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(这个小系列的三篇文章是一个整体，它试图在量子场论的理论

体系之外介绍一些相关的方法和推导几个漂亮的结论。但是最后这

第三篇基本上是按照A.Zee, Quantum Field Theory in a Nutshell的相

关内容来讲的，本质上并没有什么新意。不过，我们这里和前两篇

放在一起可以使得读者无需阅读A. Zee这本很厚的量子场论书，只

需阅读本系列的前两篇小文章就能学习大N展开以及学习物理学家

对随机矩阵理论的处理方法了。)

在中心极限定理的证明过程中我们看到，对于一个有N个随机

变量的系统，它的某些问题在N很大的极限下会得到极大的简化。

这一观察促使人们去研究各种N个随机变量的系统在大N极限下的

行为，以及这些系统按照1/N的微扰展开，这就是所谓的大N展开

思想。在物理学中，大N展开思想已经有好几十年的历史发展脉

络，对于今天的人来说，大N展开最著名的例子也许是AdS/CFT对

应。不过，在这里我们并不想系统性地回顾大N展开的这些发展。

相反，我们想介绍大N展开的一个重要例子，即随机矩阵理论。除

了因为这一理论本身有广泛的应用以外，我们介绍它是因为，就好

像中心极限定理一样，这一理论的大N极限是已经被了解得很清楚

的，是一个漂亮的数学物理定理。
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下面我们来介绍随机矩阵理论。这时候，我们要考察的随机变量

是一个N × N的厄米矩阵Φ, 其取值我们依然记为ϕ，ϕ的第i行第j列

我们记为ϕi
j。我们假定这个随机变量的概率分布如下

P (ϕ) =
1

Z
exp (−NTrV (ϕ)) , (1)

式中V (ϕ)是关于ϕ的一个实多项式，比如说V (ϕ) = 1
2
m2ϕ2 + gϕ4等

等。

我们主要关心ϕ的本征值密度的期望值ρ(E), 其定义如下

ρ(E) =
1

N
⟨Trδ(E − Φ)⟩ = 1

N
⟨
∑
i

δ(E − Ei)⟩, (2)

式中Ei为某个按照概率(1)随机产生的ϕ的本征值。ρ(E)也就是随

机产生许许多多ϕ以后，它们的本征值的分布函数，它显然满

足
∫
dEρ(E) = 1。当N有限时，ρ(E)很复杂很难精确地求解出来，

但是，正如我们将要看到的，在N → +∞的大N极限下，ρ(E)将趋

向于一个简单的光滑函数。我们下面要做的事情就是找到这个光滑

函数，它就类似于我们在中心极限定理中的高斯分布。

注意到limϵ→0 Im( 1
x+iϵ

) = −πδ(x)，我们可以引入一个更容易计算

的函数G(z)，其定义为

G(z) =
1

N
⟨Tr 1

z − Φ
⟩. (3)

很显然，ρ(E) = −(1/π) limϵ→0 ImG(E + iϵ)。另外，注意到我们的

概率分布(1)在幺正变换下是不变的，即P (ϕ) = P (U †ϕU), 这里U为

一个任意的N ×N的幺正矩阵。因此我们必然有

Gi
j(z) = ⟨

(
1

z − Φ

)i

j

⟩ = δijG(z). (4)
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1 魏魏魏格格格纳纳纳半半半圆圆圆定定定律律律

下面我们考虑一种简单的情况，即V (ϕ) = 1
2
m2ϕ2的情况。这时候由

高斯积分我们容易有

⟨Φi
jΦ

k
l ⟩ =

1

Z

∫
[dϕ]ϕi

jϕ
k
l exp

(
−N

1

2
m2
∑
p,q

ϕp
qϕ

q
p

)
= δilδ

k
j

1

Nm2
. (5)

这就是高斯分布情况下随机矩阵理论中两个外点进行配对所需满

足的规则。由于Φi
j带有上下两个不同的指标，因此我们常常用如

图(1)所示的双线来表示这种配对。注意图中箭头的方向总是从下指

标指向上指标的，并请注意图中两根线的箭头方向相反。

Figure 1: The pairing between Φi
j and Φk

l with contribution δilδ
k
j

1
Nm2 .

The i, j end of the double lines stands for Φi
j, the k, l end stands for

Φk
l .

