
附附附录录录: 线线线性性性代代代数数数概概概要要要

陈童

September 3, 2020

这个数学附录的内容是为了帮助初学者理解线性代数的基本概念和思维

方式，并不是要给出完备的严格数学证明。因此下面讲述的很多内容在数

学严格性上肯定是有待补充的。

1 向向向量量量空空空间间间

通常的三维空间R3由如下有序三元实数组构成

R3 = {[x, y, z] : x, y, z ∈ R}.

我们可以记x = [x, y, z]，称之为R3空间的向量，任取x1 = [x1, y1, z1], x2 =

[x2, y2, z2]，我们可以定义向量的加法，x1+x2 = [x1+x2, y1+ y2, z1+ z2]。

显然，这样定义的向量加法满足加法交换律和结合律。同时我们还可以定

义标量乘法λx = [λx, λy, λz], λ ∈ R。显然，它满足分配律，即λ(x1+x2) =

λx1 + λx2。

类似的代数结构我们也可以在n维复空间Cn中发现，Cn由如下有序n元

复数组构成

Cn = {[x1, x2, ..., xn] : x1, x2, ..., xn ∈ C}.

记x = [x1, x2, ..., xn], y = [y1, y2, ..., yn], 称为Cn中的两个向量。类似地可以

定义向量加法，x + y = [x1 + y1, x2 + y2, ..., xn + yn], 很显然，它同样满足

交换律和结合律。同样可以定义标量乘法，λx = [λx1, λx2, ..., λxn]，不过

现在标量λ ∈ C。很明显，这样的标量乘法也满足分配律。
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利用向量的加法和标量乘法，我们很容易将k个向量线性组合起来，得

到一个新的向量，

x = c1x1 + c2x2 + ...+ ckxk.

式中向量x就是x1,x2,...,xk的线性组合。可以进行任意的线性组合就是向量

的核心特征。反过来，具有这个特征的东西都叫向量。

比方说我们考察[0, 1]区间上的连续复数值函数，我们把所有这些函

数的集合记为C[0,1]。任给f(x), g(x) ∈ C[0,1]，很显然我们可以定义一个新

的C[0,1]集合内的函数(f + g)(x), (f + g)(x) = f(x) + g(x)。这就给C[0,1]集合

内的函数定义了加法，它显然满足交换律和结合律。我们也可以定义标量

乘法, (λf)(x) = λf(x)，它显然满足分配律。有了这两种运算，我们就可

以把C[0,1]内的函数任意线性组合，比方说c1f1(x) + c2f2(x) + ...+ ckfk(x)显

然还是C[0,1]内的函数，c1, c2, ..., ck就是组合系数，按照标量乘法的定义，

它们当然都是普通的复数。可见，我们完全可以把C[0,1]内的函数称作向

量！

把这些要素抽象出来，我们就可以给出向量空间的一般性定义：向量空

间V是一个集合，它里面的元素(我们称作向量)可以是任何东西，只要这

些东西之间定义了加法和标量乘法运算，并且这些运算满足交换律、结合

律以及分配律。简言之，只要这些东西可以进行任意的线性组合，组合系

数是普通的数。当然，还有很重要的一条，无论如何线性组合，结果依然

得是集合V中的一个向量，也即是说，集合V在加法和标量乘法运算下得

具有封闭性。

向量和向量空间是抽象的。然而读者通常都能按照3维空间里面的我们

从高中就已经熟悉的普通向量来想象它们，因为不管向量空间多么抽象，

它和3维向量空间都有同样的本质，那就是里面的向量可以任意线性组合。

所以，通常人们也把向向向量量量空空空间间间称称称作作作线线线性性性空空空间间间。

既然向量是抽象的，我们最好给它们发明一个通用的抽象的记号。

我们把向量记作|ψ⟩，读作向量ψ。比方说在前面的R3空间情形，|ψ⟩就是
三元组[x, y, z]，所以|ψ⟩ = [x, y, z]。在Cn情形，|ψ⟩ = [x1, x2, ..., xn]。而

在C[0,1]情形，|ψ⟩ = f(x)。

在量子力学中我们关心的都是组合系数为复数的向量空间，称为

复向量空间。根据向量空间的定义，对于任何复向量空间V，假如向
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量|ψ1⟩, |ψ2⟩, ..., |ψk⟩ ∈ V，则它们的任意复系数线性组合也必属于V，即

c1|ψ1⟩+ c2|ψ2⟩+ ...+ ck|ψk⟩ ∈ V.

