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陈陈陈童童童

上一次我们说到，在庞加莱单位圆盘世界中，所有的相似三角形

必定全等。为了理解这个结论，让我们先回顾一下庞加莱圆盘世界

中三角形内角和的公式，

∆ = π − S. (1)

从这个公式很容易看出来，所有的相似三角形因为有相等的内角

和，因此也必定有相等的面积，因此它们就不只是相似，而必定是

全等。

下面我们想更深入地理解这个奇妙结论的本质。为此，我们在庞

加莱圆盘上引入复坐标，z = x + iy. 这样一来，庞加莱圆盘就成了

复z平面上的一个单位圆盘。复变函数的知识告诉我们，可以用一个

分式线性变换将这个单位圆盘变换到复上半平面, 使得圆盘的边缘变

为实轴。比方说，我们可以取这个分式线性变换为

z =
1 + iw

1− iw
, (2)

式中w = u+ iv为变换以后的复坐标。很显然，这样一个变换是复单

位圆盘和复上半平面之间的一个全纯同构。

另外，读者容易验证，分式线性变换以后，原来庞加莱圆盘的度

规就变成了上半平面v > 0上的度规

ds2 =
|dw|2

(Imw)2
=

du2 + dv2

v2
. (3)
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这个度规称之为克莱因度规，具备这个度规的上半平面我们称之为

罗巴切夫斯基平面。很显然，罗巴切夫斯基平面和庞加莱圆盘的几

何本质是等价的，它们仅仅是非欧几何的两种不同表示方式而已。

另一方面，假如我们暂时忘记度规，而从复变函数的角度来考虑

问题。那么现在复单位圆盘中的三角形就变成了复上半平面中的三

角形。又注意到分式线性变换是一个保角变换，因此复单位圆盘中

的相似三角形经过(2)变换到复上半平面以后依然相似，反之亦然。

换言之，要研究单位圆盘中的相似三角形，我们只需等价地研究复

上半平面的相似三角形。而根据定义，复上半平面的相似三角形就

是在复上半平面的保角变换下可以相互等同的那些三角形。因此，

要研究复上半平面的相似三角形（实际上任何相似形都一样）那就

要研究复上半平面的保角变换。由复变函数的知识我们知道，这就

相当于研究整个复上半平面的全纯变换，我们称之为复上半平面的

全纯自同构。

实际上，复上半平面的全纯自同构可以由下面的分式线性变换给

出,

w → aw + b

cw + d
, (4)

式中为了确保实轴依然变换为实轴a, b, c, d均必须为实数，而且，为

了使得这个分式变换的确代表的是上半平面到上半平面的一个同

构，我们还得要求ad − bc ̸= 0。另外，假如我们将变换中的这四个

实参数排成一个矩阵 (
a b

c d

)
, (5)
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则读者很容易验证的是，连续的两个全纯自同构的合成就相应于两

个这样的2 × 2实矩阵的矩阵相乘。此外，由于ad − bc ̸= 0，因此任

何一个全纯自同构变换都有一个逆变换。因此，复上半平面的全纯

自同构的全体在这个矩阵乘法下就自然地构成一个群，称之为复上

半平面的全纯自同构群。

由(4)我们可以知道，a, b, c, d可以相差一个整体的非零实常数，

合适地选取这个非零实常数我们总可以要求a, b, c, d满足ad − bc = 1.

读者可以验证，上一段中谈到的矩阵乘法是保持这个等式不变

的。满足所有这些要求的2 × 2实矩阵的全体所构成的群就是所谓

的SL(2,R)群。但是，由(4)式读者容易知道，(
1 0

0 1

)
,

(
−1 0

0 −1

)
, (6)

这两个不同的SL(2,R)群元对应的是复上半平面的同一个全纯自同
构。因此，复上半平面的全纯自同构群实际上是SL(2,R)/Z2.

另一面，由(4)和(3)的具体表达式我们可以验证，任何SL(2,R)/Z2

的全纯自同构变换都保持上半平面的克莱因度规(3)不变，因此也

就是说，复上半平面的全纯自同构群也就是罗巴切夫斯基的等度规

群。或者你也可以说，上半平面的复几何与上半平面的罗巴切夫斯

基几何是等价的。特别的，上半平面的在复几何下保持相似的三角

形从罗巴切夫斯基几何的角度来看那就是全等三角形（等度规变换

的必然结论）。

由于上半平面的复几何等价于单位圆盘的复几何，上半平面的

罗巴切夫斯基几何又等价于单位圆盘的庞加莱几何。因此上一段的

推理告诉我们的必然结论就是，庞加莱圆盘上的相似三角形必然全
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等。这个结论是本文一开始我们就已经得到了的，但绕了这么一圈

以后，现在我们就能够深入地理解这个结论的本质了。

庞加莱圆盘世界的奇妙是怎么强调都不过份的，比如有一个美妙

的定理是这么说的：庞加莱圆盘世界是所有亏格g > 1的黎曼面的万

有复叠空间。这个结论的三维推广最终导致了瑟斯顿（Thruston）

对三维流形的完整分类。而瑟斯顿的这项重要工作又和庞加莱的另

一个伟大贡献密切相关，那就是庞加莱猜想。2006年，数学界最终

确认佩雷尔曼证明了瑟斯顿关于三维流形的分类，从而也就证明了

悬而未决长达百年的庞加莱猜想。
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