(Ωnt), (10.79)
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从这个概率随时间t的振荡行为中，我们可以很清楚地看到，系统是

在|n, g⟩态和|n − 1, e⟩态之间振荡，这就是拉比振荡，Ωn =
√
nλ2 + δ2 =√

nλ2 + (ω0−ω
2

)2就是拉比振荡的频率。

为了推广拉比振荡的结果，我们将方程组(10.68)和方程组(10.75)进行

类比。很显然，|n, g⟩态对应于|i⟩态，|n − 1, e⟩态对应于|f⟩态，ω0 − ω对应

于ωfi − ω, nλ2对应于|Wfi

~ |2。因此我们可以将上面的跃迁概率pg→e(t)一般

性地推广到pi→f (t), 将公式(10.79)推广成

pi→f (t) =
|Wfi

~ |2

|Wfi

~ |2 + (
ωfi−ω

2
)2

sin2(

√
|Wfi

~
|2 + (

ωfi − ω

2
)2 · t), (10.80)

人们通常称这个一般性的公式为拉比公式。很容易看出，当|Wfi| ≪ ~|ωfi−
ω|时，拉比公式就近似成为一阶微扰论给出的公式(10.44)。但是反过来，

只要时间足够长，即使ω = ωfi，|i⟩态和|f⟩态之间的正弦振荡也依然存在，
这种振荡是一阶微扰论的结果(10.44)(令ω = ωfi)解释不了的。

10.4 *散射的一般理论

10.4.1 散射的一般理论和S矩阵

在恒定微扰一节中，我们用一阶恒定微扰讨论了一个自由入射粒子在

一个固定势场中的散射问题。其实可以用恒定微扰讨论更一般的散射问题，

比方说多粒子散射问题。也可以不限于一阶微扰，可以将微扰散射理论发

展到任意阶。发展这样的一个关于散射的一般理论就是我们这一节将要处

理的内容。

由于入射粒子和出射粒子的能量和动量都可以连续取值，因此散射问

题中所涉及的入射粒子量子态和出射粒子量子态都是连续谱，我们不妨称

这些量子态为散射态。散射的确说明连续谱的量子态可以跃迁到连续谱，

但是类似于本章最后一节的证明同样可以说明，只要末态是连续谱那么系

统就不会振荡回初态。在物理直观上这是显然的，因为出射粒子当然不可

能自己跃迁回入射状态。因此，根据前面关于末态连续谱的讨论，我们完

全可以认为，散射是在从−∞到+∞的时间内发生的。当然，散射相互作用
真正有效起作用的时间在宏观时间尺度来看其实很短，只是在微观时间尺

度上看充分长而已。
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对于无穷远过去的散射初态，以及无穷远将来的散射末态，粒子间的

距离都很远，相互作用V (这里假定V不显含时间)可以忽略，因此作为初态

的入射粒子(多个粒子)和作为末态的出射粒子(也是多个粒子) 都可以看成

是哈密顿量H0的本征态，H0可以认为是多个自由粒子的哈密顿量之和。由

于这些H0的本征态是散射态连续谱，所以我们用|α⟩这样的连续指标来标
记，相应的本征值记为Eα，也即是说

H0|α⟩ = Eα|α⟩. (10.81)

注意，|α⟩一般来说是多粒子态，描写多个自由粒子, 并且它满足标准的δ函

数归一化，

⟨α|β⟩ = δ(α− β). (10.82)

值得注意的是，α、β其实只是抽象的记号，它们都可以是好多指标的总

体，当然α、β所代表的指标中必须要包含一些连续指标，但是我们其实也

可以允许α、β中包含有一些离散指标，这些指标应该理解成是归一化到克

龙内克δ符号，而对这些指标的积分就应该理解成求和。

我们想要计算的同样是−∞时刻的|α⟩态在+∞时刻跃迁到|β⟩态的概率
密度pα→β, 为了强调指标的连续性，我们也常常将它写作p(α → β)。根据

本章第一节中的一般性讨论，p(α → β) = |⟨β|UI(+∞,−∞)|α⟩|2。其中幺
正算符UI(+∞,−∞)习惯上记作S，

S = UI(+∞,−∞), (10.83)

它可以按照戴森级数(10.15)的方法来进行微扰展开，我们将这个级数重写

如下,

S = 1 + (− i

~
)

∫ +∞

−∞
VI(t1)dt1

+ (− i

~
)2
∫ +∞

−∞
dt2

∫ t2

−∞
dt1VI(t2)VI(t1)

+ (− i

~
)3
∫ +∞

−∞
dt3

∫ t3

−∞
dt2

∫ t2

−∞
dt1VI(t3)VI(t2)VI(t1) + ... (10.84)

根据上面这个戴森级数，我们来逐级地计算一下跃迁幅⟨β|UI(+∞,−∞)|α⟩。
很显然在V的0阶近似上，我们有⟨β|1|α⟩ = δ(β − α)。注意到VI(t) =

ei
H0
~ tV e−i

H0
~ t, 我们也很容易计算现在应该已经比较熟悉了的一阶微扰
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修正 (− i
~)
∫ +∞
−∞ ⟨β|VI(t1)|α⟩dt1 = (− i

~)
∫ +∞
−∞ eiωβαt⟨β|V |α⟩dt1 = −2πiδ(Eβ −

Eα)⟨β|V |α⟩，式中ωβα = (Eβ − Eα)/~。即一阶微扰的结果是

−2πiδ(Eβ − Eα)⟨β|V |α⟩. (10.85)

对于微扰级数的二阶(− i
~)

2
∫ +∞
−∞ dt2

∫ t2
−∞ dt1⟨β|VI(t2)VI(t1)|α⟩,利用散射

态的封闭性关系
∫
dα′|α′⟩⟨α′| = 1，我们有

(− i

~
)2
∫ +∞

−∞
dt2

∫ t2

−∞
dt1⟨β|VI(t2)VI(t1)|α⟩

= (− i

~
)2
∫
dα′
∫ +∞

−∞
dt2

∫ t2

−∞
dt1⟨β|VI(t2)|α′⟩⟨α′|VI(t1)|α⟩

= (− i

~
)2
∫
dα′
∫ +∞

−∞
dt2

∫ t2

−∞
dt1e

iωβα′ t2eiωα′αt1⟨β|V |α′⟩⟨α′|V |α⟩.(10.86)

下面将这个式子中对时间变量的积分都算出来，首先要计算
∫ t2
−∞ dt1e

iωα′αt1，

但这个积分在t1 → −∞时是振荡的，为了让积分在t1 → −∞时收敛，我们
可以给ωα′α加一个很小的负虚部，即做替换ωα′α → ωα′α− iϵ, 式中ϵ > 0为一

个无穷小量，并且我们将在对所有物理可观测量的计算都完成以后令ϵ →
0。经过这样的手续以后，就有

∫ t2
−∞ dt1e

i(ωα′α−iϵ)t1 = 1
i(ωα′α−iϵ)

ei(ωα′α−iϵ)t2 =

i~ 1
Eα−Eα′+iϵ

ei(ωα′α−iϵ)t2。将这个结果代入上面的(10.86)式，并利用ωβα′ +

ωα′α = ωβα，就有

(− i

~
)

∫
dα′
∫ +∞

−∞
dt2e

i(ωβα−iϵ)t2⟨β|V |α′⟩ 1

Eα − Eα′ + iϵ
⟨α′|V |α⟩

= −2πiδ(Eβ − Eα)

∫
dα′⟨β|V |α′⟩ 1

Eα − Eα′ + iϵ
⟨α′|V |α⟩

= −2πiδ(Eβ − Eα)⟨β|V
1

Eα −H0 + iϵ
V |α⟩. (10.87)

完全类似的，我们也可以计算出三阶微扰，结果如下

(− i

~
)3
∫ +∞

−∞
dt3

∫ t3

−∞
dt2

∫ t2

−∞
dt1⟨β|VI(t3)VI(t2)VI(t1)|α⟩

= −2πiδ(Eβ − Eα)⟨β|V
1

Eα −H0 + iϵ
V

1

Eα −H0 + iϵ
V |α⟩. (10.88)

做了这么多推导以后，人们应该很容易归纳出规律，进而可以写出微

扰展开的任意阶了。将这些结果放在一起，即有

⟨β|S|α⟩ = δ(β − α)− 2πiδ(Eβ − Eα)⟨β|T |α⟩, (10.89)
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其中算符T称作T算符，它由下面的无穷级数定义