子子子空空空间间间与与与直直直和和和

如果向量空间V的一个子集U本身也是向量空间，即U本身就在加法

和标量乘法下保持封闭，则U就称为V的一个子子子空空空间间间。比如很容易验

证{[x1, x2, 0] : x1, x2 ∈ C}就是C3的一个子空间。同样，通常3维空间R3中

任何一个过原点的平面也构成R3的一个子空间。实际上，人们通常都可以

把向量空间的子空间想象成“一个过原点的超平面”。

设U和W均是向量空间V的子空间，并且如果对于|u⟩ ∈ U , |w⟩ ∈ W，

当且仅当|u⟩ = |w⟩ = 0时才满足|u⟩ + |w⟩ = 0。则我们就可以定义U和W的

直直直和和和, 记为U ⊕W，它也是V的子空间，U ⊕W的要点在于其里面的任何向

量|ψ⟩均可以唯一分解成如下形式

U ⊕W = {|ψ⟩ = |u⟩+ |w⟩ : |u⟩ ∈ U, |w⟩ ∈ W}.

这种分解的唯一性很容易证明，设另有|u′⟩ ∈ U , |w′⟩ ∈ W也满足|ψ⟩ =

|u′⟩ + |w′⟩, 则将|ψ⟩的这两种分解方式相减就可以得到(|u′⟩ − |u⟩) + (|w′⟩ −
|w⟩) = 0，根据前面的假设必有|u′⟩ − |u⟩ = 0, |w′⟩ − |w⟩ = 0，这就证明了

分解的唯一性。

举个例子，假设向量空间R3的两个子空间U和W的定义如下，U =

{[x, y, 0] : x, y ∈ R}, W = {[0, 0, z] : z ∈ R}, 则U ⊕W = R3。

直和的概念当然可以推广。设U1, U2, ..., Um均是向量空间V的子空间，

并且对于|u1⟩ ∈ U1, ..., |um⟩ ∈ Um，当且仅当|u1⟩ = |u2⟩ = ... = |um⟩ = 0时

才有|u1⟩ + |u2⟩ + ... + |um⟩ = 0。那么我们就可以定义这m个子空间的直

和，记为U1⊕U2⊕ ...⊕Um。具体来说，U1⊕ ...⊕Um也是V的一个子空间，

它里面的向量可以唯一分解成如下形式

U1 ⊕ ...⊕ Um = {|u1⟩+ |u2⟩+ ...+ |um⟩ : |u1⟩ ∈ U1, ..., |um⟩ ∈ Um}.

举个例子。设Uj是Cn中除第j个坐标以外其余坐标全是0的那些向量所

组成的子空间，则U1 ⊕ U2 ⊕ ...⊕ Un = Cn。
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2 有有有限限限维维维向向向量量量空空空间间间

张张张成成成空空空间间间与与与线线线性性性无无无关关关

复向量空间V中的一组向量|v1⟩, |v2⟩, ..., |vm⟩的所有可能线性组合所构成
的集合称为|v1⟩, |v2⟩, ..., |vm⟩的张成空间，记为Span(|v1⟩, |v2⟩, ..., |vm⟩), 即

Span(|v1⟩, |v2⟩, ..., |vm⟩) = {c1|v1⟩+ c2|v2⟩+ ...+ cm|vm⟩ : c1, c2, ..., cm ∈ C}.

可以证明Span(|v1⟩, |v2⟩, ..., |vm⟩)是包含|v1⟩, |v2⟩, ..., |vm⟩的最小子空间。
有有有限限限维维维向向向量量量空空空间间间就是可以由向量空间中一组有限数目的向量张成的向

