
重重重整整整化化化群群群（（（二二二）））: 积积积去去去小小小尺尺尺度度度自自自由由由度度度

陈陈陈童童童

重整化群实际上是一个关于如何处理多尺度多自由度系统的纲领，重整

化变换的物理实质就是积去小尺度的短程自由度，这样的操作之所以起作

用是基础于两个基本的观察：第一，小尺度短程自由度对于更大尺度的长

程物理是有影响的，第二，但是只要合适地选取表达理论的变量，那么这

个影响就可以用几个相关参数来概括，几个参数就可以概括小尺度的所有

相关信息，至于短程结构的更多细节信息则与大尺度物理无关。因此，通

过积去短程自由度你就能忽略小尺度结构的无关细节，得到一个与你所关

心的尺度的物理密切相关的有效理论。的确，有效场论的有效二字可以理

解成无效的反义词，它暗示说如果你的理论与你所要考察的物理不在同一

尺度上，那么你的理论就是一种徒劳。下面我们就一个具体的算例来看看

通过积去小尺度短程自由度进而得到有效理论这个操作可以如何进行。

我们要考察的理论是一个定义在d维欧空间的标量场论，在截断尺度a，

它的有效作用量可以写成

S(a) =

∫
ddx

(
1

2

(
∂iϕ∂iϕ+ ta−2ϕ2

)
+

1

4!
gad−4ϕ4

)
, (1)

人们可以作一个坐标和场变量的rescaling来消除方程里面显含的尺度因

子a，我们保留这个尺度因子以使得无需作这样的rescaling。另外，式中

的t和g是无量纲的藕合常数，我们就是要研究它们如何依赖于重整化尺

度a。为此，我们考虑一个更长一点的临近尺度ã = a(1 + ϵ)，ϵ是一个无穷

小量。根据定义，在截断尺度ã上的理论当然应该是

S(ã) =

∫
ddx

(
1

2

(
∂iϕ∂iϕ+ t̃ã−2ϕ2

)
+

1

4!
g̃ãd−4ϕ4

)
. (2)

重整化的物理实质相当于说，S(ã)可以通过在S(a)的基础上积去波长

在λ ∈ [a, a(1 + ϵ)]区间之内的自由度而得到。我们不妨以ϕ来表示波长

比a(1 + ϵ)更长的自由度，而以η(x)来表示波长在λ ∈ [a, a(1 + ϵ)]之内的自
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由度，因此S(a)中的场就应该替换成ϕ + η, 这样一来，重整化群的物理实

质就相当于说

e−S(ã) =

∫
[dη]e−S(a). (3)

根据自由度按波长的这种分解，我们可以将S(a)重写成

S(a) =

∫
ddx

(
1

2

(
∂iϕ∂iϕ+ ta−2ϕ2

)
+

1

4!
gad−4ϕ4

)
+

∫
ddx

(
∂iη∂iϕ+ ta−2ηϕ+

1

3!
gad−4ϕ3η

)
+
1

2

∫
ddx

(
∂iη∂iη + ta−2η2 +

1

2
gad−4ϕ2η2

)
. (4)

这个式子中η的线性项取
∫
ddxA(x)η的形式，A(x)是一个关于ϕ的函数，ϕ的

波长大于a(1 + ϵ)，而η(x)的波长小于a(1 + ϵ)，因此A(x)相对于η(x)来说是

变化缓慢的，由于η(x)的相对较快的振荡线性项
∫
ddxA(x)η的积分实际

上等于零。因此, 在进行(3)的泛函积分计算时，我们实际上要算的就

是η(x)的二次项的高斯积分，由熟知的高斯积分公式可知这个积分算出来

是

det[−∂2 + ta−2 +
1

2
gad−4ϕ2]−

1
2 . (5)

利用det(A) = eTr ln(A), 我们可以得到

exp
{
− 1

2

∫
ddxddp

(2π)d
|(1−ϵ)1/a<p<1/a ln(p

2 + ta−2 +
1

2
gad−4ϕ2)

}
≃ exp

{
− ϵ

1

2

Sd

(2πa)d

∫
ddx ln(a−2 + ta−2 +

1

2
gad−4ϕ2)

}
= exp

{
ϵC − ϵ

1

2

Sd

(2πa)d

∫
ddx ln(1 + t+

1

2
gad−2ϕ2)

}
= exp

{
ϵC ′ − ϵ

1

2

Sd

(2πa)d

∫
ddx

(
1

2
g(1− t)ad−2ϕ2 − 1

8
g2a2d−4ϕ4

)}
,(6)

式中Sd表示d维欧空间中单位球面的面积，C和C ′均是与场无关的常数，可

以通过在原来的标量场作用量中加上一个常数来重整化，因此我们将忽略

它。
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现在，方程(3)告诉我们

e−S(ã) = exp
{
−
∫

ddx

(
1

2

(
∂iϕ∂iϕ+ ta−2ϕ2

)
+

1

4!
gad−4ϕ4

)
−ϵ

1

2

Sd

(2πa)d

∫
ddx

(
1

2
g(1− t)ad−2ϕ2 − 1

8
g2a2d−4ϕ4

)}
= exp

{
−
∫ (

1

2

(
∂iϕ∂iϕ+ t̃(a(1 + ϵ))−2ϕ2

)
+

1

4!
g̃(a(1 + ϵ))d−4ϕ4

)}
,(7)

这个式子的最后一行用到了(2)。比较上面这个方程的相应项，我们可以得

到

t̃ = t+ ϵ

(
2t+

Sd

2(2π)d
g(1− t)

)
g̃ = g + ϵ

(
(4− d)g − 3Sd

2(2π)d
g2
)
. (8)

也即是说，我们有重整化群方程

dt

dϵ
=

(
2t+

Sd

2(2π)d
g(1− t)

)
dg

dϵ
=

(
(4− d)g − 3Sd

2(2π)d
g2
)
. (9)

如果d = 4，即假如我们研究的是一个四维量子场论，那么重整化群方

程(9)就是

dt

dϵ
=

(
2− 1

16π2
g

)
t+

1

16π2
g

dg

dϵ
= − 3

16π2
g2. (10)

这个方程只有平凡的固定点t = 0, g = 0，在固定点附近ϕ2项扰动是相关扰

动，ϕ4扰动则是无关扰动。

如果d < 4, 当然重整化群方程(9)依然有平凡的固定点t = 0, g = 0，在

这个固定点附近ϕ2扰动和ϕ4扰动均是相关扰动。但是除了这个平凡的固

定点之外，这时候方程(9)还有一个非平凡的固定点，即g = 2(2π)d

3Sd
(4 − d),

t = −4−d
2+d
，在这个固定点附近重整化群可以线性化为

dδt

dϵ
=

2 + d

3
δt+

3Sd

(2 + d)(2π)d
δg

dδg

dϵ
= −(4− d)δg, (11)
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很显然，这时候ϕ2扰动依然是相关的，但是ϕ4扰动已经变成无关扰动了。

如果一个物理系统的重整化群流从这个非平凡固定点附近经过，那么由线

性化的重整化群方程(11)人们容易知道，这个系统的关联长度ξ的临界指

数ν为

ν =
3

2 + d
. (12)
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