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第七章 角动量理论与旋转群表示

陈陈陈童童童

这一章我们主要讲述一般性的角动量表示理论。内容包括角动量算符

的本征值和本征态，角动量的耦合规则，不可约张量算符等等。与此同时，

我们也讲述了旋转群的不可约表示，以及它们的直乘分解。其中，我们关

于角动量耦合规则的证明很可能是文献中没有出现过的。我们这个证明的

好处是比较直观，也比较清晰。

除此之外我们还讨论了规范不变性与无质量粒子自旋之间的关系，解

释了为什么光子只有左旋和右旋两种偏振。我们还将这种讨论延伸到了引

力子等类似情形。

最后，我们讨论了量子力学中的2π角旋转，介绍了超选择定则的概念。

进一步，我们也简单介绍了超对称的基本思想。

2



第七章 角动量理论与旋转群表示 3

7.1 角动量的本征值和本征态

7.1.1 角动量的本征值与本征态

上一章我们得到了角动量的基本代数关系，它可以写成

[Jx, Jy] = i~Jz, [Jy, Jz] = i~Jx, [Jz, Jx] = i~Jy. (7.1)

下面我们定义角动量矢量的平方J2 = J2
x + J2

y + J2
z。则我们有[J2, Jz] =

[J2
x , Jz]+[J2

y , Jz] = Jx[Jx, Jz]+[Jx, Jz]Jx+Jy[Jy, Jz]+[Jy, Jz]Jy = −i~(JxJy+
JyJx) + i~(JyJx + JxJy) = 0，即[J2, Jz] = 0。当然，z分量在角动量的3个分

量中并没有任何特殊的地方，所以这个结果也意味着J2与角动量的任何一

个分量均对易，

[J2, Jx] = [J2, Jy] = [J2, Jz] = 0. (7.2)

由于J2和Jz对易，所以我们可以求这两个算符共同的本征态。但

是，由于Jz和Jx、Jy均不对易，所以一般来说这个Jz的本征态无法同时

是Jx或Jy的本征态。在物理上，这就是说，我们最多可以同时测量J2和Jz的

值，并以它们的值来标记一个系统的角动量量子态。

假设归一化的量子态|a, b⟩为J2和Jz共同的本征态，本征值分别为a~2和b~,
即

J2|a, b⟩ = a~2|a, b⟩, Jz|a, b⟩ = b~|a, b⟩. (7.3)

由于角动量J的量纲就是~的量纲，而J2的量纲就是~2的量纲，因此式中
的a, b均无量纲。由于

(a− b2)~2 = ⟨a, b|(J2 − J2
z )|a, b⟩ = ⟨a, b|(J2

x + J2
y )|a, b⟩ ≥ 0. (7.4)

所以很显然

a ≥ 0, b2 ≤ a. (7.5)

即，给定一个J2的本征值，Jz的本征值有上下限。

下面，引入两个重要的算符J+和J−，其定义是

J± = Jx ± iJy. (7.6)



第七章 角动量理论与旋转群表示 4

很明显，J+和J−都不是厄密算符，而是互为厄密共轭关系。由于(7.2)式，

很显然，[J2, J±] = 0。由此很容易验证，J±|a, b⟩仍然是J2的本征态，本征

值依然为a~2。另外，利用基本代数关系(7.1)，很容易验证

[Jz, J±] = ±~J±. (7.7)

由此即有Jz(J+|a, b⟩) = (J+Jz + [Jz, J+])|a, b⟩ = (J+Jz + ~J+)|a, b⟩ = (b +

1)~(J+|a, b⟩), 即J+|a, b⟩依然为Jz的本征态，但是本征值变成了(b+ 1)~。由
此可知J+|a, b⟩必定正比于|a, b+ 1⟩，即(式中c+a,b为复系数)

J+|a, b⟩ = c+a,b|a, b+ 1⟩. (7.8)

正因为如此，人们常常说J+是角动量的升算符，它在Jz本征态上的作用会

将相应的量子数升1。完全类似的，人们也很容易验证，J−是角动量的降

算符，它在Jz本征态上的作用会将相应的量子数降1，即有

J−|a, b⟩ = c−a,b|a, b− 1⟩. (7.9)

另一方面，根据J±的定义我们很容易验证

J−J+ = J2 − Jz(Jz + ~), J+J− = J2 − Jz(Jz − ~). (7.10)

我们有(7.8)式，并且还可以得到它的厄密共轭方程⟨a, b|J− = (c+a,b)
∗⟨a, b +

1|, 将这个共轭方程和原方程(7.8)作内积即有⟨a, b|J−J+|a, b⟩ = |c+a,b|2。代
入(7.10)式，可知|c+a,b|2 = ⟨a, b|J2 − Jz(Jz + ~)|a, b⟩ = [a− b(b+ 1)]~2, 即

|c+a,b|
2 = [a− b(b+ 1)]~2. (7.11)

完全类似的，由方程(7.9)与其共轭方程的内积，我们可以得到

|c−a,b|
2 = [a− b(b− 1)]~2. (7.12)

前面我们说了，给定a, 则b的取值有上限，相应的b值我们记为bmax。

因此，当我们不断用J+作用在|a, b⟩上，不断升高b时，我们最终一定会到达
这个bmax，这时候相应的|a, bmax⟩态就不可再升了，也即是说，

J+|a, bmax⟩ = 0. (7.13)

将这个方程厄密共轭一下即有⟨a, bmax|J− = 0, 从而⟨a, bmax|J−J+|a, bmax⟩ =
0。代入(7.10)式即有

a− bmax(bmax + 1) = 0. (7.14)
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同样我们也知道，b有一个下限bmin, 当我们不断用J−作用在|a, b⟩上，不断
降低b时, 我们也一定会到达bmin，这时候必有

J−|a, bmin⟩ = 0. (7.15)

相应的共轭方程为⟨a, bmin|J+ = 0，从而⟨a, bmin|J+J−|a, bmin⟩ = 0。代

入(7.10)式即有

a− bmin(bmin − 1) = 0. (7.16)

比较(7.14)式和(7.16)式，即有bmax(bmax +1) = bmin(bmin − 1), 这个式子

等价于(bmax + bmin)(bmax − bmin + 1) = 0, 从而即有

bmin = −bmax. (7.17)

另一方面，我们又可以从|a, bmin⟩态出发，不断用升算符J+作用上去，
将b从bmin开始逐步升高，每次作用升高1，最终一直升高到bmax，由此

可见，bmax与bmin之间只能相差一个非负整数，设为n ∈ Z+，即

bmax − bmin = n. (7.18)

由此结合前面得到的bmin = −bmax，我们很容易解出bmax = −bmin = n/2。

记n/2 = j为一个非负的整整整数数数或或或半半半整整整数数数 (即j = 0, 1/2, 1, 3/2, 2, ...)，则我们

得到

bmax = j, bmin = −j. (7.19)

代入(7.14)式马上得到

a = j(j + 1). (7.20)

另外，对于一般性的|a, b⟩态，由于b的值只能与bmax以及bmin相差一个整数，

所以所有可能的b都得是整数或半整数，记b = m, 从角动量的升降过程可

知，其可能的取值有2j + 1个，分别为

b = m = −j,−j + 1,−j + 2, ..., j − 1, j. (7.21)

综上可知，我们完全可以将标记J2与Jz共同本征态的两个量子数a, b替

换成量子数j,m, 从而可以将|a, b⟩态重记为|jm⟩，它满足

J2|jm⟩ = j(j + 1)~2|jm⟩, Jz|jm⟩ = m~|jm⟩. (7.22)
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当然，作为厄密算符不同本征值的本征态，我们必有正交归一关系

⟨j′m′|jm⟩ = δj′jδm′m. (7.23)