T = V + V
1

Eα −H0 + iϵ
V + V

1

Eα −H0 + iϵ
V

1

Eα −H0 + iϵ
V + ...(10.90)

有时候，人们也常常记Eα + iϵ = E+
α , 很显然，T算符的定义依赖于E

+
α，所

以也常常记作T (E+
α )。

幺正算符S的矩阵元⟨β|S|α⟩通常称作S矩阵，记作Sβα = ⟨β|S|α⟩。类
似的，T算符的矩阵元通常叫做T矩阵，记作Tβα = ⟨β|T |α⟩。有了T矩
阵和S矩阵，我们就可以计算跃迁概率密度p(α → β)，p(α → β) =

|⟨β|S|α⟩|2。如果我们考察初态|α⟩跃迁到一个不同的态|β⟩的概率，那S矩
阵的0阶项显然是0，因此根据(10.89)式，跃迁概率实际上完全由T矩阵给

出，p(α → β) = (2π~ )
2(δ(ωβα))

2|⟨β|T |α⟩|2, 这里我们利用了δ(Eβ − Eα) =

δ(ωβα)/~。进一步利用数学公式(δ(ωβα))
2 = δ(ωβα) · t/(2π)，式中t是从

初态跃迁到末态的整个时间，它趋于无穷大。容易有，p(α → β) =

(2π~ )δ(Eβ − Eα)|⟨β|T |α⟩|2 · t, 或者说，单位时间的跃迁概率密度w(α →
β) = dp(α → β)/dt是

w(α→ β) =
2π

~
|⟨β|T |α⟩|2δ(Eβ − Eα). (10.91)

很显然，这个结果实际上就是费米黄金规则的推广。由T算符的展开

式(10.90)可以看到，如果只考虑微扰论的一阶，那(10.91)式就回到了我们

前面得出的费米黄金规则。正因为T矩阵元Tβα的模方决定了散射概率，所

以有时候也把它称为散射幅。

假如我们考察的是单个入射粒子在一个固定势场(这个固定势场的作用

可以和粒子自旋有关)中的散射问题，那么我们依然可以定义微分散射截

面(10.32)，一切都和前面在一阶微扰中对势散射问题的讨论一样，乘上末

态态密度以后，就有

dσ = (2π~)6
( m

2π~2
)2

|⟨pf , sf |T |pi, si⟩|2dΩ. (10.92)

其中的si表示入射粒子自旋，sf表示出射粒子自旋。公式前面的因子(2π~)6完
全是因为我们将入射和出射的自由粒子平面波取成了 1

(2π~)3/2 e
ip·x/~，如果将

平面波都取成eip·x/~的形式，那这个因子就不存在了。

10.4.2 S矩阵的解析性和幺正性

很明显，T (E+
α )的定义式(10.90)中还出现了一个算符，常常记作G0(E

+)，
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它的定义是

G0(E
+) =

1

E −H0 + iϵ
. (10.93)

值得注意的是，由于在散射态连续谱的希尔伯特空间上，算符E−H0有0本

征值(对应H0的本征值为E的那个散射态)，所以它实际上不可逆，也就是

说1/(E−H0)没有定义，但是给E加上一个虚部+iϵ以后就避开了这个问题，

所以G0(E
+)是有定义的。实际上，人们还常常将G0(E

+)的定义解析延拓

到整个能量复平面上除了H0的散射谱之外的区域(在散射理论中，H0常常

只有散射谱，也即只有散射态对应的连续谱)，记为G0(z)，

G0(z) =
1

z −H0

. (10.94)

因此，H0的散射谱对应解析函数G0(z)在实轴上的一条割线(即要从解析函

数G0(z)的定义域中切除的线)，如图(10.4)所示。

图 10.4: 将能量延拓成复平面，散射谱是实轴上的一条割线。

类似的，我们也可以将T (E+)延拓到能量复平面上得到T (z)，

T (z) = V + V G0(z)V + V G0(z)V G0(z)V + ....

= V + V [G0(z) +G0(z)V G0(z) +G0(z)V G0(z)V G0(z)....]V.(10.95)

显然，G0(z)在实轴上的割线也是T (z)的割线。不过当超越微扰论，将微扰

级数的所有阶都加起来以后，T (z)在能量复平面上的解析结构比这要复杂

一些。利用下面的算符微扰恒等式

1

A−B
=

1

A
+

1

A
B

1

A
+

1

A
B

1

A
B

1

A
+ ... (10.96)
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我们容易有

G0(z) +G0(z)V G0(z) +G0(z)V G0(z)V G0(z)....

=
1

z −H0

+
1

z −H0

V
1

z −H0

+
1

z −H0

V
1

z −H0

V
1

z −H0

+ ...

=
1

z −H0 − V
=

1

z −H
= G(z), (10.97)

上式的最后一个等号是G(z)的定义。由于G(z)是G0(z)的一个无穷级数，因

此G0(z)在实轴上的割线也是G(z)的割线，这实际上就保证了H0的散射谱

和H的散射谱(散射态的连续谱)是一一对应的。但是，现在包含相互作用

以后的哈密顿算符H可能不只是有散射谱了，它还可能有束缚态，这些束

缚态就对应G(z) = (z −H)−1的极点(如图(10.5)所示)。 另外，将上面的结

图 10.5: G(z)的解析结构，束缚态对应实轴上的极点。

果(10.97)代入T (z)的定义式(10.95), 就有

T (z) = V + V G(z)V. (10.98)

从这个表达式可以看出，G(z)的极点也是T (z)的极点。前面我们已经看到，

T (E+
α )的矩阵元决定了散射概率，因此这也就是说，我们可以从散射概率

关于入射粒子总能量的极点结构中读出哈密顿量H的束缚态信息。因此，

散射实验也可以探测到系统的束缚态信息。只不过，因为需要把所有阶的

微扰级数都加起来，所以微扰计算实际上发现不了这些束缚态，为了得到

这些束缚态的信息，我们需要用非微扰的方式计算T (z)算符。

以上关于T (z)解析性的讨论主要是在算符的意义上进行的，所有的割

线和极点都作为哈密顿算符的本征值而出现，由于哈密顿算符的本征值一
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定是实数，因此这些割线和极点都一定在实轴上。但是，如果我们超出算

符本征值的范围，讨论解析函数Tβα(z) = ⟨β|T (z)|α⟩，那么就还可能出现
一种新的解析结构，即对于某些合适的初态|α⟩和末态|β⟩，函数Tβα(z)会在
复平面的实轴之外出现极点(如图(10.6)所示)， 与这些极点相应的量子态

图 10.6: Tαβ(z)的解析结构。

通常称作散射共振态，正如我们将要在本章最后一节中论证的，在物理上

这些散射共振态相应于系统的一些不稳定的会衰变的束缚态。为了从一个

基本理论出发得到这些散射共振态的信息，我们往往也需要用非微扰的方

式计算T矩阵。

上面我们研究了S矩阵(实际上我们研究的是和它密切相关的T矩阵)作

为入射粒子能量的函数的解析性。实际上S矩阵还有另外一个重要的性

质，那就是幺正性。前面我们说过，由于S算符是一种特殊的时间演化

算符，所以它是幺正算符，即满足S†S = SS† = 1。由此我们就能推导

出S矩阵必定是一个幺正矩阵，比方说δ(β − α) = ⟨β|1|α⟩ = ⟨β|S†S|α⟩ =∫
dγ⟨β|S†|γ⟩⟨γ|S|α⟩ =

∫
dγS∗

γβSγα, 式中利用了⟨β|S†|γ⟩ = ⟨γ|S|β⟩∗ = S∗
γβ，

尤其是利用了S†S = 1。我们也可以类似地利用SS† = 1，最后就可以得到∫
dγS∗

γβSγα = δ(β − α)∫
dγSβγS

∗
αγ = δ(β − α). (10.99)

这就是S矩阵的幺正性。

利用方程(10.89)将S矩阵用T矩阵来表达，我们就可以由S矩阵的幺

正性得到T矩阵的一些重要性质。比方说，根据(10.99)的第一个式子，我

们可以得到(2π)δ(Eβ − Eα)[−iTβα + iT ∗
αβ] + (2π)2

∫
dγδ(Eγ − Eβ)δ(Eγ −
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Eα)T
∗
γβTγα = 0，利用δ(Eγ − Eβ)δ(Eγ − Eα) = δ(Eγ − Eβ)δ(Eβ − Eα), 即

有[−iTβα + iT ∗
αβ] + (2π)

∫
dγδ(Eγ − Eβ)T

∗
γβTγα = 0，进一步取β = α, 则有

π

∫
dγδ(Eγ − Eα)|Tγα|2 = −ImTαα. (10.100)