量空间。除了有限维向量空间之外的向量空间都叫无限维的。虽然量子力

学中的向量空间常常为无限维，但其基本数学结构都可以从有限维的情况

得到理解。因此，我们这个附录将主要限于讨论有限维向量空间。而且，

我们将主要讨论有限维复向量空间。

举个例子。很明显，由n个向量组成的向量组|e1⟩ = [1, 0, ..., 0], |e2⟩ =

[0, 1, 0, ..., 0], ..., |en⟩ = [0, ..., 0, 1]张成了向量空间Cn。

再举个例子，任何两个不超过n次的复多项式的和依然是一个不超

过n次的复多项式，所以所有不超过n次的复多项式p(z)的集合构成了一个

复向量空间，定义这个向量空间的向量|p⟩ = p(z)。很显然，这个向量空间

可以由如下向量组张成，|0⟩ = 1, |1⟩ = z1, ..., |n⟩ = zn。这是因为，任何不

超过n次的复多项式都可以写成p(z) = c0 + c1z + c2z
2 + ... + cnz

n，用向量

的形式来写即是|p⟩ = c0|0⟩+ c1|1⟩+ c2|2⟩+ ...+ cn|n⟩。
对于一组向量|v1⟩, |v2⟩, ..., |vm⟩，如果c1|v1⟩ + c2|v2⟩ + ... + cm|vm⟩ = 0,

当且仅当所有的系数都为0，即c1 = c2 = ... = cm = 0, 则我们就

称|v1⟩, |v2⟩, ..., |vm⟩线线线性性性无无无关关关。否则就称它们线性相关。容易证明，如
果|v1⟩, |v2⟩, ..., |vm⟩线性无关，则任何|u⟩ ∈ Span(|v1⟩, |v2⟩, ..., |vm⟩) 的线性
组合形式|u⟩ = a1|v1⟩+a2|v2⟩+ ...+am|vm⟩都必定是唯唯唯一一一的。因为否则，假
设|u⟩另有一种不同的线性组合|u⟩ = b1|v1⟩+b2|v2⟩+...+bm|vm⟩,则将|u⟩的两
种线性组合相减就会得到(a1−b1)|v1⟩+(a2−b2)|v2⟩+ ...+(am−bm)|vm⟩ = 0,

其中组合系数不全为0，但这就和|v1⟩, |v2⟩, ..., |vm⟩线性无关的假设矛盾
了。

如果|v1⟩, |v2⟩, ..., |vm⟩线性相关，那这就说明对于张成子空间W =

Span(|v1⟩, |v2⟩, ..., |vm⟩)来说，向量组|v1⟩, |v2⟩, ..., |vm⟩有冗余, 我们完全可
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以从中删去某些向量，使得剩余的向量依然能够张成W。比方说，

向量组|e1⟩ = [1, 0], |e2⟩ = [0, 1], |e3⟩ = [1, 1]张成了向量空间C2，但是由

于|e1⟩ + |e2⟩ − |e3⟩ = 0，因此这个向量组是线性相关的，我们完全可以从

中删除向量|e3⟩，剩下的|e1⟩, |e2⟩依然张成了向量空间C2。

所以对于张成一个固定的子空间来说，线性无关向量组是最小的向量

组。由此我们可以得到下面的概念。

基基基和和和维维维数数数

向量空间V的基是任何一组既线性无关又能张成V的向量，基中的每一

个向量叫作基向量。比方说，对于所有不超过n次的复多项式所成的向量

空间，|0⟩ = 1, |1⟩ = z1, ..., |n⟩ = zn就是它的一组基。再比方说，对于向量

空间Cn, |e1⟩ = [1, 0, ..., 0], |e2⟩ = [0, 1, 0, ..., 0], ..., |en⟩ = [0, ..., 0, 1]就是它的

一组基。

根据基的定义我们知道，给定向量空间的一组基，则空间中任何向量都

可以写成这组基的线性组合形式，并且组合系数是唯一的。在有限维向量

空间V上选定一组基|e1⟩, |e2⟩, ..., |en⟩以后，V中的任意向量|v⟩就可以唯一
性地用它的组合系数来表示。具体来说，我们可以唯一性地将|v⟩写成，

|v⟩ = v1|e1⟩+ v2|e2⟩...+ vn|en⟩, (1)

式中v1, v2, ..., vn ∈ C为复组合系数。进一步将(1)式重写成

|v⟩ = (|e1⟩, |e2⟩, ..., |en⟩)


v1

v2

...

vn

 , (2)

等式右边的表达式表示将行与列的各个分量对应地乘起来再求和，结果刚

好由(1)式给出。从(2)式我们很容易看出，向量|v⟩可以唯一性地表示成列
矢量v =

( v1
v2
...
vn

)
。人们也很容易验证，向量的加法就刚好对应相应列矢量的

加法，向量的标量乘法就对应列矢量的标量乘法。所以任何向量空间在取

定基以后都可以表示成列矢量空间。正是在这个意义上，我们完全可以将

向量|v⟩想象成一个列矢量。
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但是，一个向量空间的基本身不是唯一的。比方说，对于向量空