给定j但是m不同的2j + 1个正交态对于J2来说都是简并的，这2j + 1个态通

常称作角动量的(j)多多多重重重态态态(或者称为角动量的2j + 1重态), 它们的所有可能

线性叠加就张成了J2的简并子空间Hj，Hj内的所有态都具有同样的角动量

大小(即J2的值均为j(j + 1)~2)。
在前面第4章中，对于轨道角动量L的本征值和本征态，我们得到

过与(7.22)式和(7.23)式完全类似的式子，只不过在轨道角动量的情形，

j要替换成l，并且只能取非负整数，不能取1/2, 3/2, ...这样的半整数。所

以，第4章关于轨道角动量本征值本征态的结论其实是(7.22)式的一个特

例。(7.22)式的另外一个特例是电子的自旋角动量，我们知道电子自旋

角动量Sz只能取−1
2
~和+1

2
~, 相应的S2 = S2

x + S2
y + S2

z = 3(1
2
~)2 = 3

4
~2 =

1
2
(1
2
+ 1)~2, 所以很显然，自旋角动量相当于这里j = 1

2
的情形，这就是为什

么我们常常说电子的自旋是1
2
，指的就是它的量子数j的值，不过，为了强

调它是自旋量子数，人们常常将这个量子数记为s，对于电子自旋，s = 1
2
。

奇妙的是，电子的自旋是半整数我们之前完全是从斯特恩-格拉赫实验的分

析中得出的，但是现在，我们通过研究自旋角动量的一般性理论发现，理

论上果然可以允许这样的半整数量子化现象出现！

电子自旋是角动量量子理论的一个特例这一事实使得人们想到，微观

粒子的自旋除了可以是1
2
以外，也许还可能取其它值。的确，粒子物理的研

究发现，有大量的粒子自旋量子数s = 0，称之为标量粒子，比方说π介子

就是这样的粒子，再比方说所谓的“上帝粒子”Higgs粒子也是这样的标量

粒子。而且，也存在矢量粒子，比方说光子就是一个矢量粒子，它的自旋

是1，不过，根据我们刚才的分析，按照道理来说，s = 1的话，那m的取值

应该有3个可能性，−1, 0,+1，但是光子只有两种线性独立的偏振态，即左

旋光和右旋光，相应于m = ±1，光子并没有m = 0的偏振态！从物理上说

也即是，光波是横波，只有两个横向分量，没有纵向分量。

回到我们的角动量理论。将|a, b⟩态重记为|jm⟩以后，前面的叠加系
数c+a,b和c

−
a,b当然也可以分别重记为c

+
j,m和c

−
j,m, 而方程(7.11)和(7.12)就变成

|c+j,m|2 = [j(j + 1)−m(m+ 1)]~2,

|c−j,m|2 = [j(j + 1)−m(m− 1)]~2. (7.24)
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另外，由方程(7.8)和方程(7.9)我们可以得到

J−J+|jm⟩ = c+j,mc
−
j,m+1|jm⟩. (7.25)

代入J−J+ = J2 − Jz(Jz + ~)即可得到

[j(j + 1)−m(m+ 1)]~2 = c+j,mc
−
j,m+1 (7.26)

现在，我们可以通过调节j相同m不同的各|jm⟩态之间的相对相位，使
得叠加系数c+j,m为非负实数。具体来说，我们首先调节|j,−j + 1⟩的相位，
使得c+j,−j > 0, 接着再进一步调节|j,−j + 2⟩的相位，使得c+j,−j+1 > 0, 如

此逐步进行下去，直到c+j,j−1 > 0，而由(7.24)式c+j,j显然等于0，从而就完

成了对c+j,m的相位调节。进一步，根据(7.26)式可知，如果c+j,m > 0，则必

有c−j,m+1 > 0，而由(7.24)式c−j,−j显然等于0，这样所有的c−j,m也成了非负实

数。从而根据(7.24)式，我们立即有

c+j,m = ~
√
[j(j + 1)−m(m+ 1)],

c−j,m = ~
√
[j(j + 1)−m(m− 1)]. (7.27)

也即

J+|j,m⟩ = ~
√

[j(j + 1)−m(m+ 1)]|j,m+ 1⟩,
J−|j,m⟩ = ~

√
[j(j + 1)−m(m− 1)]|j,m− 1⟩. (7.28)

根据(7.22)式和(7.28)式，很容易求出J任何分量的矩阵元⟨j′,m′|J|j,m⟩,
由正交归一关系(7.23)我们容易看出

⟨j′,m′|J|j,m⟩ ∝ δj′j. (7.29)

由于量子数j决定了J2的本征值，或者说决定了角动量的大小(j当然不能决

定角动量的“方向”, 这个“方向”由角动量在z轴上的投影m~决定)，因

此这也就是说，角动量算符在不同角动量大小的量子态之间的矩阵元必定

为0。因此，我们通常可以取定一个固定的j来考察角动量算符的表示矩阵，

也即可以取定一个固定的(j)多重态来考察角动量算符的表示矩阵。这是

因为，根据(7.22)式和(7.28)式，J在|jm⟩态上的作用不会改变量子数j。并
且，由于简并子空间Hj中的任意态都可以写成(j)多重态的线性叠加，即

对于任意|ψ⟩ ∈ Hj, 我们有|ψ⟩ =
∑+j

m=−j ψm|jm⟩, 式中ψm为叠加系数。所
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以很显然，J作用在任何这样的态上，结果将依然是Hj中的一个态。即任

给|ψ⟩ ∈ Hj, 必有J|ψ⟩ ∈ Hj，或者说简并子空间Hj对于角动量算符的作用

来说是封闭的。

另一方面，从(7.22)式可以看出，Jz的矩阵元是对角的(当然是实数)，

因为我们的表象就是J2, Jz的共同本征态表象。此外，从(7.28)式可以看出，

J±的矩阵元都是实数。进而由于Jx = (J+ + J−)/2，所以Jx的矩阵元也都是

实数。而由于Jy = −i(J+ − J−)/2, 所以Jy的矩阵元必定为纯虚数。

比方说，对于j = 1/2的情形，它的(1/2)多重态由|1
2
,−1

2
⟩, |1

2
, 1
2
⟩两个态

组成(也叫角动量2重态)，容易算得角动量算符的相应表示矩阵为

J
( 1
2
)

x =

(
⟨1
2
, 1
2
|Jx|12 ,

1
2
⟩ ⟨1

2
, 1
2
|Jx|12 ,−

1
2
⟩

⟨1
2
,−1

2
|Jx|12 ,

1
2
⟩ ⟨1

2
,−1

2
|Jx|12 ,−

1
2
⟩

)
=

~
2
σx

J
( 1
2
)

y =

(
⟨1
2
, 1
2
|Jy|12 ,

1
2
⟩ ⟨1

2
, 1
2
|Jy|12 ,−

1
2
⟩

⟨1
2
,−1

2
|Jy|12 ,

1
2
⟩ ⟨1

2
,−1

2
|Jy|12 ,−

1
2
⟩

)
=

~
2
σy

J
( 1
2
)

z =

(
⟨1
2
, 1
2
|Jz|12 ,

1
2
⟩ ⟨1

2
, 1
2
|Jz|12 ,−

1
2
⟩

⟨1
2
,−1

2
|Jz|12 ,

1
2
⟩ ⟨1

2
,−1

2
|Jz|12 ,−

1
2
⟩

)
=

~
2
σz. (7.30)