由单位时间的散射概率公式(10.91)可以知道，这个方程的左边实际上就等

于 ~
2

∫
dγw(α → γ), 即正比于单位时间之内初态α到所有可能末态的总散射

概率，而方程右边的Tαα人们常常称为朝前散射幅。所以，方程(10.100)告

诉我们的是，单位时间的总散射概率Γα由朝前散射幅的虚部决定，即

Γα =

∫
dγw(α→ γ) = −2

~
ImTαα. (10.101)

式中第一个等号涉及的是Γα的定义。这个结果通常称作光学定理。类似的，

根据(10.99)的第二个式子，我们还可以得到

π

∫
dγδ(Eα − Eγ)|Tαγ|2 = −ImTαα. (10.102)

它告诉我们所有其它态散射到|α⟩态的总概率也由|α⟩的朝前散射幅决定。
将这两个结果联合起来就有，α态散射到其它态的总概率，等于其它态散

射到α态的总概率，这正反映了概率守恒。这是因为，我们的这些结果都

是根据幺正性得来的，而幺正性的本质正是概率守恒。

特别的，对于单个入射粒子在一个固定势场中的散射问题，我们

有σ =
∫
dσ = 1

Jα

∫
dβw(α → β) = −2

~
ImTαα

Jα
，式中σ称为总截面，它要对所

有可能的散射末态积分，包括要对末态粒子的自旋进行求和，式中的Jα当

然就是入射粒子概率流密度，它等于 1
(2π~)3

~kα
m
，kα表示入射粒子平面波的

波数大小。将Jα代入总截面的表达式，就能得到

kα
4π
σ = −(2π~)3

m

2π~2
ImTαα. (10.103)

这就是散射截面的光学定理。表达式(10.103)前面的因子(2π~)3当然是因为
我们取入射粒子平面波为 1

(2π~)3/2 e
ip·x/~了，如果将入射平面波取成eip·x/~的

形式，那这个因子就不存在了。

10.4.3 哈密顿量H的散射定态

从公式(10.91)可见，计算散射概率的关键就在于计算出T矩阵。最常

用的计算办法就是按照T算符的微扰级数展开(10.90)逐级地计算。但是微



第十章 含时问题与散射问题 38

扰论的方法并不是所有时候都好用的，比方说它往往不容易得到束缚态和

共振态的信息。因此我们有时候需要寻找计算T矩阵的非微扰方法，或者

至少是对T矩阵进行非微扰分析的方法。最重要的一种非微扰方法就是直

接求解包含相互作用的完整哈密顿量H的散射定态。可以证明，从这些散

射定态的解中可以直接地得到T矩阵(当然，散射定态通常无法精确求解，

但是很多时候我们依然可以借助于它进行非微扰的分析)。

为此，我们首先要定义什么是H的散射定态。前面在讨论解析性的时

候我们已经提到，H0的散射谱可以对应到H的散射谱。H的散射定态实际

上就是这些散射谱所对应的本征态(注意，不是束缚态)，有时候也称为H的

散射态。这些散射态和H0的散射态可以对应起来。实际上，根据不同的对

应方法，我们可以定义H的两组不同散射定态。其中一组H的散射定态在

无穷远过去即t→ −∞时(这时候相互作用V可以忽略)趋于H0的散射态，因

此在物理上，这一组散射定态是与入射自由粒子态相对应的，有时候也称

为入射态或者in态。另一组H的散射定态在无穷远将来即t → +∞时(这时

候相互作用也可以忽略)趋于H0的散射态，在物理上，这组散射定态当然

就是与出射自由粒子态相对应的，因此有时候也称作出射态或者out态。不

过值得强调的是，in态并不是入射自由粒子态，out态也不是出射自由粒子

态，它们都是包含了相互作用V之后的，因为它们都是H = H0 + V的本征

态。

当然，为了得到T矩阵我们实际上并不需要in态和out态都同时研究，

只研究其中之一就已经够了，因此下面我们将主要处理in态，除非特别说

明，下面我们说到散射定态的时候都默认指的是in态，我们将直接从形式

上构造出这些in态。与入射自由粒子态|α⟩对应的in态通常被记作|ψ+
α ⟩，我

们将它构造为

|ψ+
α ⟩ = UI(0,−∞)|α⟩, (10.104)

这个构造的物理含义非常清楚，它说的无非是， |ψ+
α ⟩是用时间演化算

符UI将一个H0的本征态|α⟩从−∞演化到0时刻所得到的态，−∞时的|α⟩当
然描述的是入射自由粒子，因此|ψ+

α ⟩自然满足在无穷远过去趋于入射自由
粒子态这一要求。在下文中，我们将阐明为什么从|ψ+

α ⟩中可以得到T矩阵。
另一方面，直接用(10.104)式这样的形式构造来计算|ψ+

α ⟩实际上并不方便，
所以下文我们将推导出|ψ+

α ⟩所满足的一个基本方程 (Lippmann–Schwinger

方程)，通过这个方程我们可以证明|ψ+
α ⟩的确是H的本征态。如此一来，

|ψ+
α ⟩就完全符合我们对散射定态的物理定义了。
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但在具体进行上述推导之前，我们不妨先看一下out态可以如何构造，

与|α⟩态对应的out态|ψ−
α ⟩可以从形式上构造为

|ψ−
α ⟩ = UI(0,+∞)|α⟩ = U †

I (+∞, 0)|α⟩. (10.105)

将这个式子厄米共轭就有⟨ψ−
β | = ⟨β|UI(+∞, 0)，由此就可以进一步得

到⟨ψ−
β |ψ+

α ⟩ = ⟨β|UI(+∞, 0)UI(0,−∞)|α⟩ = ⟨β|UI(+∞,−∞)|α⟩ = ⟨β|S|α⟩,
即

⟨β|S|α⟩ = ⟨ψ−
β |ψ

+
α ⟩. (10.106)

这个式子告诉我们，前面定义的散射S矩阵实际上是in态和out态之间的幺

正变换矩阵，即是H的两组不同散射定态之间的幺正变换矩阵。

为了进一步确定散射定态|ψ+
α ⟩,我们可以将它用自由粒子散射态{|β⟩}来

进行展开，即计算⟨β|ψ+
α ⟩ = ⟨β|UI(0,−∞)|α⟩。我们将UI(0,−∞)展开成

戴森级数(10.15)，然后和前文计算⟨β|UI(+∞,−∞)|α⟩完全类似地逐级计
算⟨β|UI(0,−∞)|α⟩, 这里将不再重复这个类似的计算过程了，具体推导留
给读者作练习，结果是

⟨β|ψ+
α ⟩ = ⟨β|UI(0,−∞)|α⟩

= ⟨β|α⟩+ ⟨β| 1

Eα −H0 + iϵ
V |α⟩

+ ⟨β| 1

Eα −H0 + iϵ
V

1

Eα −H0 + iϵ
V |α⟩+ .....

= ⟨β|α⟩+ ⟨β| 1

Eα −H0 + iϵ
T |α⟩. (10.107)

最后一个等式中的T就是T算符。从这里实际上已经可以看到|ψ+
α ⟩中包

含T矩阵的信息了，为了看得更清楚一点，我们可以将(10.107)改写成，

|ψ+
α ⟩ = (1 +

1

Eα −H0 + iϵ
V +

1

Eα −H0 + iϵ
V

1

Eα −H0 + iϵ
V + ....)|α⟩

= |α⟩+ 1

Eα −H0 + iϵ
T |α⟩. (10.108)

我们可以进一步看一下这个表达式中的T |α⟩，根据T算符的级数形式(10.90),

显然T |α⟩ = (V + V 1
Eα−H0+iϵ

V + V 1
Eα−H0+iϵ

V 1
Eα−H0+iϵ

V + ....)|α⟩ = V (1 +
1

Eα−H0+iϵ
V + 1

Eα−H0+iϵ
V 1

Eα−H0+iϵ
V + ....)|α⟩ = V |ψ+

α ⟩, 这里最后一个等号用
到了(10.108)中的第一个等号关系。因此我们有

T |α⟩ = V |ψ+
α ⟩. (10.109)
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将这个结果代入(10.108)式的后一个等式，就可以得到|ψ+
α ⟩所满足的基本方

程,

|ψ+
α ⟩ = |α⟩+ 1

Eα −H0 + iϵ
V |ψ+

α ⟩. (10.110)

