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继续我们的四元数游戏。这次我们把注意力集中于模长为1的四

元数集合，u = a+bi+cj+dk,模长为一uu = 1，就给出a2+b2+c2+

d2 = 1, 这就是四维欧几里德空间的三维单位球面S3。更有趣的是，

任意两个模长为1的四元数的乘积任然是一个模长为1的四元数，并

且每一个模长为1的四元数u, 都有一个模长为1的四元数u−1 = u作为

其逆。也就是说，所有模长为1的四元数在四元数的乘法下成为一个

群，通常将这个群记为Sp(1,H), H表示四元数。前面的分析告诉我

们，Sp(1,H) 的元素一一对应于S3上的点。

现在，我们选取一个S3上的球坐标，则任意群元u必定可以写

成u = cos(ω) + sin(ω)(n1i + n2j + n3k), 其中n1, n2, n3为三维单位矢

量n⃗的三个分量。不妨将四元数n1i+n2j+n3k记成n,由四元数代数显

然有n2 = −1。另外，在球坐标中，ω是纬线与北极的夹角，其取值

范围是[0, π]。人们通常将角度ω写成ω/2, 其原因我们稍后会给出，

现在ω的取值范围当然就是[0, 2π]。总之，我们可以将Sp(1,H)的任

意群元u写成

u = cos(
ω

2
) + n sin(

ω

2
). (1)

注意到n2 = −1, 也就是说，在代数上四元数n和虚数单位i是一样

的，因此我们同样有欧拉公式，即任意Sp(1,H)的群元都可以写成

u(ω, n⃗) = exp(
ω

2
n) = cos(

ω

2
) + n sin(

ω

2
). (2)
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显然,exp(ω
2
n)的逆元是exp(−ω

2
n).

群Sp(1,H)有一个三维矢量空间旋转的直观解释。为了说清楚

这一点，我们将三维空间中的每一个矢量x⃗，对应到一个四元数x,

x = x1i + x2j + x3k, 其中x1, x2, x3是矢量x⃗的三个坐标分量。假定另

有一个这样的四元数y, 它相应于三维矢量y⃗。运用四元素代数我们就

有，

xy = −(x⃗ · y⃗) + x× y, (3)

式中x× y代表一个四元数，其相应的三维矢量是x⃗× y⃗.

现在我们将Sp(1,H)的群元共轭地作用在相应于三维矢量x⃗的四元

数x上，

exp
(ω
2
n
)
x exp(−ω

2
n)

= [cos(
ω

2
) + n sin(

ω

2
)]x[cos(

ω

2
)− n sin(

ω

2
)]

= cos(ω)x + sin(ω)n× x + (n⃗ · x⃗)n(1− cos(ω)) (4)

为了得到上式的最后一行我们运用了公式(3)。最后得到的这个看

起来有点复杂的结果其实就是将矢量x⃗绕n⃗轴旋转一个角度ω(正因

为ω是旋转角度，所以我们前面要做那个ω → ω/2的替换)。这可以

证明如下：首先假定x⃗ 在垂直于n⃗ 的平面上，这时候很容易验证

将x⃗绕n⃗旋转ω就是cos(ω)x⃗+sin(ω)n⃗× x⃗,正好相应于(4)最后一行给出

的四元数。其次，如果x⃗本身就沿着n⃗的方向，这时候x⃗绕n⃗轴旋转当

然是不变的，注意到这时x⃗ = n⃗(x⃗ · n⃗), 也正好和(4)最后一行一致。

最后，如果x⃗是一个一般的矢量，则我们总可以将之分解成一个垂直

于n⃗的矢量和一个平行于n⃗的矢量的叠加，矢量的叠加性告诉我们，

最终我们的公式必定能够写成(4)最后一行的形式。
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也就是说，三维空间的每一个旋转，都对应于一个Sp(1,H)群

元u(ω, n⃗)。反过来，两个Sp(1,H)的群元±u(ω, n⃗)对应于同一个三维

空间旋转。并且这个对应保持群的乘法不变。因此，Sp(1,H)与

三维旋转群SO(3)之间有2对1的同态对应。或者说，Sp(1,H)同构

于SU(2)群。特别有趣的是，由(1)我们有，当ω = 2π时，u(2π, n⃗) =

−1, 也就是说转动2π角并不是不变，而是多出一个负号，只有转

动4π角才是1，u(4π, n⃗) = 1。

你可能已经注意到了，三维空间中的单位矢量一一对应于平方

为−1的四元数。现在，我们取定一个相应于三维单位矢量m⃗的四元

数m, 并将Sp(1,H) 的群元u共轭地作用在它上面，

u → m(u) = u−1mu (5)

很容易验证m(u)的平方和预先选定的四元数m的平方一样，均为−1,

因此，每一个m(u)都对应三维空间的一个单位矢量，或者说对应于

两维单位球面S2上的一个点。由于群元u相应于三维球面上的点，

因此u → m(u)就定义了一个S3 → S2的映射。这就是著名的Hopf映

射。

为了看清Hopf映射的奇妙之处，我们注意到m(emθu) = m(u)，其

中emθ = cos(θ) + m sin(θ)画出了一个圆周S1，所以，对于S2 上的每

一点，其Hopf映射的原像是S3上的一个圆周。也就是说Hopf映射在

底流形S2上定义了一个非平凡的圆周丛，这个丛的总空间为S3。

以上是将Sp(1,H)群元作用在相应于三维矢量的四元数上，那么

如果将它作用在一个任意的四元数x = x0 + x1i + x2j + x3k上呢？(显

然这样一个任意的四元数相应于一个四维的矢量(x0, x1, x2, x3))。

实际上我们可以更一般地考虑两个相互独立的Sp(1,H)群元(分别记
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为uL, uR)从左右两边同时作用在x上，这实际上是对x 的一个线性变

换

x → x′ = uLxuR, (6)

由于u的模长为1，很显然，这个线性变换不会改变x的模长，因

此它相应于四维矢量(x0, x1, x2, x3)在四维空间的一个旋转。同样

的，我们注意到(uL, uR) 和(−uL,−uR)对应的是同一个四维旋转，

也就是说Sp(1,H) × Sp(1,H) 与SO(4)之间有2对1的同态对应，因

此，Sp(1,H)× Sp(1,H)同构于Spin(4)。
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