式中σx, σy, σz为3个泡利矩阵。这个结果清楚地显示了，电子自旋的确是

角动量一般理论的一个特例。对于电子自旋来说，|1
2
,−1

2
⟩态也就是| ↓⟩态，

而|1
2
, 1
2
⟩态也就是| ↑⟩态。

规规规范范范不不不变变变性性性与与与自自自旋旋旋

自旋为1的光子为什么只有2个偏振分量(左旋光和右旋光)而不是3个分

量呢？为什么没有m = 0的态呢？这不是和我们前面关于角动量的一般性

结果矛盾吗？回答是，对于光子，它的内禀角动量代数其实和我们上面分

析用到的角动量代数有所不同。[Si, Sj] = i~ϵijkSk这样的内禀角动量代数是

对于有质量的，能够静止下来的粒子而言的。这时候我们可以取粒子静止

的参考系，在这个参考系里粒子的内禀角动量和通常的角动量一样，可以

作三维旋转，所以代数关系为[Si, Sj] = i~ϵijkSk。但是，光永远不能静止下

来，不存在一个光子静止的参考系。因此对于任何观察者来说，光都有一

个运动方向，光子内禀的运动只能绕着其运动方向的旋转，不能作任意三

维旋转。由于光子的内禀角动量算符只能沿着光子的运动方向，所以不可

能有自旋0(因为自旋零一定是角动量指向了三维的其它方向，它在这个方

向上的投影才为0)，因此就只有m = ±1的左旋光和右旋光。并且，由于电
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磁场的规范不变性，即使考虑到光与带电粒子的相互作用，这个结论也不

会被改变。

类似的，引力子(引力波的量子)自旋是2，但是由于引力子同样是光速

运动，没有一个静止参考系，因此它的m只能取±2，分别对应左旋引力子

和右旋引力子。而且由于爱因斯坦等效原理导致的广义协变性(这也是一种

规范不变性)，即使考虑到引力子的自相互作用以及引力与物质的相互作

用，这个结论也不会被改变。

光子的自旋是1，引力子的自旋是2，它们都无质量，分别导致电磁场

和爱因斯坦广义相对论所描述的引力场。人们自然想问，有没有自旋为3的

无质量粒子呢？如果有的话岂不说明自然界中还存在一个更不可思议的力

场。同样，有没有自旋为4甚至自旋更高的无质量粒子呢？它们会不会对应

一些更奇妙的力场呢？为什么实验中没有观测到这些力场呢？回答是，这

样的力场统统不存在，理论上可以证明自然界中不存在自旋为3或者更高自

旋的无质量粒子1，证明的基本思想其实很简单，即对于这样的粒子，找不

到相应的规范不变性可以让它们的质量在相互作用下保持为零。

7.1.2 *旋转群的不可约表示

现在我们来考察旋转变换U(n, θ) = exp
(
− iθn · J/~

)
在J2的简并子空

间Hj中的作用。由于这样的简并子空间在J的作用下封闭，所以我们很容

易想到，Hj在任意旋转变换U(n, θ)的作用下应该也封闭。证明其实也很简

单，任取|ψ⟩ ∈ Hj，根据简并子空间的定义显然有J2|ψ⟩ = j(j + 1)~2|ψ⟩，
又由于[J2,J] = 0，所以有J2U(n, θ) = U(n, θ)J2, 从而J2

(
U(n, θ)|ψ⟩

)
=

U(n, θ)J2|ψ⟩ = j(j + 1)~2
(
U(n, θ)|ψ⟩

)
, 从而可知U(n, θ)|ψ⟩ ∈ Hj。这就证

明了Hj在任意旋转变换下都封闭。根据我们在上一章所学的知识，这也即

是说，Hj构成了空间旋转群的表示空间。

而且，这样的表示空间Hj必定是不可约表示空间。这是因为角动量升

降算符的作用可以将Hj上的任何两个正交基矢|jm⟩和|jm′⟩联系起来。这就
告诉我们，必定有一个适当的旋转变换可以将|jm⟩变换到|jm′⟩，反过来也
一样。因此，任何Hj内部的更小的子空间都无法在所有旋转变换的作用下

保持封闭。也即是说，表示空间Hj无法再分解成“更小”的表示空间了，

从而Hj就是旋转群的不可约表示空间。

1除非这些粒子根本不和任何东西(包括它们自身)相互作用，如果这样的话那它的存在

对我们毫无意义，我们也无法观测它们。
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将旋转变换U(R)限制在不可约表示空间Hj上，我们就可以得到旋

转群的一个不可约表示，记为(j)不可约表示。取(j)多重态为Hj的矢量

基，我们就可以将(j)不可约表示所对应的矩阵形式写出来，它就是如

下(2j + 1)× (2j + 1)的不可约表示矩阵

D(j)
m1m2

(R) = ⟨jm1|U(R)|jm2⟩. (7.31)

而且由于旋转变换本身是旋转群的表示，即U(R1)U(R2) = U(R1R2),

我们有⟨jm1|U(R1)U(R2)|jm3⟩ = ⟨jm1|U(R1R2)|jm3⟩，在U(R1)和U(R2)的

中间插入Hj空间上的封闭性关系
∑

m2
|jm2⟩⟨jm2| = 1，即有∑

m2

⟨jm1|U(R1)|jm2⟩⟨jm2|U(R2)|jm3⟩ = ⟨jm1|U(R1R2)|jm3⟩, (7.32)

用不可约表示矩阵来写即是∑
m2

D(j)
m1m2

(R1)D
(j)
m2m3

(R2) = D(j)
m1m3

(R1R2). (7.33)

很显然，旋转群的群乘法正好对应于不可约表示矩阵的矩阵乘法。实际上，

由于旋转变换U(R)是幺正变换，相应的不可约表示矩阵一定是幺正矩阵，

也即有

Dm′m(R
−1) = D∗

mm′(R). (7.34)

我们也有U(R)|jm⟩ =
∑

m′ |jm′⟩⟨jm′|U(R)|jm⟩ =
∑

m′ |jm′⟩D(j)
m′m(R)，

即

U(R)|jm⟩ =
∑
m′

|jm′⟩D(j)
m′m(R). (7.35)

这正好反应了旋转群的不可约表示矩阵就是旋转变换在Hj空间的(j)多重态

表象中的表示矩阵。

以上我们只谈到任意一个单独的不可约表示空间Hj，以及相应的不可

约表示，而整个希尔伯特空间当然可以正交分解成许多不可约表示空间的

直和，即

H = ...⊕Hj ⊕ ...⊕Hj′ ⊕ ... (7.36)

而旋转变换U(R)在整个希尔伯特空间上的作用就可以表示成一个很大的块

对角化矩阵，其中每一个对角块相应于一个不可约表示矩阵。块对角化的

原因是，每一个不可约表示空间在旋转变换的作用下都封闭，所以不同的

不可约表示空间无法在旋转变换的作用下相互过渡，因此就造成了块对角

化，等价地说这也就是⟨j′m′|U(R)|jm⟩ ∝ δj′j。
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7.1.3 习题

1. 请证明⟨jm|Jx|jm⟩ = ⟨jm|Jy|jm⟩ = 0，并计算⟨jm|J2
x |jm⟩和⟨jm|J2

y |jm⟩。
进而验证角动量算符满足海森堡不确定关系。

2. (本题来源于J.J.Sakurai, Jim Napolitano, Modern Quantum Mechan-

ics, 习题)对于角动量的j = 1不可约表示。

1)请显示计算如下3× 3矩阵，

⟨j = 1,m′|Jy|j = 1,m⟩.

2)请证明在j = 1情形，

exp(−iJyβ/~) = 1− i
(Jy
~
)
sin β −

(Jy
~
)2
(1− cos β).

3)请利用上面结果证明，不可约表示矩阵⟨j = 1,m′| exp(−iJyβ/~)|j =

1,m⟩为 
1
2
(1 + cos β) − 1√

2
sin β 1

2
(1− cos β)

1√
2
sin β cos β − 1√

2
sin β

1
2
(1− cos β) 1√

2
sin β 1

2
(1 + cos β)

 .

3. 试证如果n, n′为三维空间的两个普通矢量(不是算符), 则有

[J · n,J · n′] = i~(n× n′) · J.

但如果n, n′为两个矢量算符，请证明

[J · n,J · n′] = −i~(n× n′) · J.