这个方程就是著名的Lippmann–Schwinger方程。

将Eα − H0作用到Lippmann–Schwinger方程左右两边并取ϵ → 0，并

注意到(Eα −H0)|α⟩ = 0, 我们就可以得到(Eα −H0)|ψ+
α ⟩ = V |ψ+

α ⟩, 也就是

H|ψ+
α ⟩ = Eα|ψ+

α ⟩. (10.111)

这就证明了|ψ+
α ⟩的确是H的本征态，并且本征值依然是Eα, 后面这一点值

得特别强调一下，因为按照我们最初的定义，Eα只是H0的本征值(相应的

本征态是|α⟩), 也就是入射自由粒子的能量，现在我们又证明了Eα其实也

是H的本征值。这当然是因为我们考察的是散射谱，而H的散射谱和H0的

散射谱是可以对应起来的，我们现在不过是建立了一个具体的对应方式，

即将|α⟩对应到|ψ+
α ⟩。也正因为如此，Lippmann–Schwinger方程不能直接

用来求解H的束缚态，它只能用来求解散射定态，也即求解|ψ+
α ⟩。

最后，从散射定态中读出T矩阵的办法非常简单，比方说根据(10.109)式，

我们可以用下面的式子来得到T矩阵

⟨β|T |α⟩ = ⟨β|V |ψ+
α ⟩. (10.112)

当然为此我们首先需要解出散射定态，这可以通过直接求解H的本征方

程(10.111)来完成。当然，为了保证得到的解的确是散射定态，我们还要求

这个本征态解可以写成如下形式

|ψ+
α ⟩ = |α⟩+ 1

Eα −H0 + iϵ
T |α⟩. (10.113)

注意, 这一形式中的T是解本征方程(10.111)得到的，其物理含义暂时未知，

但从前面的讨论可以知道，如果H的本征态解有这种形式，那这个解就是

散射定态，那么其中的T当然就是T算符。大体上我们就是这样从散射定态

中读出T矩阵的。

而且散射概率的一般公式(10.91)清楚地告诉我们，散射初末态的能量

是守恒的(至少我们这里的理论只处理了这种最重要的情形)。因此实际上

我们只需要知道T矩阵在初末态能量相等时的矩阵元。这其实相当于说，
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我们并不需要知道散射定态|ψ+
α ⟩的完整解，只需要知道它的某种渐近形式

就可以了。

从上面两段的简单描述中可以知道，这一得出T矩阵的办法是非微扰

的，它的关键就是求解H本征方程(10.111)的某种特定类型的解，即散射

定态解。但是我们也知道，对于大多数相互作用V，没有办法得到本征方

程(10.111)的精确解，因此也就无法得到精确的T矩阵。但是，我们依然

可以用上面描述的过程来对T矩阵进行非微扰分析，而且，上一小节分析

的T矩阵的解析性对我们的非微扰分析很有帮助，另外，T矩阵和S矩阵是

密切相关的，而S矩阵的幺正性也会极大地帮助我们进行非微扰分析。此

外，非微扰的分析甚至精确求解真正能发挥威力的地方往往是系统有某些

对称性的时候，这时候对称性会极大地简化对T矩阵和S矩阵的分析。在下

一章中，我们将具体地示例整个分析过程可以如何进行。

10.5 *不稳定束缚态和散射共振态

在量子力学中，末态是连续谱的情况非常常见，比方说一个原子受电

场的作用电离成一个离子加上一个自由电子，由于末态中包含了一个自由

电子，因此它当然是一个连续谱。再比方说，一个处在激发态的原子通过

与真空中的电磁涨落相互作用自发跃迁到较低能态，并辐射出一个光子，

这时候由于末态中包含了一个自由的光子，因此当然也是一个连续谱(当

然，由于能量守恒，辐射出来的光子能量本身几乎是分立的，但是作为自

由光子，这些辐射出来的光子从属于一个连续谱)。正如我们在第五章中用

有效哈密顿量方法讨论过的，这种与末态连续谱的耦合将使得原来的离散

初态变得不稳定，进而表现出一个有限的寿命。

从广义上来说，由于和环境或者真空中的量子涨落的耦合，除非受某

一条守恒定律(比方说非相对论极限下的粒子数守恒，比方说更精确的电荷

守恒等等)的保护，否则一切量子体系的激发态严格来说都不稳定，在一个

足够长的时间尺度上都会衰变，这种衰变就是因为激发态跃迁到更低能态

时向环境中释放的量子信号从属于一个连续谱1。在第五章中我们已经证明

过这个结论了，但是在这一节中我们还想仿照Cohen-Tannoudji的处理，通

过直接求解含时问题给出一个与前面不同的证明。另外，在本节中我们还

1比方说，黑洞就可以看成是量子引力的高激发态，因此根据我们的这个观点，黑洞将

是不稳定的，将会衰变。的确，霍金从数学上证明了这种衰变的存在，那就是著名的黑洞

的霍金辐射。
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会将这种不稳定离散态与散射共振态联系起来，从而表明散射实验如何可

以发现这样的不稳定离散态。实际上，在粒子物理中，大量的不稳定粒子

都是通过这样的散射实验发现的，最近的重要例子是发现Higgs粒子，也就

是所谓的上帝粒子。

另外，本章前面的小节中我们研究了在一个充分长的时间尺度上，微

扰可以使得系统在两个离散态之间振荡，因此一阶含时微扰论的计算只在

一个相对较短的时间内才成立。但是我们也提到，如果末态是一个连续谱

的话，那么情况将会完全不同，这时候不会出现初末态之间的振荡，而是

初态一旦跃迁到末态连续谱，就会被末态连续谱“粘住”，一去不复返。

正因为如此，在我们对末态连续谱的含时微扰论处理中才可以近似地认为

微扰的作用时间为无穷长。本节关于与末态连续谱耦合的离散初态的不稳

定性的证明其实也是一个关于末态连续谱时不会出现振荡的证明。

当然，首先我们要注意到，对这种末态连续谱情形，含时微扰论的处

理并不足以证明不会出现振荡，因为含时微扰论计算出来的跃迁概率正比

于|Tβα|2t/~, 作为概率它当然要小于1，这就使得含时微扰论的处理仅在微

扰的有效作用时间不过于长时才成立(比方说不能是一个宏观的时间尺度)。

当然，因为|Tβα|2是一个二阶小量，这使得跃迁概率小于1这个要求可以在

一个微观上充分长的时间内成立，因此在对末态连续谱的含时微扰论处理

中取t → ∞的近似是可以成立的。但这对于证明末态连续谱时没有振荡依
然不足够，为了完成这样的证明，我们必须要处理任意长的时间尺度，甚

至要能够分析宏观的时间尺度。这时候含时微扰论的处理将不再成立。

10.5.1 含时问题与离散态衰变

我们假设系统的末态是连续谱但是初态是一个离散态，记为|i⟩。这
时候根据公式(10.28)，单位时间之内，初态i跃迁到末态连续谱的总概率

是(注意这里末态不是一个态，而是一个连续谱, 我们要把所有的可能末态

都积分起来)，

Γi =
2π

~

∫
f

|⟨αf |V |i⟩|2ρ(Ef , χf )|Ef=Ei
dχf . (10.114)

表达式中的积分
∫
f
表示对dχf积分，也就是对所有可能末态积分。

我们假设初态|i⟩和末态|α⟩都是未扰动的哈密顿量H0的本征态，即满足

H0|i⟩ = Ei|i⟩, H0|α⟩ = Eα|α⟩. (10.115)
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我们假定|i⟩是一个离散态，为了简单起见我们不妨假定它不简并。假定α是
连续指标，因此Eα是一个连续能谱，它的可能取值构成了实轴上的一个区

间，并且这个区间足够长，也即是说，我们假定末态连续谱足够宽，为了

简单起见不妨假定Eα连续取值在[0,+∞)区间上。当然，要实现末态连续

谱与初态|i⟩的共振(这里共振的含义后文会说清楚，注意，它不是初末态之

间的振荡)，初态能量Ei也得落在这个区间之内。|α⟩归一化到δ函数上，满
足⟨α′|α⟩ = δ(α′ − α)。当然我们也常常将末态标记从归一化到δ函数的α指

标变换到(E, χ)指标，E其实就是Eα, 只不过刚才我们是以α为指标，现在

是以E本身为指标，因此和前文中的(10.21)式一样，我们有

dα = ρ(E, χ)dEdχ. (10.116)

当然，离散谱|i⟩和连续谱|α⟩是正交的，满足⟨i|α⟩ = 0. 并且，为了简单起

见，我们将忽略除|i⟩之外的其它离散谱，因此|i⟩和|α⟩构成封闭性关系

|i⟩⟨i|+
∫
dα|α⟩⟨α| = 1. (10.117)