现在，我们可以计算Gi
j(z)了，注意到奇数个Φ的期望值一定为

零，我们可以将Gi
j(z)按照1/z泰勒展开为

Gi
j(z) =

∞∑
n=0

1

z2n+1
⟨
(
Φ2n
)i
j
⟩ (6)

= δij
1

z
+

1

z3
⟨
(
Φ2
)i
j
⟩+ 1

z5
⟨
(
Φ4
)i
j
⟩+ .... (7)
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首先让我们来看这个展开中的第二项，即 1
z3
⟨Φi

kΦ
k
j ⟩ (当一个表达式中

的一个上指标和一个下指标用同样的字母表示时，我们默认对这个

指标进行求和, 也称之为将这两个指标进行收缩)，稍微想一下就能

发现，这一项可以用如下的图形(2)来表示。

Figure 2: The diagram for 1
z3
⟨Φi

kΦ
k
j ⟩.

图中每一根单线的贡献是1/z，当用一根单线将双线的两端连起

来的时候表示要将这两端的两个指标进行收缩。因此，这幅图的总

贡献为δijN
1

Nm2 , 总的来说是在N的零次方阶，我们记为O(N0)。注

意这里额外的那个N , 它显然来自于上下指标的收缩，也就是对应于

图(2)中那个闭合的回路。稍微想一下就能发现，任何闭合回路总意

味着一个这样的收缩，因此会额外贡献一个因子N。

下面我们来考察展开式(7)中的第三项，也就是 1
z5
⟨Φi

kΦ
k
l Φ

l
hΦ

h
j ⟩, 这

涉及到四个矩阵，根据高斯积分两两配对的规则，它有多种配对的

可能性。暂时不考虑这四个Φ如何配对，仅仅注意到这四个Φ的上

下指标收缩关系，我们容易知道相应的图形必然具有如下结构，如

图(3)。图中的阴影部分表示双线间的可能配对。

现在，让我们来考虑双线间的可能配对形式。它给出如图(4)所

示的3种可能性。

图(4)中的每一幅图都有两根双线，每根双线贡献一个1/N。但

是图(4)中的(a)、(c)两图和(b)图有根本性的不同，(a)、(c)两图包含
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Figure 3: The diagram for 1
z5
⟨Φi

kΦ
k
l Φ

l
hΦ

h
j ⟩.

了两个闭合回路，每个闭合回路会额外贡献一个N , 所以总的来

说(a)、(c)两图是O(N0)阶的。但是(b)图完全可以一笔画出，它不

包含任何闭合回路，所以总的来说，(b)图是O(1/N2)阶的。也就是

说，在大N极限下，(b)图的贡献完全可以忽略不计。实际上，(b)图

通常被称为非平面图，也就是说当它在两维平面上画出来的时候

必然要涉及一些交叉线。相反，(a)、(c)这样的图被称之为平面

图，它们可以直接在两维平面上画出来而不涉及到任何交叉线。

图(4)其实示例了一条一般规则，即任何非平面图相对于平面图来

说总有更少的回路，由于每一个闭合回路都会额外贡献一个N，因

此非平面图在大N展开的时候就代表1/N的更高阶贡献。特别的，

在N → ∞的大N极限下，我们可以忽略掉所有的非平面图。正因为

如此，大N极限有时候也被称之为平面图极限。

下面我们考虑完整的Gi
j(z)在平面图极限下的结构，这就要考虑

泰勒展开(7)的所有阶。为此让我们首先观察一下图(4)的(a)、(c)两

图的特征，很容易发现，(a)图是将同一个组成单元重复两次而成，

而(c)图是在图(2)的基础上嵌套一根双线而成。稍微尝试一下就能
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Figure 4: The diagrams for 1
z5
⟨Φi

kΦ
k
l Φ

l
hΦ

h
j ⟩.

发现，在平面图极限下，这两个特征是泰勒展开所有阶共有的，

也即是说，在平面图极限下，任何对Gi
j(z)有贡献的图都可以通过

重复和嵌套这两种方式来生成。假定通过嵌套生成的所有图的贡

献之和为S(z), 并将两种操作生成的所有图的贡献之和记为G(z)(因

为Gi
j(z) = δijG(z)), 如下图(5)所示.