7.2 角动量合成

我们经常会碰到将两个电子的自旋耦合在一起，或者将一个电子的轨

道角动量与自旋角动量耦合在一起的问题。这一节就是要研究如何一般

性地处理这样的问题。为此，我们假设一个系统的物理自由度可以分成两

部分，这样的两部分可以是一个双电子系统的两个电子，也可以是一个

绕核运动的电子的自旋部分和轨道运动部分。为了表达清楚起见，我们
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分别称这两部分为“粒子1”和“粒子2”。假设“粒子1”的希尔伯特空间

为H1，“粒子2”的希尔伯特空间为H2。再假设在“粒子1”的H1上取矢量

基{|n1⟩, n1 = 1, 2, 3...}，在“粒子2”的H2上取矢量基{|n2⟩, n2 = 1, 2, 3...}，
则整个系统的任意量子态|ψ⟩当然可以写成矢量基|n1⟩|n2⟩的线性叠加，从
而具有下面的形式

|ψ⟩ =
∑
n1,n2

ψn1,n2 |n1⟩|n2⟩. (7.37)

人们通常把所有这种形式的量子态所构成的希尔伯特空间称作H1与H2的张

量积，记为H1 ⊗H2。因此，我们这里整个系统的希尔伯特空间H就是，

H = H1 ⊗H2. (7.38)

7.2.1 角动量合成规则

当然，我们要处理的是角动量问题。因此假设“粒子1”的角动量

为J1，“粒子2”的角动量为J2，则系统的总角动量为

J = J1 + J2. (7.39)

由于J1和J2分别作用在两个不同的希尔伯特空间H1和H2上，所以这两个角

动量算符显然相互对易。

由于J1、J2相互对易，人们很容易看出J2
1、J2

2、J1z、J2z这四个算符两

两对易。所以对于描述整个系统的角动量量子态而言，我们可以取这四个

算符共同的本征态，|j1j2;m1m2⟩。当然，我们可以将这四个算符分成“粒
子1”的算符和“粒子2”的算符两部分，对于“粒子1”的算符J2

1和J1z，其

本征态为|j1m1⟩。同样，对于“粒子2”的算符J2
2和J2z，其本征态为|j2m2⟩。

这样整个系统的角动量本征态又可以写成|j1m1⟩|j2m2⟩，也即是说

|j1j2;m1m2⟩ = |j1m1⟩|j2m2⟩. (7.40)

当然，给定j1, m1的取值范围是−j1,−j1 + 1, ..., j1 − 1, j1, 类似的，给定j2,

m2的取值范围是−j2,−j2 + 1, ..., j2 − 1, j2。

但是，我们显然也可以从整个系统总的希尔伯特空间H的角度来考察
问题。这时候可以证明，我们同样可以将描述整个系统角动量量子态的四

个算符选为J2
1、J2

2、J2、Jz，这里Jz是总角动量J的z分量。要证明这种选
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择同样合适，只需证明这四个算符两两对易，从而有共同的本征态。很显

然，我们真正需要证明的是，J2
1与J2对易，与Jz也对易，同样J2

2也与J2对

易，同时与Jz对易。

由于Jz = J1z + J2z，其中角动量代数关系告诉我们[J1z,J
2
1] = 0，

而J2z与J2
1是相互独立的自由度，所以显然也有[J2z,J

2
1] = 0。从而我们

马上有[Jz,J
2
1] = 0。同理也有[Jz,J

2
2] = 0。

为了证明J2与J2
1对易，我们利用J2 = (J1 + J2)

2 = J2
1 + J2

2 + 2J1 · J2。

很显然，要证明J2与J2
1对易，其实只需证明J1 · J2与J2

1对易，因为其它部

分的对易子为0是显然的。而由于角动量代数告诉我们[J1,J
2
1] = 0，而

且J2与J2
1作用在两个不同的希尔伯特空间上，从而也有[J2,J

2
1] = 0，因

此J1 · J2的确与J2
1对易。这就证明了[J2,J2

1] = 0，类似的也有[J2,J2
2] = 0。

这样我们就证明了J2
1、J2

2、J2、Jz两两对易，从而有共同的本征态，

记为|j1j2; jm⟩, 它满足

J2
1|j1j2; jm⟩ = j1(j1 + 1)~2|j1j2; jm⟩,

J2
2|j1j2; jm⟩ = j2(j2 + 1)~2|j1j2; jm⟩

J2|j1j2; jm⟩ = j(j + 1)~2|j1j2; jm⟩,
Jz|j1j2; jm⟩ = m~|j1j2; jm⟩. (7.41)

因此为了表示整个系统的角动量量子态，我们有两种选择，其一

是使用|j1j2;m1m2⟩，其二是使用|j1j2; jm⟩。很显然，这两种选择有共同
的j1和j2，但是第一种选择|j1j2;m1m2⟩是用两个“粒子”各自的J1z和J2z的
本征态来描述系统，是角动量的无耦合表象。而第二种选择|j1j2; jm⟩是
用系统总的J2和Jz的本征态来描述角动量量子态，是角动量的耦合表象。

给定j1, j2，我们有时候也将无耦合表象的|j1j2;m1m2⟩记为|m1m2⟩j1j2，将
耦合表象的|j1j2; jm⟩记为|jm⟩j1j2。给定j1, j2和一个可能的j, 不同m的2j +

1个|jm⟩j1j2态就构成了总角动量的一个(j)多重态。

既然只是不同的表象，|j1j2;m1m2⟩和|j1j2; jm⟩当然是互为对方的线性
组合的关系。比方说，我们有

|j1j2; jm⟩ =
∑

m1,m2

|j1j2;m1m2⟩⟨j1j2;m1m2|j1j2; jm⟩. (7.42)

这里我们利用了无耦合表象的封闭性关系
∑

m1,m2
|j1j2;m1m2⟩⟨j1j2;m1m2| =

1。式(7.42)中的表象变换矩阵⟨j1j2;m1m2|j1j2; jm⟩就是Clebsch-Gordan 系
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数，它常常也被记为Cj1j2(jm;m1m2)，或者利用维维维格格格纳纳纳的的的3 − j符符符号号号来标

记，

⟨j1j2;m1m2|j1j2; j3,−m3⟩ = (−1)j1−j2−m3
√
2j3 + 1

(
j1 j2 j3

m1 m2 m3

)
.(7.43)

将Jz作用在(7.42)式左边，可以得到

Jz|jm⟩j1j2 = m~|jm⟩j1j2 =
∑

m1,m2

m~|m1m2⟩j1j2Cj1j2(jm;m1m2). (7.44)

但是由于Jz = J1z+J2z，所以我们可以等价地用J1z+J2z作用在等式(7.42)的

右边，从而得到

Jz|jm⟩j1j2 =
∑

m1,m2

(m1 +m2)~|m1m2⟩j1j2Cj1j2(jm;m1m2). (7.45)

将以上的两个结果相减就有

0 =
∑

m1,m2

(m1 +m2 −m)~|m1m2⟩j1j2Cj1j2(jm;m1m2). (7.46)

由于基矢|j1j2;m1m2⟩相互之间线性无关，因此这个式子要成立除非

(m1 +m2 −m)Cj1j2(jm;m1m2) = 0. (7.47)

这也即是说，仅当m1 +m2 = m时，Clebsch-Gordan 系数才可能非0。

下一个我们要解决的问题是，给定j1, j2，耦合表象的总角动量量子

数j可以取哪些可能值？答案很简单，利用经典物理矢量合成的图像我们

可以知道，当J1和J2反平行时，它们合成出来的总角动量最小，这个最小

的j = |j1 − j2|，相反，当J1和J2平行时，它们合成出来的总角动量最大，

这个最大的j = j1 + j2。所以，在量子力学的层次上，j的可能取值为(对于

其它的j值，相应的Clebsch-Gordan 系数为0)

|j1 − j2|, |j1 − j2|+ 1, ...., j1 + j2 − 1, j1 + j2. (7.48)