间Cn。|e1⟩ = [1, 0, ..., 0], |e2⟩ = [0, 1, 0, ..., 0], ..., |en⟩ = [0, ..., 0, 1]是它的一组

基，但是将这组基中的第n个向量|en⟩ 替换成|e′n⟩ = [0, ..., 0, 1, 1]结果依然是

一组基。

然而由于基是最小的张成向量组，所以对于有限维向量空间来说，基矢

量的数目是唯一的。有限维向量空间V的基向量的数目就称为V的维数，

记作dim(V )。比方说，dim(Cn) = n。

设V为有限维向量空间，再设它能分解成子空间U1, U2, ..., Um的直和，

即V = U1 ⊕ ...⊕ Um, 则可以证明

dim(V ) = dim(U1) + dim(U2) + ...+ dim(Um).

3 线线线性性性算算算符符符

向量空间V上的线性算符T就是V到自身的一个映射，T : V → V。对

于V的任意向量|u⟩，T将会把它映射到V的一个新向量|v⟩，记作|v⟩ =

T |u⟩，并将T |u⟩读作算符T在向量|u⟩上的作用。并且，这种作用得保持
向量空间V的线性结构，即保持向量空间的加法和标量乘法。具体来说就

是，对于任意|u⟩, |w⟩ ∈ V , 必有

T (|u⟩+ |w⟩) = T |u⟩+ T |w⟩.

另外，对于任意λ ∈ C, |u⟩ ∈ V，有

T (λ|u⟩) = λ(T |u⟩).

比方说，对于所有复多项式构成的向量空间，如下定义的运算T是一个

线性算符，Tp(z) = zp(z), 式中p(z)为任意一个多项式，T的作用是将这个

多项式乘以z，结果显然还是一个多项式。同样，下面的求导运算D也是复

多项式向量空间上的线性算符，Dp(z) = dp(z)
dz
。

再比方说，容易验证下式定义的T是向量空间C2上的线性算符, T ([x, y]) =

[2x− y, 7x+ 5y];x, y ∈ C。
有一个特殊的线性算符值得单独解释一下，那就是恒等算符，也叫做单

位算符，我们常常将它简记为1，它在任何向量上的作用结果依然是这个向

量本身，即1|u⟩ = |u⟩。
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我们可以按照下面的式子分别定义两个线性算符A, B的和A+ B，以及

它们的乘积AB，

(A+B)|u⟩ = A|u⟩+B|u⟩,

(AB)|u⟩ = A(B|u⟩).

读者容易验证，A+B和AB都依然是线性算符。

给定线性算符T , 如果向量|u⟩满足T |u⟩ = 0，则称之为算符T的零向量。

很明显，如果|u⟩, |v⟩均为T的零向量，则|u⟩+ |v⟩也为T的零向量，而λ|u⟩这
样的|u⟩乘上标量常数λ以后的向量也是T的零向量。也即是说，T的所有零
向量所构成的空间Null(T )在加法和标量乘法下封闭。因此Null(T )构成整

个向量空间的一个子空间，称为算符T的零空间。

比方说，由于常数的导数为0，前面我们定义的作用在所有复多项式的

向量空间上的线性算符D的零空间就是0次多项式空间，即Null(D) = {a :

a ∈ C}。
对于线性算符A，若存在某个算符B，使得AB = BA = 1，则我们

说，A,B互为逆算符，记作A = B−1, B = A−1。

如果算符A有逆算符，我们就说它可逆。很容易证明，A可逆的必要

条件是Null(A) = {0}。这是因为，如果A可逆，则我们就可以用A−1去乘

零向量的方程A|u⟩ = 0，从而得到|u⟩ = 0。实际上可以进一步证明，如

果A是有限维向量空间上的线性算符，则Null(A) = {0}其实是A可逆的充
要条件。

线线线性性性算算算符符符与与与矩矩矩阵阵阵

在n维向量空间V上取定一组基|e1⟩, |e2⟩, ..., |en⟩，注意到V中的任何向量
都可以用基向量来展开，进而设线性算符A在基向量上的作用结果可以用

基展开为

A|ej⟩ =
n∑

i=1

|ei⟩aij, j = 1, 2, .., n (3)

式中aij为复组合系数，请注意式中aij下标的顺序。人们常常将所有aij排成
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一个矩阵，记为Â,

Â =


a11 a12 ... a1n

a21 a22 ... ...