Figure 5: S(z) and G(z).
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很清楚，G(z)是将S(z)不断重复而成，反过来，S(z)是在G(z)的

基础上嵌套一根双线而成，用图形来表示就是(6)。从这幅图中我们

很容易读出来

G(z) =
1

z
+

1

z
S(z)

1

z
+

1

z
S(z)

1

z
S(z)

1

z
+ ...

=
1

z − S(z)
. (8)

另外，从图中也可以看出来，从G(z)通过嵌套得到S(z)的过程我们

加上了一根双线，其贡献为1/(Nm2)，但同时也增加了一个回路，

其贡献为N，因此我们有

S(z) =
1

m2
G(z). (9)

通过(8)和(9)这两个方程，我们容易解得

G(z) =
m2

2
(z −

√
z2 − 4

m2
). (10)

式中在二次方程两个根的±号中，我们选择了−号，这是因此只有这
样相应的G(z)才能满足在z → ∞ 时G(z) → 1/z。

由G(z)的表达式(10),我们很容易得到本征值分布ρ(E),

ρ(E) =
m2

2π

√
4

m2
− E2, (11)

式中E的取值在区间[−2/m,+2/m]之内。这就是魏格纳半圆定律。

2 戴戴戴森森森气气气体体体

魏格纳半圆定律是大N极限下随机矩阵本征值分布的一个简单结

果。但是这个结果只适用于V (ϕ) = 1
2
m2ϕ2的情形。这一节我们就
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Figure 6: The diagrams for G(z) and S(z).

是要把类似的结论推广到V (ϕ)是一个一般性的多项式的情形，比方

说V (ϕ) = 1
2
m2ϕ2 + gϕ4这样的情形。如果用按照g进行微扰展开的方

式来处理问题，我们就能发现，这时候，顶角gϕ4的引入使得我们需

要考虑的典型平面图为如(7)所示的样子。很清楚，我们很难通过直

接将所有类似这样的图的贡献都加起来以得到一个G(z)的表达式，

所以我们可能需要用图形之外的方法来处理现在的一般性情形。

Figure 7: A diagram with two vertexes.

为此让我们来考察一个观测量Tr(O(ϕ))的期望值，这里O(ϕ)表
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示ϕ的一个函数。很清楚，Tr(O(ϕ))在幺正变换ϕ → U †ϕU下是不变

的。这个期望值由下式计算

⟨Tr(O(ϕ))⟩ = 1

Z

∫
[dϕ]Tr(O(ϕ))e−NTrV (ϕ). (12)

前面我们已经说过了概率分布P (ϕ)在幺正变换下是不变的，Tr(O(ϕ))

也是幺正不变的，值得讨论的是积分测度[dϕ], 不过可以证明如果将

它自然地定义成[dϕ] =
∏

i,j dϕ
i
j, 则它在幺正变换下也是不变的。

另一方面，对于任何厄米矩阵ϕ, 如果将其本征值所构成的对角

矩阵记为Λ = diag{λ1, λ2, ..., λN}, 则ϕ必定可以分解成ϕ = U †ΛU的

形式, 式中U为某个幺正矩阵。那么积分测度[dϕ]必定可以重写

成[dϕ] = J
∏

i dλi[dU ], 式中J为雅可比行列式，[dU ]表示对幺正矩

阵U的积分测度。由于积分表达式(12)的被积函数是幺正变换不变

的，因此对[dU ]的积分是平凡，不妨将之归一化为1，如此一来，积

分(12)就可以重写成，

⟨Tr(O(ϕ))⟩ = 1

Z

∫
J
∏
i

dλi

∑
j

(O(λj))e
−N

∑
k V (λk). (13)

这个表达式中唯一还不清楚的就是那个雅可比矩阵J。

为了求出雅可比矩阵J , 我们不妨考虑ϕ在对角矩阵邻域内的

情形，即ϕ = e−iεΛeiε, 其中ε为一个无穷小厄米矩阵，因此有ϕ =

Λ − i[ε,Λ], 由这个式子可以看出，对Λ的积分(即[dΛ] =
∏

i dλi)带

来的雅可比行列式为1，同时由于矩阵元[ε,Λ]ij = (λi − λj)εij, 它带

来的积分测度为
∏

i,j[(λi − λj)dεij] =
∏

i<j(λi − λj)
2[dε], 其中积分

测度[dε] =
∏

i,j dεij就是测度[dU ]在恒等矩阵邻域内的具体形式。

因此，我们有，雅可比行业式J =
∏

i<j(λi − λj)
2。将之代入积分
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式(13)我们就有