现在，假设在系统中引入一个恒定微扰V，这个微扰的作用是将离散

谱|i⟩和连续谱|α⟩耦合起来，因此一般来说，

⟨α|V |i⟩ ̸= 0. (10.118)

另外，为了简单起见我们还进一步假设V满足

⟨i|V |i⟩ = ⟨α|V |α⟩ = 0, ⟨α′|V |α⟩ = 0, (10.119)

这里第一个式子的假设是平凡的，它说的无非是V没有对角元，这一点总

是可以通过将V的对角元吸收到H0的定义中来满足。第二个式子⟨α′|V |α⟩ =
0的假设会极大地简化我们的分析，它说的是连续谱中的态相互之间没有耦

合。

以上看起来我们作了很多的假设，但这些假设大多都是为了简化数学

分析，在物理上真正本质的假设其实主要是两条：第一，末态连续谱得足

够宽。第二，|i⟩态与这个连续谱在一个足够宽的范围内有耦合。
我们的出发点是前文在量子共振的一般性研究中所引入的方程(10.66)。

只不过现在需要把一些离散的态指标改成连续的态指标，相应的对离散态

的求和也要改成连续的积分。同样我们假设初始时，即t0 = 0时，系统处
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在|i⟩态，并记t时刻系统跃迁到|α⟩态的概率幅为bα(t)，依然跃迁到|i⟩态本
身的概率幅为bi(t)，即

bα(t) = ⟨α|UI(t)|i⟩, bi(t) = ⟨i|UI(t)|i⟩. (10.120)

由于假设t = 0时系统处在|i⟩态，所以有初始条件bi(0) = 1, bα(0) = 0。因此

根据方程(10.66)以及上面的那些假设，我们有

dbi
dt

= (− i

~
)

∫
dαei(Ei−Eα)t/~⟨i|V |α⟩bα(t)

dbα
dt

= (− i

~
)ei(Eα−Ei)t/~⟨α|V |i⟩bi(t). (10.121)

下面我们要做的就是在合理的近似下求解这个方程组。

首先，我们对方程组(10.121)中的第二个方程进行积分，注意到初始

条件就可以得到bα(t) = (− i
~)⟨α|V |i⟩

∫ t

0
dt′ei(Eα−Ei)t

′/~bi(t
′), 将之代入方程

组(10.121)中的第一个方程，从而有

dbi
dt

= (− 1

~2
)

∫
dα

∫ t

0

dt′ei(Ei−Eα)(t−t′)/~|⟨α|V |i⟩|2bi(t′)

= (− 1

~2
)

∫ t

0

dt′
∫
dEdχei(Ei−E)(t−t′)/~|⟨E, χ|V |i⟩|2ρ(E, χ)bi(t′).(10.122)

式中第二个等号我们是将末态指标从α变换到了(E,χ)。现在引入记

号K(E), 其定义是

K(E) =

∫
dχ|⟨E,χ|V |i⟩|2ρ(E, χ). (10.123)

那么方程(10.122)就可以重写为

dbi
dt

= (− 1

~2
)

∫ t

0

dt′
∫ +∞

0

dEei(Ei−E)(t−t′)/~K(E)bi(t
′). (10.124)

现在我们假设微扰V的性质足够良好。以致于通过(10.123)式引入的函

数K(E)是一个足够平滑的函数，即它关于自变量E的变化足够缓慢。另

外，根据我们的关于|i⟩态与连续谱在一个足够宽的范围内有耦合的假定，
K(E)将在一个足够宽的能量范围内非0。

根据上述K(E)的性质可以知道，如果时间差t− t′不足够小的话，那么

方程(10.124)中的积分
∫ +∞
0

dEei(Ei−E)(t−t′)/~K(E)都会因为指数因子ei(Ei−E)(t−t′)/~
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而多次振荡，我们知道，这种指数振荡的求和(积分)是相互抵消的。因此

这也就是说，除非t′足够接近t，否则
∫ +∞
0

dEei(Ei−E)(t−t′)/~K(E)都将为0。

既然仅当t′离t足够近时方程(10.124)右边才不等于0，那么我们就可以合理

地将方程(10.124)右边的bi(t
′)近似为bi(t)，从而得到

dbi
dt

= (− 1

~2
)

∫ +∞

0

dE

∫ t

0

dt′ei(Ei−E)(t−t′)/~K(E)bi(t)

= (− 1

~2
)bi(t)

∫ +∞

0

dEK(E)

∫ t

0

dτei(Ei−E)τ/~. (10.125)

人们当然可以就任意的时间t分析求解方程(10.125)。但是由于我们

关心的是系统的长时间行为，所以我们还可以近似认为方程(10.125)中关

于τ的积分上限是+∞，因此方程(10.125)中关于τ的积分变成
∫ +∞
0

dτei(Ei−E)τ/~，

这个积分在上限处是无穷振荡的，为了让积分收敛，我们可以给Ei − E加

上一个无穷小的正虚部iϵ，并在计算完成之后令ϵ → 0。因此我们要算的积

分就变成 ∫ +∞

0

dτei(Ei−E+iϵ)τ/~ =
i~

Ei − E + iϵ
. (10.126)

利用数学公式

lim
ϵ→0

1

x+ iϵ
= P 1

x
− iπδ(x), (10.127)

其中P表示取主值部分。从而我们就有∫ +∞

0

dτei(Ei−E+iϵ)τ/~ = i~P 1

Ei − E
+ ~πδ(Ei − E). (10.128)

将这些近似和结果代入方程(10.125)就可以得到

dbi
dt

= (−1

~
)bi(t)

(
πK(Ei) + iP

∫ +∞

0

dE
1

Ei − E
K(E)

)
. (10.129)

我们引入记号∆Ei，它的定义是

∆Ei = P
∫ +∞

0

dE
1

Ei − E
K(E)

= P
∫
dEdχ

|⟨E, χ|V |i⟩|2

Ei − E
ρ(E, χ)

= P
∫
dα

|⟨α|V |i⟩|2

Ei − Eα

. (10.130)
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式中第二个等号我们代入了K(E)的定义(10.123)。很显然，这个∆Ei正是

根据定态微扰论|i⟩能级能量的二级微扰修正。另一方面，根据函数K(E)的

定义(10.123)，我们可以注意到2π
~ K(Ei) 正是我们前面在(10.114)式中定义

的Γi(只不过现在我们省略了(10.114)式中所有在末态上的记号f)。如此一

来我们就可以将方程(10.129)重写为

dbi
dt

=

(
−Γi

2
− i

1

~
∆Ei

)
bi(t). (10.131)

方程(10.131)的解是

bi(t) = e−
Γi
2
te−i

∆Ei
~ t. (10.132)

将这个解代回最初的方程组(10.121)的第二个方程，又可以进一步得到

bα(t) = ⟨α|V |i⟩1− e−
Γi
2
tei(Eα−Ei−∆Ei)t/~

(Eα − Ei −∆Ei) + iΓi

2
~
. (10.133)

这两个解就描写了系统是怎么渐渐从|i⟩态跃迁到末态连续谱的。尤其是这
个解中没有出现振荡！这可以通过t时刻系统在|i⟩态上的概率pi(t)看得很清
楚，

pi(t) = |bi(t)|2 = e−Γit. (10.134)

这个结果与我们在第五章中用有效哈密顿量方法得到的结果完全一致，它

说明与连续谱的耦合使得|i⟩态呈现出一个有限的寿命τi, 其定义是

τi =
1

Γi

. (10.135)

我们也可以计算t时刻，系统跃迁到|α⟩态上的概率密度p(α, t) = |bα(t)|2。
根据(10.133)式，当t≫ τi时，指数因子近似为0，从而

p(α, t) = |⟨α|V |i⟩|2 1

(Eα − Ei −∆Ei)2 + (Γi

2
~)2

. (10.136)

显然这个概率密度在Eα = Ei +∆Ei时达到最大，反映的是末态连续谱与初

态的共振。
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10.5.2 自电离以及散射共振态

下面举一个具体的例子以说明上述理论。假设我们考虑一个氦原子，

其哈密顿量H为

H =
P2

1

2me

+
P2

2

2me

− 2e2

4πϵ0|x1|
− 2e2

4πϵ0|x2|
+

e2

4πϵ0|x1 − x2|

=
P2

1

2me

+
P2

2

2me

− 2~αc
|x1|

− 2~αc
|x2|

+
~αc

|x1 − x2|
. (10.137)