... ... ... ...

an1 ... ... ann

 .

由此我们很容易注意到(3)式A|ej⟩的结果为，行(|e1⟩, |e2⟩, ..., |en⟩)与矩阵Â的
第j列各分量对应相乘并求和。进而我们就可以将(3)式重新写成

A(|e1⟩, |e2⟩, ..., |en⟩) = (A|e1⟩, A|e2⟩, ..., A|en⟩)

= (|e1⟩, |e2⟩, ..., |en⟩)


a11 a12 ... a1n

a21 a22 ... ...

... ... ... ...

an1 ... ... ann

 .

也即是说，取定了基以后，线性算符A可以唯一性地表示成矩阵Â。

下面我们再来考察A在向量|v⟩上的作用A|v⟩ = |u⟩可以如何表示。为此
我们将|v⟩在基中展开为|v⟩ =

∑n
j=1 vj|ej⟩，注意到A|v⟩ = A(

∑n
j=1 vj|ej⟩) =∑n

j=1 vjA|ej⟩ =
∑n

j,i=1 |ei⟩aijvj =
∑n

i=1(
∑n

j=1 aijvj)|ei⟩。显然最后结果中

的(
∑n

j=1 aijvj)为矩阵Â的第i行各分量与列矢量v =
( v1

v2
...
vn

)
各分量对应相乘并

求和。记ui =
∑n

j=1 aijvj, 则有A|v⟩ =
∑n

i=1 ui|ei⟩ = |u⟩, 其中
u1

u2

...

un

 =


a11 a12 ... a1n

a21 a22 ... ...

... ... ... ...

an1 ... ... ann



v1

v2

...

vn

 .

很显然，最终的这个结果说明，取定了基以后，我们可以将向量表示成列

矢量，将线性算符表示成矩阵，而算符在向量上的作用就正好对应于矩阵

与列矢量相乘！也正是在这个意义上，我们可以粗略地将抽象的向量想象

成列矢量，将抽象的线性算符想象成矩阵。

不仅如此，我们还可以证明，取定了基以后，线性算符的和可以表示成

相应矩阵的和，而线性算符的乘积可以表示成相应矩阵的矩阵乘积。
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以算符乘积为例。假设有线性算符A和B, 其中A在基向量上的作用如前

所述，而B在基向量上的作用为B|ej⟩ =
∑n

i=1 |ei⟩bij，其中bij为复矩阵B̂的
第i行第j列。则AB|ek⟩ = A(B|ek⟩) = A(

∑n
j=1 |ej⟩bjk) =

∑n
j=1A|ej⟩bjk =∑n

i,j=1 |ei⟩aijbjk =
∑n

i |ei⟩(
∑n

j=1 aijbjk)。进而根据算符与矩阵之间的对应

关系我们可以知道，AB乘积算符的矩阵ÂB的第i行第k列必为

(ÂB)ik =
n∑

j=1

aijbjk. (4)

这个方程告诉我们，矩阵ÂB的第i行第k列由矩阵Â的第i行各分量与矩

阵B̂的第k列各分量对应相乘并求和。通常人们把这个矩阵乘法规则归纳为

如下方程

ÂB =


a11 a12 ... a1n

a21 a22 ... ...

... ... ... ...

an1 ... ... ann



b11 b12 ... b1n

b21 b22 ... ...

... ... ... ...

bn1 ... ... bnn

 = ÂB̂.

由此可见，算符的乘积正好表示成了相应矩阵的矩阵乘积。正是在这个意

义上，我们有时候会说，线性算符和矩阵本质上是一回事。

4 不不不变变变子子子空空空间间间、、、本本本征征征值值值与与与本本本征征征向向向量量量

为了更好地理解向量空间V上的线性算符A, 我们常常将V分解为若干个真

子空间的直和，

V = U1 ⊕ U2 ⊕ ...⊕ Um. (5)

然后我们可以将算符A限制在某个真子空间Uj上来考虑，记为A|Uj
，它

表示仅仅将A作用在子空间Uj内的向量上。这样做是因为，限制以后

的A|Uj
往往会比原来的整个算符A更简单，更好理解。

但是，A|Uj
不一定是Uj上的线性算符，也就是说，虽然A|Uj

作用在Uj上，

但它不一定将Uj映射到Uj本身，有可能有某些Uj里的向量会被映射到Uj外

面去！如果是这种情形，那单独研究A|Uj
其实就没有任何简化。所以为

了能真正简化问题，我们通常要求上面分解出来的每一个Uj在A|Uj
的作用
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下都封闭，即任何一个Uj中的向量在A的作用下都依然映射到Uj中的某个