而且，当将j1和j2进行合成时，以上每一个可能的j都仅仅只能出现一次，

不能重复出现。以上就是角角角动动动量量量合合合成成成规规规则则则。下面我们所要做的，就是证明

这一角动量合成规则。

角角角动动动量量量合合合成成成规规规则则则的的的证证证明明明
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图 7.1: 角动量合成规则的证明。其中所有(m1,m2)点构成了一个沿水平方

向有2j1 + 1个点，沿竖直方向有2j2 + 1个点的矩形。

图(7.1)是我们证明角动量合成规则的关键。图中每一个黑点代表无

耦合表象中的一个正交归一态，黑点(m1,m2)就代表|m1m2⟩j1j2态。图中
每一根斜着的虚线有固定的m = m1 + m2，由于给定一个m，有多个可

能的(m1,m2)对，所以每一根虚线上通常有多个黑点，这样的虚线代表

总Jz的简并子空间，我们称之为m虚线或m层虚线。m虚线上的那些黑点构

成了相应Jz简并子空间的一个正交归一矢量基。

总角动量J的每一个(j)多重态对于图(7.1)中的一根蓝线，我们称之

为j蓝线，它总是从右上方的m = j虚线开始，在总角动量降算符J−的作

用下沿着箭头逐层降到左下方的m = −j虚线。而每一个j蓝线与m虚线的
交点(j,m)都代表耦合表象中的一个正交归一态|jm⟩j1j2。一根j蓝线必定要
和2j + 1根虚线相交(包括起点和终点在内)，这2j + 1个交点刚好对应耦合

表象(j)多重态的2j + 1个态。一根固定虚线与所有蓝线的交点所代表的态

和这根虚线上黑点代表的态当然不同，但它们都张成了Jz的简并子空间，

因此互为线性组合关系。

值得强调的是，图(7.1)中的蓝线，包括它们与虚线的交点，都仅仅只

是示意性的。所以图形看起来对不对称其实都没有关系。

对于每一层虚线，其上面的黑点数与这根虚线和所有蓝线的交点数必

须相等。因为它们只是用两个不同的表象来表示同一个m值固定的Jz简并

子空间。因此，两种不同表示线性独立的态数目当然要相等。比方说，在
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我们给出的示意性图中，黑点数最多的虚线上只有5个黑点，所以我们只能

画5根蓝线。

画这些蓝线多重态时，我们是从最右上角m = j1 + j2虚线仅有的一

个态开始，把它降到最左下角，从而就画出最长的那根蓝线，显然，它对

应j = j1 + j2。接着，我们再从下一层虚线，即m = j1 + j2 − 1虚线(因为这

一层虚线上有两个黑点，因此可以再和一根蓝线相交)开始画次长的蓝线，

显然它对应j = j1 + j2 − 1，以此类推。很显然，对于每一个可能的(j)多

重态，相应的蓝线都只能画出唯一一条。这就告诉我们，j1和j2耦合出来

的每每每一一一个个个可可可能能能的的的j都都都只只只能能能出出出现现现一一一次次次。在图(7.1)所示j1 > j2的情形中，这些

蓝线中最后画的那根，也就是最短的那根蓝线一定对应j = j1 − j2。这是

因为，从图形右上角往左下角走，虚线上的黑点数逐层增加1，一直增加

到m = j1 − j2虚线为止，而最短的蓝线就起于这根虚线。读者很容易明白，

对于一般性的情况，最短的这根蓝线必定为|j1 − j2|。从图(7.1)中很容易看

出来，相邻蓝线的j值刚好相差1，因此从最短的蓝线到最长的蓝线，所有

可能的j值必定为

|j1 − j2|, |j1 − j2|+ 1, ...., j1 + j2 − 1, j1 + j2. (7.49)

这其实就已经完完完成成成了了了我我我们们们的的的证证证明明明。

值得指出的是，由于每一根虚线和所有蓝线的交点数刚好等于这根虚

线上的黑点数，所以整个图形蓝线与虚线的交点总数必定等于图形中的黑

点总数。这也即是说，耦合表象的正交归一基矢总数刚好等于无耦合表象

的正交归一基矢总数。这是因为，不同的表象之间只是基矢变换，当然不

会改变基矢数目，也就是不会改变希尔伯特空间维数。

Clebsch-Gordan 系系系数数数

作为两个不同表象之间的变换矩阵，Clebsch-Gordan系数Cj1j2(jm;m1m2)

当然是一个幺正矩阵。而且事实上，我们可以将所有Clebsch-Gordan 系数

取为实实实数数数，因此⟨j1j2; jm|j1j2;m1m2⟩ = ⟨j1j2;m1m2|j1j2; jm⟩，即表象反变
换的矩阵⟨j1j2; jm|j1j2;m1m2⟩和之前我们研究的正变换⟨j1j2;m1m2|j1j2; jm⟩
一样，从而我们只需要同一组Clebsch-Gordan系数Cj1j2(jm;m1m2)。另外，

实的幺正矩阵当然也就是正交矩阵，从而满足正交关系∑
m1,m2

Cj1j2(jm;m1m2)Cj1j2(j
′m′;m1m2) = δjj′δmm′∑

j,m

Cj1j2(jm;m1m2)Cj1j2(jm;m′
1m

′
2) = δm1m′

1
δm2m′

2
. (7.50)
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特别的，在上式的第一个式子中令j′ = j,m′ = m，就有∑
m1,m2

∣∣Cj1j2(jm;m1m2)
∣∣2 = 1. (7.51)

由于Cj1j2(jm;m1m2) = ⟨j1j2;m1m2|j1j2; jm⟩，所以上面的这个式子实际上
是量子态|jm⟩j1j2在无耦合表象中的归一化关系。
为了计算Clebsch-Gordan 系数，有一个递推关系非常有用。为了推导

这个递推关系，我们将从表象变换的(7.42)式出发，我们将它重写如下

|jm⟩j1j2 =
∑

m1,m2

|m1m2⟩j1j2Cj1j2(jm;m1m2). (7.52)

我们用J± = J1± + J2±分别作用在上式左右两边，并利用角动量的升降关系

式(7.28)，就可以得到√
j(j + 1)−m(m± 1)|j,m± 1⟩j1j2

=
∑

m1,m2

√
j1(j1 + 1)−m1(m1 ± 1)|m1 ± 1,m2⟩j1j2Cj1j2(jm;m1m2)

+
∑

m1,m2

√
j2(j2 + 1)−m2(m2 ± 1)|m1,m2 ± 1⟩j1j2Cj1j2(jm;m1m2).

用|m1m2⟩j1j2去和这个式子做内积，就能得到√
j(j + 1)−m(m± 1)Cj1j2(j,m± 1;m1m2)

=
√
j1(j1 + 1)− (m1 ∓ 1)m1Cj1j2(jm;m1 ∓ 1,m2)

+
√
j2(j2 + 1)− (m2 ∓ 1)m2Cj1j2(jm;m1,m2 ∓ 1). (7.53)

这就是Clebsch-Gordan 系数的递推关系，可以证明，根据这个递推关系

式和前面的归一化关系(7.51)，原则上我们就可以计算出所有的Clebsch-

Gordan 系数。

关于如何一般性地利用上面的递推关系计算Clebsch-Gordan 系数，我

们推荐读者参考J.J. Sakurai, Jim Napolitano, Modern Quantum Mechanics,

Chapter 3, section 3.8. 我们这里只直接给出两种情形的Clebsch-Gordan 系

数。

第一种情形就是轨道角动量与自旋耦合的情形，这时候j1 = l为整

数(不妨进一步假定l非零)，j2 = s = 1
2
。很显然，根据角动量合成规则，这
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时候总角动量j仅有两种可能性，j = l ± 1
2
。相应的Clebsch-Gordan 系数为

|j = l ± 1

2
,m⟩l 1

2
= ±

√
l ±m+ 1

2

2l + 1
|m− 1

2
,
1

2
⟩l 1

2

+

√
l ∓m+ 1

2

2l + 1
|m+

1

2
,−1

2
⟩l 1

2
. (7.54)