式中P1, P2分别是氦原子两个电子的动量算符，x1, x2是这两个电子的位

置矢量。式中α = e2/(4πϵ0~c)是精细结构常数，而且由于这里涉及的是非
相对论物理，所以αc总是作为一个整体出现(因为非相对论物理不涉及光

速，而只有αc这样的整体才和光速c无关)，因此整个系统只涉及三个相互

独立的物理量，me, ~, αc，为了数学分析的简洁我们很容易作无量纲化处
理，即令

~ = 1, me = 1, αc = 1. (10.138)

如此一来所有的物理量都将无量纲了，要恢复量纲也很容易，人们只要做

简单的量纲分析就可以了。因此无量纲化以后，氦原子的哈密顿量将是

H =
1

2
(P2

1 +P2
2)−

2

|x1|
− 2

|x2|
+

1

|x1 − x2|
. (10.139)

这个无量纲化的氦原子基态能量大约在Eg ≈ −2.9。

现在我们将氦原子的哈密顿量H分解成H0 + V，其中

H0 =
1

2
(P2

1 +P2
2)−

2

|x1|
− 2

|x2|
, V =

1

|x1 − x2|
. (10.140)

V代表的当然就是两个电子之间的库伦排斥相互作用，我们将它看成是

对H0的一个扰动。

H0可以精确求解，它就是两个相互独立的类氢原子哈密顿量之和，因

此H0的本征能量是两个没有相互作用的电子的能量之和。每个电子的能量

谱又可以分成一个束缚态部分和一个散射谱部分，束缚态部分能级为

− 2

n2
, n ∈ Z+. (10.141)

电子的散射谱部分可以表示为

1

2
p2, (10.142)



第十章 含时问题与散射问题 48

p是这个电子在离核无穷远处的动量，这时候氦原子核的库伦场可以忽略，

电子可以认为是自由的。

现在，让我们考察H0的一个离散态|2, 2⟩, 它表示每个电子都处在n =

2的第二束缚态能级(我们忽略电子的角动量量子数)，我们将它记作|R⟩态，
即|R⟩ = |2, 2⟩。|R⟩态作为H0的本征态，其能量本征值ER为

ER = − 2

22
− 2

22
= −1. (10.143)

|R⟩态当然只是H0的本征态，考虑到两电子之间的相互作用V , ER会发生能

级移动。

让我们同时考察H0的一组连续态|1,p⟩, 它表示一个电子处于n = 1的第

一束缚态能级，另一个电子电离出去，p为这个电离出去的电子离氦原子

核无穷远时的动量，因此|1,p⟩描写的是一个He+离子加上一个电离出去的
电子，我们记作He+ + e。|1,p⟩态的能量本征值我们记作E(p), 很显然它是

E(p) = − 2

12
+

1

2
p2 = −2 +

1

2
p2. (10.144)

显然E(p)是一个连续谱，这个谱的取值范围是[−2,+∞)。注意，即使加上

相互作用V，E(p)也不会有能级移动，因为当一个电子被束缚在基态，另

一个电子被电离到无穷远并在无穷远处有动量p时，两个电子之间的相互

作用当然是可以忽略的。这实际上就是我们在散射的一般理论那一节中所

描述的H0的散射谱和H的散射谱之间的对应关系，而且从散射的一般理论

中我们还知道|1,p⟩态可以对应到H的两个散射定态|ψ+
1,p⟩和|ψ−

1,p⟩，E(p)同
时也是这两个H的散射定态的本征值。值得一提的是，H的基态(即氦原子

基态)能量(Eg ≈ −2.9)的确落在这个散射谱的范围之外。

从上面的分析我们清楚地看到，H0的这个离散能级|R⟩, 其能量ER落在

连续谱[−2,+∞)的范围之内。如果没有电子间的库伦排斥相互作用V , 那这

也没有什么。但是库伦排斥相互作用V将|R⟩态和连续态|1,p⟩耦合了起来，
即

⟨1,p|V |R⟩ ̸= 0. (10.145)

假设系统最初处在离散能级|R⟩ = |2, 2⟩态，那么根据我们在上一小节中
的讨论，这一离散能级和连续谱的耦合将会导致束缚态|R⟩ = |2, 2⟩变
得不稳定，进而衰变到连续态|1,p⟩之中。这一过程描述的就是，一个最
初处在|2, 2⟩束缚态的氦原子由于电子之间的库伦排斥相互作用自发地
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电离成He+ + e。这样的过程就叫做激发态原子的自电离过程。在物理

上，这其实是因为|2, 2⟩态的氦原子的某个电子自发地从n = 2能级跃迁到

了n = 1能级，同时这一跃迁所释放的能量将另一个电子从n = 2能级电

离出去的过程。也即是说，|R⟩ = |2, 2⟩态有一个有限的寿命τR, 如果我们
记单位时间|R⟩态自电离的概率为ΓR, 那么根据我们在上一小节中的结果，

τR = 1/ΓR。

现在假设我们把这个过程反过来，我们用一个动量为p的自由电子

作为入射粒子去和一个处在基态(即n = 1能级) 的He+离子碰撞(因此现

在|1,p⟩态是初态)。那么将会发生的是，由于静电吸引力，入射电子会短

暂地被He+离子束缚，使得系统短暂地从|1,p⟩态跃迁到|R⟩ = |2, 2⟩态，但
是|2, 2⟩态是不稳定的，它很快又会衰变到另一个|1,p′⟩态。因此|1,p′⟩态
才是散射的末态，它描述的是一个处在基态的He+离子，加上一个动量

为p′的出射电子。我们当然可以测量整个从初态|1,p⟩散射到末态|1,p′⟩的
散射截面dσ。由散射的一般理论那一节中给出的公式(10.92), 我们可以知

道，

dσ ∝ |⟨1,p′|T |1,p⟩|2. (10.146)

当然，决定散射截面的是系统从初态跃迁到末态的概率。而现在的末

态|1,p′⟩可以看作是由不稳定束缚态|2, 2⟩ 衰变而来的, 因此根据我们在

上一小节中的结果(10.136), 这一概率应该正比于 1

(E−ER)2+(
ΓR
2

)2
, 这里E =

E(p) = E(p′)(因为散射过程的能量守恒)，ER是|R⟩ = |2, 2⟩态的能量，这
里我们假设ER中已经包含由于相互作用而产生的能级移动了(因此这里

的ER不并等于没有相互作用时的−1，而是修正后的结果)。这也就是说，

dσ ∝ 1

(E − ER)2 + (ΓR

2
)2
. (10.147)

比较(10.146)式和(10.147)式这两个结果，我们会发现T矩阵在能量复平面

上一定有如下形式的极点

⟨1,p′|T |1,p⟩ ∼ 1

E − ER + iΓR

2

. (10.148)

根据我们在散射的一般理论那一节中关于T矩阵解析性的讨论，这样的极

点对应散射共振态。而在我们现在的例子中，这一极点来自于不稳定束缚

态|R⟩ = |2, 2⟩。这也就是说，不稳定束缚态在散射过程中就会成为散射共
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振态。虽然我们只是用一个具体例子来说明这一结论，但是回顾我们的分

析过程，人们会发现完全类似的分析可以推广到一般情形。因此不稳定束

缚态和散射共振态的这一联系完全是一般性的。

10.5.3 不稳定束缚态作为散射共振态

前面我们研究的是，由于和连续谱的耦合导致H0的某个离散束缚

态|i⟩变得不稳定，并最终衰变到连续谱|α⟩的过程。但是在上一小节的
最后，我们谈到如何将这个过程反过来，将连续的散射态|α⟩作为初态，
在|α⟩态被相互作用V散射的过程中，系统可能短暂地跃迁到不稳定的|i⟩态，
然后最终又衰变到连续的散射态|β⟩的过程，这时候这个不稳定束缚态|i⟩就
成为散射的共振态，并对应于T矩阵在能量复平面下半平面的某个极点。

这一小节我们就是要通过量子力学的推导来建立这个一般性的结论。

这一小节我们将沿用前面第(10.5.1)小节中的所有假设，唯一的不

同在于，现在我们是要考察一个散射过程，初态是作为连续谱的散射

态|α⟩而不是不稳定束缚态|i⟩，散射的末态也是另一个散射态|β⟩，|i⟩只是
作为中间短暂的共振态而出现。我们首先要计算的就是单位时间的跃

迁概率wα→β, 通过将表达式(10.91)给出的概率密度w(α → β)乘上末态数

目dβ = ρ(E, χ)dEdχ (式中E其实就是Eβ, 只不过我们换成了以能量本身为

末态指标), 并对末态能量积分，我们可以得到

wα→β =
2π

~
|⟨β|T |α⟩|2ρ(E, χ)|E=Eαdχ. (10.149)