⟨Tr(O(ϕ))⟩ = 1

Z

∫ ∏
i

dλi

∑
j

(O(λj)) exp [−NS(λ1, λ2, ..., λN)] . (14)

式中S(λ1, λ2, ..., λN) =
∑

i V (λi) − 1
N

1
2

∑
i̸=j log(λi − λj)

2。可以看

到，现在问题变成了一个N粒子系统的问题，粒子的坐标就是λi, i =

1, 2..., N。这N个粒子处在一个势阱V (λ)中，并且任意两个粒子之间

有排斥势− 1
N
log(λi − λj)

2的相互作用。这N个粒子就构成某种有相

互作用的气体，称之为戴森气体。

从表达式(14)很容易看出，在大N极限下，只有函数S(λ1, λ2, ..., λN)

的极小值对积分有贡献，因此有 ∂
∂λi

S(λ1, λ2, ..., λN) = 0, i = 1, 2..., N，

由此就得到如下方程

V ′(λi) =
2

N

∑
j ̸=i

1

λi − λj

. (15)

当N → ∞时，这些本征值就会趋向于一个连续谱，引入谱密度ρ(λ)

(它就是我们前面引入的本征值分布函数ρ(E)的大N极限，因此满

足
∫
dλρ(λ) = 1)，我们就可以把上面这个方程重写为

V ′(λ) = 2P
∫

dµ
ρ(µ)

λ− µ
. (16)

式中P表示取积分主值。
从方程(16)容易看出，大N极限下的本征值谱必然分布在一个

有限的区间之内，因为在允许|λ| → ∞的情况下，方程(16)右边趋

于∼ 1/λ，因此是无法和左边相等的。下面我们将把这个本征值的分

布区间记为A。
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下面我们引入解析函数G(z) =
∫
A
dµρ(µ)

z−µ
, 其中变量z定义在整个

复平面上。很容易看出来ρ(λ) = − 1
π
ImG(λ + iϵ), 因此这里的G(z)实

际上就是我们前面引入的G(z)函数的大N极限，G(z)现在的这种表

达形式称之为谱表示, 从这种表达形式可以看出来，G(z)除了在区

间A上有一条割线以外，它在整个复平面都是解析的。很显然方

程(16)告诉我们的不过是ReG(λ+ iϵ) = 1
2
V ′(λ)(在区间A上)。由这个

条件，加上G(z)的解析性，再加上z → ∞时G(z) → 1/z的条件，我

们就能唯一性地确定解析函数G(z)，由此就能求出ρ(λ)。

比方说，假如V (λ) = 1
2
m2λ2 + gλ4, 这时候由于V (λ)是一个偶函

数，我们可以知道，谱分布ρ(λ)也必然是一个偶函数，因此区间A必

定可以取成[−a, a]的形式，其中a是待定的。魏格纳半圆定律启发我

们可以试探性地将G(z)取成如下形式

G(z) =
1

2
V ′(z)− P (z)

√
z2 − a2, (17)

其中P (z)是一个待确定的多项式。很显然，这时候

ρ(λ) =
1

π
P (λ)

√
a2 − λ2, (18)

由于ρ(λ)是一个偶函数，所以P (z)必定是一个偶多项式。又由于z →
∞时G(z) → 1/z，可知P (z)是一个2次偶多项式，因此包含两个待

定系数。再加上前面待定的a，我们就有3个待定参数。它们可以这

样来确定，由于z → ∞时G(z) → 1/z，所以在z → ∞时G(z)渐进式

的z3, z1项系数都要消去，而1/z项的系数必定要等于1，这就给出了

三个方程，刚好可以确定3个待定参数。这就完成了我们想要的求

解，相应的(18)式就是魏格纳半圆定律的推广。
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得到ρ(λ)后，观察量TrO(ϕ)的期望值在大N极限下就可以写成

1

N
⟨Tr(O(ϕ))⟩ = 1

N

∑
i

O(λi) =

∫
dλρ(λ)O(λ). (19)
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