第二种情形就是两个电子自旋耦合情形。这种情形是我们在第4章中

仔细研究过的。这时候，j1 = j2 = 1
2
。耦合的总角动量j只有两种取值，

j = 0和j = 1，分别对应自旋单态和自旋3重态。相应的Clebsch-Gordan 系

数我们在第4章中已经给出过了，结果为

|0, 0⟩ = 1√
2
(| ↑↓⟩ − | ↓↑⟩) , (7.55)

以及

|1,+1⟩ = | ↑↑⟩, |1, 0⟩ = 1√
2
(| ↑↓⟩+ | ↓↑⟩) , |1,−1⟩ = | ↓↓⟩. (7.56)

式中我们已经将无耦合表象的|1
2
1
2
⟩ 1
2

1
2
态简记为| ↑↑⟩，将|1

2
− 1

2
⟩ 1
2

1
2
记为| ↑↓⟩,

| − 1
2
1
2
⟩ 1
2

1
2
记为| ↓↑⟩, | − 1

2
− 1

2
⟩ 1
2

1
2
记为| ↓↓⟩。

7.2.2 *旋转群不可约表示的直乘分解

很显然，旋转变换U(n, θ)在不可约表示空间Hj1上的作用为，exp
(
−

iθn · J1/~
)
Hj1 , 同样，U(n, θ)在不可约表示空间Hj2上的作用为exp

(
−

iθn · J2/~
)
Hj2。因此，U(n, θ)在张量积空间Hj1 ⊗Hj2上的作用即为exp

(
−

iθn · J1/~
)
exp

(
− iθn · J2/~

)
Hj1 ⊗ Hj2 = exp

(
− iθn · J/~

)
Hj1 ⊗ Hj2 , 式

中J = J1 + J2。

由此可见，两个不可约表示的张量积Hj1 ⊗Hj2依然是旋转群的表示空

间。这时候旋转变换的生成元是J1和J2的合成，相应的表示空间通常是可

约的。根据前面证明的角动量合成规则，我们可以将旋转群的这个张量积

表示空间Hj1 ⊗Hj2按照合成后的生成元J的不可约表示空间进行正交分解，

角动量合成规则告诉我们，分解的结果必定为

Hj1 ⊗Hj2 = H|j1−j2| ⊕H|j1−j2|+1 ⊕ ...⊕Hj1+j2−1 ⊕Hj1+j2 . (7.57)
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将旋转变换限制在不可约表示空间Hj上，我们就有不可约表示(j)，进而也

常常把上面的张量积分解方程写成

(j1)⊗ (j2) = (|j1 − j2|)⊕ (|j1 − j2|+ 1)⊕ ...⊕ (j1 + j2 − 1)⊕ (j1 + j2).(7.58)

通常称(j1)⊗ (j2)为两个不可约表示的直乘，而上面的方程就称之为旋转群

不可约表示的直乘分解。

现在，在Hj1 ⊗ Hj2上选取基矢量|j1m1⟩|j2m2⟩, 并利用Clebsch-Gordan

系数将之重新写成

|j1m1⟩|j2m2⟩ =
∑
j,m

|jm⟩j1j2Cj1j2(jm;m1m2). (7.59)

将旋转变换U(R)作用在这个式子左右两边，并利用(7.35)式，我们即有∑
m′

1,m
′
2

|j1m′
1⟩|j2m′

2⟩D
(j1)

m′
1m1

(R)D
(j2)

m′
2m2

(R)

=
∑
j,m

∑
m′

|jm′⟩j1j2D
(j)
m′m(R)Cj1j2(jm;m1m2). (7.60)

将这个式子左右两边分别和下式左右两边做内积，

|j1m′
1⟩|j2m′

2⟩ =
∑
j,m′

|jm′⟩j1j2Cj1j2(jm
′;m′

1m
′
2). (7.61)

则我们就可以得到

D
(j1)

m′
1m1

(R)D
(j2)

m′
2m2

(R) =
∑

j,m′,m

D
(j)
m′m(R)Cj1j2(jm

′;m′
1m

′
2)Cj1j2(jm;m1m2).(7.62)

这个结果就是不可约表示矩阵的直乘分解关系。

7.2.3 习题

1. 请证明维格纳3 − j符号
(

j1 j2 j3
m1 m2 m3

)
仅在同时满足下面这些条件时才

可能非零: m1 +m2 +m3 = 0, j1 + j2 + j3为整数，且(j1, j2, j3)可以构成一

个三角形的三个边长。
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7.3 *不可约张量算符与Wigner-Eckart 定理

不不不可可可约约约张张张量量量算算算符符符

在上一章中，我们定义了矢量算符Vi(i = 1, 2, 3为三维直角坐标分量)，

我们说它就是在旋转变换下按照下式变换的一组算符

U−1(R)ViU(R) = RijVj. (7.63)

这里Rij是3 × 3的空间旋转矩阵的矩阵元。在上式中，将R替换成R−1，并

利用U(R−1) = U−1(R)，以及对于3× 3的空间旋转矩阵，R−1 = RT (因为它

是正交矩阵)，我们就可以把上面这个式子改写成如下等价形式

U(R)ViU
−1(R) = VjRji. (7.64)

注意，(7.63)式和(7.64)式都使用了求和约定，(7.63)式右边是Rij的列指标

和Vj的指标进行求和，而(7.64)式右边是Rji的行指标和Vj的指标进行求和。

之所以做这样的改写，是因为在上一章中，算符的变换关系和量子态的变

换关系是相反的(在上一章中我们说，这是因为我们可以认为量子态不变，

是实验仪器在“反向旋转”)，而做了(7.64)式这样的等价改写之后，算符

的变换关系就很类似于量子态的变换关系了，因为现在它们都是“正向旋

转”了。后文我们将会看到，算符和量子态“同向变换”的这一处理会带

来一些方便。

(7.64)式只适用于3维空间矢量算符。其中的旋转矩阵Rij实际上可以看

成是旋转群j = 1的不可约表示矩阵，只不过我们不是在|j = 1,m⟩这样的基
中写这一表示矩阵而已。但这样看待(7.64)式的话，我们就很容易想到可以

推广它。因为现在我们可以有更一般的不可约表示矩阵D
(j)
m′m(R)，这使得

我们想到，可以将(7.64)式推广成

U(R)T (k)
q U−1(R) =

∑
q′

T
(k)
q′ D

(k)
q′q (R). (7.65)

我们称按照这样的式子变换的一组算符T
(k)
q 为不可约张量算符。比较上

面的(7.65)式和之前的(7.35)式，我们发现，其实T
(k)
q 的变换关系和J2, Jz共

同本征态|kq⟩的变换关系完全一样，只不过由于T (k)
q 是算符，所以旋转变

换U(R)在它上面的作用方式有所不同而已。
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不仅如此，我们还可以进一步考察T
(k)
q |jm⟩的变换关系。利用(7.35)式

和(7.65)式，我们有

U(R)
(
|T (k)

q |jm⟩⟩
)

= U(R)T (k)
q U−1(R)U(R)|jm⟩

=
∑
q′,m′

T
(k)
q′ |jm′⟩D(k)

q′q (R)D
(j)
m′m(R). (7.66)

可见T
(k)
q |jm⟩的变换关系和角动量无耦合表象态|kq⟩|jm⟩ = |kj; qm⟩的变

换关系一样。因此它当然也可以按照耦合表象来进行重新组合，并且会

满足同样的角动量合成规则，只不过现在我们合成的是旋转群的(k)不可

约表示和(j)不可约表示(分别相当于前面角动量合成规则中的j1和j2)。由

此我们立即可以得到下面的选选选择择择定定定则则则(它的严格证明可以从后面将要讨论

的Wigner-Eckart 定理中推论得到)，即

⟨α′j′m′|T (k)
q |αjm⟩ = 0, unless |k − j| ≤ j′ ≤ k + j, m′ = m+ q.(7.67)

式中α, α′是系统除角动量算符之外其它算符的量子数。

为了具体构造不可约张量算符，我们注意到第4章学过的与球谐函数密

切相关的l阶齐次函数Glm(x) = rlYlm 是角动量算符J2和Jz共同的本征函数，

因此在空间旋转之下，Glm(x)和(l)不可约表示的基矢|lm⟩一样变换。现在
我们只要把普通矢量x替换成一般的矢量算符V，就可以得到不可约张量算

符T
(l)
m ,

T (l)
m = Glm(V). (7.68)

比方说，由G1,±1 ∼ ∓x±iy√
2
, G1,±1 ∼ z，我们容易将矢量算符重新组合成标

准的1阶不可约张量算符

T
(1)
±1 = ∓Vx ± iVy√

2
, T

(1)
0 = Vz. (7.69)

从而根据上面的一般性选择定则，我们就有选择定则(假定j > 0)

⟨α′j′m′|Vx|αjm⟩ = ⟨α′j′m′|T (1)
−1 − T

(1)
1 |αjm⟩/

√
2

= 0 unless j′ = j ± 1, m′ = m± 1.