向量。或者说，A|Uj
将把Uj映射到Uj。这时候，我们就称这些子空间为算

符A的不不不变变变子子子空空空间间间。可见，不变子空间的本质就是要在算符A的作用之下

保持封闭。

例如Null(A)就是A的一个不变子空间。这是因为，首先零向量0显然

属于Null(A)。其次，根据Null(A)的定义，对于任意|u⟩ ∈ Null(A)，必

有A|u⟩ = 0 ∈ Null(A)，从而Null(A)在A的作用下的确封闭。

对于某个非零向量|v⟩，如果一维子空间Uv = {c|v⟩ : c ∈ C}是算符A的
不变子空间，那么就称向量|v⟩为算符A的本本本征征征向向向量量量。根据不变子空间的定
义，这时候必有A|v⟩ ∈ Uv，从而也即是说，A|v⟩必定具有λ|v⟩的形式，即

A|v⟩ = λ|v⟩.

这个方程就称为算符A的本征方程，其中的λ就称为A的本本本征征征值值值。

当然我们也可以在向量空间上选定一组基，进而把一切都翻译成矩阵。

比方说，取基以后，我们可以将向量|v⟩表示成列矢量v，把算符A表示成矩
阵Â，那上面的本征方程就可以表示成一个矩阵方程，Âv = λv，也即是

a11 a12 ... a1n

a21 a22 ... ...

... ... ... ...

an1 ... ... ann



v1

v2

...

vn

 = λ


v1

v2

...

vn

 .

人们也称这个方程为矩阵Â的本征方程。

我们可以把算符A的本征方程改写成(A− λ · 1)|v⟩ = 0, 其中|v⟩为非零向
量。可见，λ为算符A本征值的充要条件是，Null(A− λ · 1)中包含有非零向
量。对于有限维向量空间，根据算符可逆的充要条件，这等价于A−λ · 1不
可逆。所以，对于有限维向量空间，λ为为为算算算符符符A的的的本本本征征征值值值等等等价价价于于于A− λ · 1不不不
可可可逆逆逆。

但是，给定一个本征值λ，可能有多个线性无关的向量满足同样的本征

方程。也即是说，方程(A − λ · 1)|v⟩ = 0可能有多个线性无关的本征向量

解。不过很显然，所有这些本征向量解的全体就构成了Null(A− λ · 1)，人
们也常常称之为A的本征值为λ的本征空间，记为E(λ,A)。因此，

E(λ,A) = Null(A− λ · 1).
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5 内内内积积积空空空间间间

内内内积积积

对于高中学过的三维向量空间R3中的向量x = [x1, x2, x3]，我们可以定

义它的模长|x|为|x|2 = x21 + x22 + x23。如果另有一个向量y = [y1, y2, y3]，那

我们还可以定义两个向量的内积x · y为x · y = x1y1 + x2y2 + x3y3。

推广到n维实向量空间Rn中的两个向量x = [x1, x2, ..., xn]和y = [y1, y2, ..., yn],

我们可以将它们的内积定义为x · y = x1y1 + x2y2 + ...xnyn。特别的，x的模

长|x|定义为|x|2 = x · x。
但是，在量子力学中，我们主要关心的是复向量空间。对于最简单的复

向量空间Cn中的向量z = [z1, z2, ..., zn]和w = [w1, w2, ..., wn] 我们需要把内

积的概念推广成，w1z1+w2z2+ ...+wnzn，式中w表示复数w的复共轭，有

时候也写成w∗。为什么要在内积的定义里面多加一个复数共轭我们很快就

会清楚。但很显然，这样定义以后，作内积的两个向量就不完全对称了。

我们可以利用前面发明的抽象向量记号|z⟩ = z, |w⟩ = w来反映这种不对称

性，具体来说，我们将|z⟩和|w⟩的内积记为⟨w|z⟩，它由下式计算

⟨w|z⟩ = w1z1 + w2z2 + ...+ wnzn.