显然，为了计算跃迁概率，我们首先需要计算T矩阵元⟨β|T |α⟩。我们已
经知道，T矩阵元可以通过求解散射定态|ψ+

α ⟩来得到，当然一般来说，
人们并不能精确求解出散射定态|ψ+

α ⟩，但是在我们这里，由于沿用了
第(10.5.1)小节中的许多简化性假设，散射定态|ψ+

α ⟩实际上可以通过求
解Lippmann–Schwinger方程(10.110)来得到。

具体来说，根据等式(10.112)，T矩阵元与散射定态的关系是，

⟨β|T |α⟩ = ⟨β|V |ψ+
α ⟩. (10.150)

我们可以在⟨β|V |ψ+
α ⟩中插入封闭性关系(10.117)，并利用第(10.5.1)小节中

关于连续态之间无耦合的假设，就可以得到

⟨β|T |α⟩ = ⟨β|V |i⟩⟨i|ψ+
α ⟩. (10.151)
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由此可见，为了计算出T矩阵元以及相应的跃迁概率，我们只需求出散射

定态|ψ+
α ⟩在|i⟩态上的分量，即只需要求出⟨i|ψ+

α ⟩ = ⟨i|UI(0,−∞)|α⟩，它实
际上也就是入射的|α⟩态在中间t = 0时刻暂时性地跃迁到不稳定束缚态|i⟩的
概率幅。

正如前面所说的，我们可以通过求解Lippmann–Schwinger方程(10.110)

来得到⟨i|ψ+
α ⟩，我们将这个方程重写在下面

|ψ+
α ⟩ = |α⟩+ 1

Eα −H0 + iϵ
V |ψ+

α ⟩. (10.152)

分别用|i⟩态以及连续态|γ⟩从左边和这个方程作内积，并注意到|i⟩和|γ⟩都
是H0的本征态，而且|i⟩和|γ⟩相互正交，从而就可以得到

⟨i|ψ+
α ⟩ =

1

Eα − Ei + iϵ
⟨i|V |ψ+

α ⟩

=
1

Eα − Ei + iϵ

∫
dγ⟨i|V |γ⟩⟨γ|ψ+

α ⟩

⟨γ|ψ+
α ⟩ = δ(γ − α) +

1

Eα − Eγ + iϵ
⟨γ|V |ψ+

α ⟩

= δ(γ − α) +
1

Eα − Eγ + iϵ
⟨γ|V |i⟩⟨i|ψ+

α ⟩. (10.153)

上式的第二行与第四行我们再一次在算符V和量子态|ψ+
α ⟩的中间插入了封

闭性关系(10.117), 并利用了第(10.5.1)小节中的那些具体假设。

将方程组(10.153)的第二个方程代入第一个方程以消去⟨γ|ψ+
α ⟩, 并稍作

整理，我们就可以得到[
Eα − Ei + iϵ−

∫
dγ

|⟨γ|V |i⟩|2

Eα − Eγ + iϵ

]
⟨i|ψ+

α ⟩ = ⟨i|V |α⟩. (10.154)

式中我们利用了V的厄米性，即⟨i|V |γ⟩ = ⟨γ|V |i⟩∗。
定义∆i(Eα)和Γi(Eα)如下，

∆i(Eα) = P
∫
dγ

|⟨γ|V |i⟩|2

Eα − Eγ

, (10.155)

Γi(Eα) =
2π

~

∫
dγ|⟨γ|V |i⟩|2δ(Eγ − Eα)

=
2π

~

∫
dχ|⟨E, χ|V |i⟩|2ρ(E, χ)|E=Eα . (10.156)
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则利用 1
Eα−Eγ+iϵ

= P 1
Eα−Eγ

− iπδ(Eα − Eγ), 人们可以验证方程(10.154)可以

重写成 [
Eα − (Ei +∆i(Eα)) + i~

Γi(Eα)

2

]
⟨i|ψ+

α ⟩ = ⟨i|V |α⟩. (10.157)

从∆i(Eα)和Γi(Eα)的定义可以看出，当Eα = Ei时，∆i(Eα)就是能级Ei的

二阶微扰修正，也就是第(10.5.1)小节中定义的∆Ei, 而这时候的Γi(Eα)就

是|i⟩态单位时间的总衰变概率，也就是第(10.5.1)小节中定义的Γi，即

∆i(Ei) = ∆Ei, Γi(Ei) = Γi. (10.158)

到此为止，我们就已经可以解出⟨i|ψ+
α ⟩了，将从(10.157)式解出的⟨i|ψ+

α ⟩
代入T矩阵元的表达式(10.151)，并且记Ei+∆i(Eα) = ER,i(Eα)(下标R代表

共振态的意思)，我们就有

⟨β|T |α⟩ = ⟨β|V |i⟩⟨i|V |α⟩
Eα − ER,i(Eα) + i~Γi(Eα)

2

. (10.159)

显然，假设将T矩阵元看成是入射粒子能量Eα的函数，那么不稳定束缚

态|i⟩的存在就对应于这个函数在能量复平面下半平面的一个极点，也就是
对应于一个散射共振态。这就是不稳定束缚态与散射共振态之间的一般性

联系。

人们很容易将上面的结果推广到H0的多个离散能级与连续谱通

过V相耦合的情形。这时候，∆i(Eα)需要推广成∆ij(Eα), Γi(Eα)需要推

广成Γij(Eα), 它们的定义如下，

∆ij(Eα) = P
∫
dγ

⟨i|V |γ⟩⟨γ|V |j⟩
Eα − Eγ

, (10.160)

Γij(Eα) =
2π

~

∫
dγ⟨i|V |γ⟩⟨γ|V |j⟩δ(Eγ − Eα)

=
2π

~

∫
dχ⟨i|V |E, χ⟩⟨E, χ|V |j⟩ρ(E, χ)|E=Eα . (10.161)

很显然，它们都成了在离散态子空间里的矩阵，不妨引入离散态子空间里

的算符∆(Eα)和Γ(Eα)，它们的定义是

∆(Eα) =
∑
i,j

∆ij(Eα)|i⟩⟨j|, Γ(Eα) =
∑
i,j

Γij(Eα)|i⟩⟨j|. (10.162)



第十章 含时问题与散射问题 53

假如我们同时将
∑

j |j⟩⟨j|V |α⟩看成是离散态子空间里的某个态Aα, 同时

将
∑

i⟨β|V |i⟩⟨i|看作A†
β，那么算符∆(Eα)和Γ(Eα)就可以写成

∆(Eα) = P
∫
dγ

AγA
†
γ

Eα − Eγ

, (10.163)

Γ(Eα) =
2π

~

∫
dχAE,χA

†
E,χρ(E, χ)|E=Eα . (10.164)

而散射T矩阵的表达式现在就是，

⟨β|T |α⟩ = A†
β

1

Eα −HR(Eα) + i~Γ(Eα)
2

Aα. (10.165)

式中HR(Eα)为离散态空间上的算符，其定义为HR(Eα) =
∑

iEi|i⟩⟨i| +
∆(Eα)。

很显然，上面的所有结果都与第五章中用有效哈密顿量的方法得到

的结果一致。而得到散射T矩阵(10.165)的最快方法其实也是应用第五章

的有效哈密顿量。(这一段请读者先去回顾一下第五章的相关结论) 首

先，注意到⟨β|T |α⟩ = ⟨β|P⊥TP⊥|α⟩。其次，根据T算符的一般公式(10.98),

P⊥T (z)P⊥ = P⊥V P⊥ + P⊥V G(z)V P⊥，而按照我们的假设P⊥V P⊥ = 0,

所以有P⊥T (z)P⊥ = P⊥V PG(z)PV P⊥(这里在中间插入了P + P⊥ = 1)。

而PG(z)P就是将G(z) = 1
z−H
化约到离散态子空间P上, 利用第五章中的算

符恒等式P 1
z−H

P = 1
z−Heff(z)

，结果当然就是将哈密顿量H替换成P上的有

效哈密顿量Heff(z) = HPP +∆(z)− ~ i
2
Γ(z), 从而最终我们就会得到

P⊥T (z)P⊥ = VP⊥P

1

z −HPP −∆(z) + ~ i
2
Γ(z)

VPP⊥ . (10.166)