⟨α′j′m′|Vz|αjm⟩ = ⟨α′j′m′|T (1)
0 |αjm⟩

= 0 unless j′ = j ± 1, m′ = m. (7.70)
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这个选择定则对于决定原子的偶极辐射来说非常重要。

当然，由于不可约张量算符T
(j)
m 与|jm⟩态的变换关系一样，所以我们

也可以从任意两组不可约张量算符A
(j1)
m1和B

(j2)
m2 出发，利用Clebsch-Gordan

系数合成出一些新的不可约张量算符T
(j)
m 。

Wigner-Eckart 定定定理理理

利用D
(k)
q′q (R) = ⟨kq′|U(R)|kq⟩, 并取绕n轴的θ角旋转，我们可以将不可

约张量算符的定义式(7.65)重写为

U(n, θ)T (k)
q U−1(n, θ) =

∑
q′

T
(k)
q′ ⟨kq′|U(n, θ)|kq⟩. (7.71)

取θ = ϵ为无穷小旋转，代入上式并将等式两边展开到ϵ的一阶项，就可以

得到

[J · n, T (k)
q ] =

∑
q′

T
(k)
q′ ⟨kq′|J · n|kq⟩. (7.72)

将上式中的J · n替换成J±，就可以得到

[J±, T
(k)
q ] = ~

√
k(k + 1)− q(q ± 1)T

(k)
q±1. (7.73)

将(7.72)式中的J · n替换成Jz，就可以得到

[Jz, T
(k)
q ] = q~T (k)

q . (7.74)

下面我们来证明关于不可约张量算符矩阵元的Wigner-Eckart定理。我

们首先写出定理的表述，然后再给出证明。

Wigner-Eckart 定定定理理理: 不可约张量算符在角动量本征态上的矩阵元满

足

⟨α′, jm|T (j1)
m1

|α, j2m2⟩ = Cj1j2(jm;m1m2) · ⟨α′, j∥T (j1)∥α, j2⟩. (7.75)

式中用双竖线表达的矩阵元不依赖于量子数m1,m2,m。

为了证明Wigner-Eckart 定理，我们实际上只需要证明所关心的矩阵

元⟨α′, jm|T (j1)
m1 |α, j2m2⟩满足和Clebsch-Gordan系数一样的递推关系式(7.53),

这是因为对于任何给定的j1, j2和j，这样的递推关系式可以将Clebsch-

Gordan 系数确定到仅仅相差一个整体的常数，这个常数就对应(7.75)中用

双竖线表达的待定矩阵元。
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为此，我们利用[J∓, T
(j1)
m1 ] = ~

√
j1(j1 + 1)−m1(m1 ∓ 1)T

(j1)
m1∓1, 从而就

可以得到

⟨α′, jm|[J∓, T (j1)
m1

]|α, j2m2⟩
= ~

√
j1(j1 + 1)−m1(m1 ∓ 1)⟨α′, jm|T (j1)

m1∓1|α, j2m2⟩ ⇐⇒
⟨α′, jm|J∓T (j1)

m1
|α, j2m2⟩ = ⟨α′, jm|T (j1)

m1
J∓|α, j2m2⟩

+ ~
√
j1(j1 + 1)−m1(m1 ∓ 1)⟨α′, jm|T (j1)

m1∓1|α, j2m2⟩. (7.76)

代入角动量量子态的升降关系J∓|j2m2⟩ = ~
√
j2(j2 + 1)−m2(m2 ∓ 1)|j2,m2±

1⟩, 以及它的厄密共轭式⟨jm|J∓ = ~
√
j(j + 1)−m(m± 1)⟨j,m ± 1|, 我们

就可以得到 √
j(j + 1)−m(m± 1)⟨α′, j,m± 1|T (j1)

m1
|α, j2m2⟩

=
√
j1(j1 + 1)−m1(m1 ∓ 1)⟨α′, jm|T (j1)

m1∓1|α, j2m2⟩
+

√
j2(j2 + 1)−m2(m2 ∓ 1)⟨α′, jm|T (j1)

m1
|α, j2,m2 ∓ 1⟩. (7.77)

很显然这个递推关系和Clebsch-Gordan 系数的递推关系(7.53)其实是一样

的。这就证明，给定j1, j2和j，递推的结果⟨α′, jm|T (j1)
m1 |α, j2m2⟩只能与Clebsch-

Gordan 系数Cj1j2(jm;m1m2)相差一个不依赖于m1,m2,m的整体常数。这

就完成了对Wigner-Eckart 定理的证明。

利用Wigner-Eckart 定理，我们还可以证明如下定定定理理理：对于矢量算

符V，我们有

⟨α′, jm′|Vq|α, jm⟩ = ⟨α′, jm|J ·V|α, jm⟩
j(j + 1)~2

⟨jm′|Jq|jm⟩. (7.78)

为了证明这一定理，我们首先注意到根据Wigner-Eckart 定理，对

于标量算符S，必有⟨α′, j′m′|S|α, jm⟩ = δj′jδm′m⟨α′, j∥S∥α, j⟩。J · V当然
是一个标量算符，所以⟨α′, jm|J · V|α, jm⟩必定不依赖于m。另一方面，
J ·V = JzVz +

1
2
(J−V+ + J+V−)(式中V± = Vx ± iVy)，因此

⟨α′, jm|J ·V|α, jm⟩ = m~⟨α′, jm|Vz|α, jm⟩

+
1

2
~
√
j(j + 1)−m(m+ 1)⟨α′, j,m+ 1|V+|α, jm⟩

+
1

2
~
√
j(j + 1)−m(m− 1)⟨α′, j,m− 1|V−|α, jm⟩. (7.79)

利用关于Vq的Wigner-Eckart 定理，很容易看出上式最终的结果必定具

有cjm⟨α′, j∥V ∥α, j⟩的形式，式中cjm与α, α′以及与算符V无关。但是，我们
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刚刚又论证过⟨α′, jm|J ·V|α, jm⟩不依赖于m，所以cjm = cj，即

⟨α′, jm|J ·V|α, jm⟩ = cj⟨α′, j∥V ∥α, j⟩. (7.80)

在上面的式子(7.80)中取V = J，并取α′ = α，就可以得到

j(j + 1)~2 = cj⟨α, j∥J∥α, j⟩. (7.81)

代入(7.80)式消去cj，即有

⟨α′, jm|J ·V|α, jm⟩ = j(j + 1)~2
⟨α′, j∥V ∥α, j⟩
⟨α, j∥J∥α, j⟩

. (7.82)

又根据Vq和Jq的Wigner-Eckart 定理，可以得到

⟨α′, jm′|Vq|α, jm⟩
⟨α, jm′|Jq|α, jm⟩

=
⟨α′, j∥V ∥α, j⟩
⟨α, j∥J∥α, j⟩

. (7.83)

将这个结果代入(7.82)式，就可以得到

⟨α′, jm|J ·V|α, jm⟩ = j(j + 1)~2
⟨α′, jm′|Vq|α, jm⟩
⟨α, jm′|Jq|α, jm⟩

. (7.84)

将这个式子整理一下就是我们要证明的结果。

7.3.1 习题

1. 原子的磁矩µ⃗具有如下形式

µ⃗ =
−e
2me

(
gLL+ gsS

)
. (7.85)

式中L为原子的总轨道角动量，S为原子的总自旋角动量。根据Wigner-

Eckart 定理的推论，

⟨α, jm′|µ⃗|α, jm⟩ = −e
2me

geff⟨jm′|J|jm⟩, (7.86)

请导出其中geff的表达式，并证明对于gL = 1,gs = 2的情形

geff = 1 +
j(j + 1)− l(l + 1) + s(s+ 1)

2j(j + 1)
, (7.87)

这就是所谓的兰德(Lande)g因子。
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2. 请用Wigner-Eckart 定理将下面三个矩阵元联系起来

⟨j′m′| ∓ 1√
2
(Vx ± iVy)|jm⟩, ⟨j′m′|Vz|jm⟩.