注意这个公式，我们需要对内积符号左边的那个向量进行复数共轭。

之所以将左边的向量加上一个复共轭，原因在于向量的模长由向量

与其自身的内积确定。而只有这样定义以后，向量|z⟩的模长公式
∣∣|z⟩∣∣2 =

⟨z|z⟩才是一个大于零的正实数(因为复数z只有和它的复共轭z相乘结果才是

正实数)。

将以上的例子作一个一般性的抽象，我们就可以在任何复向量空

间V上定义内积运算。所谓的内积，就是一个函数，它把V中的任何

一对向量|u⟩, |v⟩映射到一个复数⟨u|v⟩。并且这个映射满足：(1). 正正正定定定

性性性，即对于任何|v⟩ ∈ V，⟨v|v⟩ ≥ 0, 等于号仅当|v⟩ = 0时才成立。(2).

线线线性性性性性性，即⟨u|v⟩对于符号右边的向量来说是线性的。具体来说即是满
足⟨u|

(
c1|v1⟩ + c2|v2⟩

)
= c1⟨u|v1⟩ + c2⟨u|v2⟩。(3). 共共共轭轭轭对对对称称称性性性，即⟨u|v⟩∗ =

⟨v|u⟩。定义了内积的复向量空间就称为内积空间。
对于高中学过的三维向量，我们知道，两个向量的内积为零又称作这两

个向量正交。这个概念同样可以推广到任何内积空间。如果⟨u|v⟩ = 0, 我们
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就称|u⟩和|v⟩正正正交交交。类似的，类比于单位向量的概念，如果一个向量|u⟩模
长为1，即满足⟨u|u⟩ = 1，我们就说它是归一的。

正正正交交交归归归一一一基基基与与与向向向量量量表表表示示示

对于一个有限维内积空间V , 如果它的一组基|e1⟩, |e2⟩, ..., |en⟩满足

⟨ei|ej⟩ = δij, i, j = 1, 2, ..., n.

我们就称这一组基为正交归一基。这里克龙内克符号δij当两个指标相同时

取1，不同时取0。

取定了正交归一基以后，我们就可以把向量|v⟩展开成，|v⟩ =
∑n

i=1 vi|ei⟩。
通过利用正交归一关系计算内积⟨ei|v⟩我们容易发现，

vi = ⟨ei|v⟩.

由此我们也可以得到v∗i = ⟨ei|v⟩∗ = ⟨v|ei⟩(利用了内积的共轭对称性)。

现在我们来考察⟨u|v⟩, 我们有⟨u|v⟩ = ⟨u|
∑n

i=1 vi|ei⟩ =
∑n

i=1 vi⟨u|ei⟩, 假
设把|u⟩展开成|u⟩ =

∑n
i=1 ui|ei⟩，则利用u∗i = ⟨u|ei⟩，我们可以得到

⟨u|v⟩ =
n∑

i=1

u∗i vi. (6)

前面我们已经知道，向量|u⟩, |v⟩在基中可以分别表示为列矢量u, v, 它们由
下式给出

u =


u1

u2

...

un

 =


⟨e1|u⟩
⟨e2|u⟩
...

⟨en|u⟩

 , v =


v1

v2

...

vn

 =


⟨e1|v⟩
⟨e2|v⟩
...

⟨en|v⟩

 .

则很显然，上面的(6)式其实就是

⟨u|v⟩ =
(
u∗1 u∗2 ... u∗n

)

v1

v2

...

vn

 = u†v. (7)
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式中u†表示列矢量u的复共轭再转置(称之为厄密共轭)，它显然是行矢

量。(7)式告诉我们，可以将内积符号左边的向量想象成一个行矢量，它是

相应列矢量的厄密共轭。

基于以上观察，我们干脆可以定义一种左矢⟨u|，其定义就是

⟨u| = |u⟩†.

左矢可以想象成行矢量，是列矢量的厄密共轭。因此，内积运算最终的公

式形式(7)就是行矢量乘以列矢量。注意，行矢量在左边，列矢量在右边。

正正正交交交补补补空空空间间间

最后我们再给出一个简单的概念。设V为内积空间，U为V的一个子空

间。则U的正交补空间也是一个子空间，记为U⊥, 它的定义是

U⊥ = {|v⟩ ∈ V :对每个|u⟩ ∈ U均有⟨u|v⟩ = 0}.

也即是说，U⊥由V中所有与U正交的向量构成。从而，整个向量空间V可

以正交分解成U和它的正交补U⊥的直和，即

V = U ⊕ U⊥.

关于内积空间以及内积空间中的线性算符的更多讨论，由于和量子力学

有直接的关系，所以我们放在本书的正文中进行。
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