将这个T算符写成T矩阵的形式，马上就能得到我们之前的结果(10.165)。

因此这一小节我们本质上是用求解Lippmann–Schwinger方程的方法印证

了第五章有效哈密顿量的方法。

举举举例例例

下面我们考察上述理论的一个例子。假设我们考察单个入射粒子和一

个固定靶散射，最后再作为末态出射的情形。不过，这个固定靶本身可以

是一个有内部结构的系统，比方说，我们上一小节中的He+离子就是一个

这样的固定靶。假设入射粒子在无穷远处是一个自由粒子，它在无穷远处

的动量为p，出射粒子在无穷远处也是一个自由粒子，动量为p′。因此我们
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可以用|p⟩来标记入射态|α⟩, 用|p′⟩来标记末态|β⟩。这样一个系统相应的连
续能谱将可以写成

Ep = E0 +
p2

2m
. (10.167)

式中E0表示当散射的粒子与固定靶距离为无穷远时，固定靶的内能。散射

过程的能量守恒意味着，入射粒子在无穷远处的动能必然与出射粒子在无

穷远处的动能相等，因此|p| = |p′|。正如我们早已知道的，这种连续谱的
态密度ρ(E) = mp, 式中p = |p|。对于这一类两体散射问题，我们可以计算
微分散射截面，根据(10.92)式，现在它应该是，

dσ = (2π~)6
( m

2π~2
)2

|⟨p′|T |p⟩|2dΩ. (10.168)

另外，假设系统有一个不稳定束缚态|i⟩, 下面我们将仅仅考虑这个不
稳定束缚态与连续谱的耦合，因此就可以直接应用上面所发展的理论了。

将态密度表达式ρ(E) = mp代入(10.156), 我们可以得到

Γi(Ep) =
2π

~

∫
mpdΩ|⟨p|V |i⟩|2. (10.169)

现在，进一步假设相互作用V具有旋转不变性，而且|i⟩态的角动量
量子数l = 0(因此没有简并)。这时候由于|i⟩和V均旋转不变，所以矩阵
元⟨p|V |i⟩必定不依赖于动量p的方向，即必有⟨p|V |i⟩ = ⟨p|V |i⟩。同样的道
理，也有⟨i|V |p⟩ = ⟨i|V |p⟩, 以及⟨p′|V |i⟩ = ⟨p|V |i⟩(这里我们用到了|p′| =
|p| = p)。将这些结果代入(10.169)就可以得到

Γi(Ep) = 2
(2π)2

~
mp|⟨p|V |i⟩|2. (10.170)

对于T矩阵元⟨p′|T |p⟩，根据(10.159)式，它应该是

⟨p′|T |p⟩ =
⟨p′|V |i⟩⟨i|V |p⟩

Ep − ER,i(Ep) + i~Γi(Ep)

2

=
|⟨p|V |i⟩|2

Ep − ER,i(Ep) + i~Γi(Ep)

2

=
1

2(2π)2mp

~Γi(Ep)

Ep − ER,i(Ep) + i~Γi(Ep)

2

. (10.171)

在上式的最后一行中我们代入了(10.170)式。
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将(10.171)的最终结果代入微分截面公式(10.168), 并对所有的立体角

积分，我们就能够得到总截面σT =
∫
dσ，结果是

σT =
4π

k2
[~Γi(Ep)]

2

4[Ep − ER,i(Ep)]2 + [~Γi(Ep)]2
. (10.172)

式中k = p/~。如果相互作用V的数学性质足够良好，以致于函数ER,i(Ep)和

函数Γi(Ep)随初态能量的变化都非常缓慢，那我们也可以将它们近似看成

是常数，分别记为ER,i和Γi，那么总截面的公式就可以简化为

σT =
4π

k2
(~Γi)

2

4(E − ER,i)2 + (~Γi)2
, (10.173)

式中的E表示初态的能量，也就是之前的Ep。

将这个总截面σT看成是初态能量E的函数，函数图像大体如图(10.7)所

示(请注意，公式(10.173)中的k也是能量E的函数)。图中的共振峰位于E =

图 10.7: σT作为初态能量E的函数

ER,i的位置，对应于散射共振态的能量，峰的宽度大致由~Γi/2来衡量，

Γi越大峰越宽。图中我们画的是ER,i = 4, (~Γi)
2 = 2的情形。也即是说，如

果我们从实验上测量散射截面，然后发现有这么一个共振峰存在，那就

意味着系统里必然有一个散射共振态(或者说不稳定束缚态)存在，而且由

于τi = 1/Γi是这个不稳定态的寿命，因此如果共振峰越宽那就意味着相应

的散射共振态的寿命越短，通过测量共振峰的宽度我们就能测出这个不稳

定态的寿命。在粒子物理中，大量的粒子都是这么发现的，因为只有很少

粒子是完全稳定的，大部分粒子实际上都不稳定，会衰变，因此会以散射

共振态的形式在散射实验中显现。



第十章 含时问题与散射问题 56

10.6 习题

1. 假设在t0 = 0的初始时刻，某量子系统由哈密顿量H0描述，假设我

们已经完全了解了H0的本征态，记为|n⟩, n = 1, 2, 3...。设想我们缓慢地给

系统加上一个微扰W (W是一个厄米算符)，使得t = +∞时系统的哈密顿量
变成H0 +W。假设整个过程可以由下面的哈密顿量H描述，

H = H0 + (1− e−t/τ )W, 0 ≤ t ≤ +∞, (10.174)

式中的时间尺度τ衡量了微扰加入的快慢。请用一阶含时微扰论计算t0 =

0时刻的|n⟩态在t = +∞时跃迁到|m⟩态的概率pn→m。并请将τ → +∞时的
答案与定态微扰论的计算进行比较。

2. 给一个线性谐振子(哈密顿量为H0 = ~ω(a†a + 1
2
))加上一个微

扰V (t) = ~ωλ(a† + a)e−t2/τ2 , 请用一阶含时微扰计算出−∞时刻的|n⟩能级
在+∞时刻跃迁到|m⟩能级的概率pn→m。

3. 我们已经知道了Jaynes-Cummings哈密顿量(JC哈密顿量)可以在|n, g⟩态
和|n− 1, e⟩态所张成的子空间里进行求解。

(1)请在这个两态子空间里写出JC哈密顿量的矩阵形式，并求出它的两

个本征态。

(2)假设系统初始处在|n, g⟩态，请利用上一问求出来的两个本征态直接
导出跃迁概率pg→e(t)的公式。

4. 在磁共振中，我们常常让一个自旋1/2的粒子同时处在两个磁场中，

一个是沿着z轴的磁场B0，这是一个不随时间变化的固定磁场，另外一个

是在x − y平面内旋转的磁场B⃗1 = B1(cos(ωt), sin(ωt), 0)。系统的哈密顿量

可以写成H = −µ⃗ · (B⃗0 + B⃗1), µ⃗是例子的磁矩，它和粒子的自旋算符S⃗之间

的关系是，µ⃗ = γS⃗, γ就是所谓的旋磁比。因此这个哈密顿量也可以写成

H = −γ(B0Sz +B1Sx cos(ωt) + B1Sy sin(ωt)). (10.175)

请研究在磁场的作用下，这个粒子在自旋向上态与自旋向下态之间的拉比

振荡行为，并推导出相关的公式。
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5. 由于和环境或者与其它量子态的耦合，一个量子系统的定态其实总

有一些不稳定性，这使得系统可以稳定地处在定态上的时间常常不是无穷

大，而是有一个有限的典型时间，称之为相应定态的寿命。刻画定态寿命

的一个最简单方法是给相应的定态能量加上一个负虚部，具体来说即是，

考虑到有限的寿命τ , 人们可以将一个能量为E的定态的能量修正为E − i ~
τ
。

假设我们考察一个两能级系统，其基态|0⟩的能量为E0，寿命为无穷大，而

激发态|1⟩的能量为E1，寿命为τ。因此，以这两个定态为基，这个两能级

系统的哈密顿量可以写成 (
E1 − i ~

τ
0

0 E0

)
. (10.176)

现在，假设我们通过某种方式进一步将|0⟩, |1⟩这两个态耦合起来，使得系
统的哈密顿量变成 (

E1 − i ~
τ

W

W E0

)
, (10.177)

式中W是一个实数。

(1)耦合之后开始计时，假设t = 0时系统处在|0⟩态，请计算跃迁概
率p0→0(t)以及p0→1(t)。

(2)请就W很大和W很小两种情况画出跃迁概率随时间的变化曲线，并

进行物理讨论。然后请想一想，这个系统的总概率守恒吗？为什么？