3. 氢原子的电四极矩为Dij = e(xixj − r2δij)。请写出相应的电四极矩

算符，并将它们用2阶不可约张量算符表示出来。最后，请导出氢原子电四

极跃迁的选择定则。

7.4 2π角旋转与超对称

7.4.1 2π角旋转与超选择定则

这一节我们考察绕任意轴n的2π角旋转。首先我们取n为z轴，考察exp
(
−

i2πJz/~
)
|jm⟩，显然结果为exp

(
− i2πJz/~

)
|jm⟩ = (−1)2m|jm⟩，但是，

由于任意m与j之间只相差一个整数，所以这个结果也可以写成exp
(
−

i2πJz/~
)
|jm⟩ = (−1)2j|jm⟩，它对整个(j)多重态都成立，因此这就意味

着，exp
(
− i2πJz/~

)
在整个不可约表示空间Hj任意态上的作用结果

均为乘上(−1)2j因子。但是，z方向并不是一个特殊的方向，任意方向

都可以叫做z方向，这就意味着，对于绕任意轴n的2π角旋转U(n, 2π) =

exp
(
− i2πn · J/~

)
, 我们均有

U(n, 2π)|ψj⟩ = (−1)2j|ψj⟩. (7.88)

式中|ψj⟩为Hj中的任意量子态。可见，在量子力学中，2π角旋转虽然不等

于不转，但是，2π角旋转的结果不依赖于转轴，因此我们可以一般性地

将2π角旋转记作U(2π)。

(7.88)式告诉我们，2π角旋转的本征值是±1，对于整数角动量的

态，2π角旋转是一个恒等操作，而对于半整数角动量的态，2π角旋转

要多出一个负号！因此根据U(2π)的作用结果，我们可以把整个希尔伯

特空间H正交分解成两个子空间H+和H−，在H+上，U(2π)是恒等操作，

在H−上，U(2π)要多出一个负号。我们称这种正交分解为，整个希尔伯特

空间H是H+和H−的直和，记为

H = H+ ⊕H−. (7.89)

那么，在物理上，2π角旋转的结果是否可观测呢？显然，通常的物理

直观告诉我们，2π角旋转的结果必定不可观测。这就意味着，系统的任何
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物理可观测量O，在2π角旋转之下都必须保持不变，即有

U(2π)OU−1(2π) = O ⇔ U(2π)O = OU(2π). (7.90)

注意，我们并没有说物理理论中的任何量都在2π角旋转之下不变，我们只

是说实验上可测量的量必得不变，而物理理论中往往有很多量实际上是不

可测量的，比如电磁学里面的矢量势A就不可测量。

(7.90)式就意味着，对于任何可观测量O，对于H+中的任意量子

态|ψ+⟩和H−中的任意量子态|ψ−⟩，我们必有

⟨ψ−|O|ψ+⟩ = ⟨ψ+|O|ψ−⟩ = 0. (7.91)

这是因为⟨ψ−|O|ψ+⟩ = ⟨ψ−|OU(2π)|ψ+⟩ = ⟨ψ−|U(2π)O|ψ+⟩ = −⟨ψ−|O|ψ+⟩，
从而⟨ψ−|O|ψ+⟩ = 0, 同样，⟨ψ+|O|ψ−⟩ = 0。(7.91)式意味着，H+空间里的

态与H−空间里的态之间的干涉无法观测！它们之间可能有干涉，但在物理

上这个干涉是永远测量不到的。(7.91)式也意味，没有任何物理过程可以导

致H+空间里的态与H−空间里的态之间相互跃迁！因此，我们常常称这一

结果为超选择定则。

超选择定则和对称性导致的选择定则有所不同，选择定则只是说，某

个或者某些物理量在两个给定态之间的矩阵元为0，换一个任意的物理量，

相应的矩阵元通常就不是0。但是，超选择定则说的是，所有物理量的某一

类矩阵元都为0。

物理学中，类似的超选择定则还有，一个量子系统任何物理量在不同

电荷本征值的电荷本征态之间的矩阵元也必定为0。这是因为，上一章我们

讲过，电荷守恒来源于一个eiαQ的相位变换，实际上，这个相位变换不仅

仅只是一个普通的相位变换，它还是我们以前讲过的规范变换的一部分，

是一种空间各点同步进行的整体规范变换。既然是规范变换，那物理量的

规范不变性就告诉我们，任何可观测量O在eiαQ变换下必定不变，即

OeiαQ = eiαQO. (7.92)

从而这就会导致刚才所说的电荷超选择定则。所以，电荷守恒不仅仅是一

条普通的守恒定律，它还是电荷超选择定则的必然结果！
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7.4.2 超对称

2

前面我们讲到，2π角旋转可以把希尔伯特空间分成两个超选择子空间，

H+和H−。一个美妙的想法是，可不可以给系统强加一种“超对称性”，让

这两个子空间里的量子态一一对应起来呢？

实际上，这就是超对称的基本想法。具体来说，超对称是设想给系统

引入一类特殊的对称变换，它可以将H+空间的态变换到H−空间里，反过

来也一样。通常记这种特殊的对称变换的生成元为Q，称作超荷。注意，

在这一小节中，Q不代表电荷算符，而是超荷算符，是超对称变换的生成

元。

也即是说，对于任何|ψ+⟩ ∈ H+, Q|ψ+⟩要么等于0，要么就属于H−。

同样，对于任何|ψ−⟩ ∈ H−, Q|ψ−⟩要么等于0，要么就属于H+。这就意味

着，超荷Q满足

U(2π)Q = −QU(2π). (7.93)

当然，前面的超选择定则意味着，超荷Q本身必定不是一个物理可观测量。

但是，这并不意味着超对称仅仅只是数学游戏，Q本身虽然不可观测，但

是它生成的超对称变换会极大地限制物理系统的可能相互作用。这其实和

任何对称性的基本原理是一样的，在现代物理中，对称性的作用就是限制

相互作用，杨振宁甚至说得更极端更清楚一点，他说，对对对称称称性性性决决决定定定相相相互互互作作作

用用用！

当然，作为对称变换的生成元，我们要求

[H,Q] = 0. (7.94)

实际上，超对称会给系统的哈密顿量强加更高的要求，比方说，超对称要

求, 在系统的质心系中(或者在任何惯性系的非相对论极限下)

H = Q2. (7.95)

取哈密顿量H的本征值为E的所有可能本征态构成简并子空间HE。由

于HU(2π) = U(2π)H，所以U(2π)与H可以有共同的本征态，也即是说，

我们可以进一步按照U(2π)的本征值将HE正交分解成

HE = HE,+ ⊕HE,−. (7.96)

2本节关于超对称的讨论取材于Edward Witten 1982 年的经典论文，CONSTRAINTS

ON SUPERSYMMETRY BREAKING，Nuclear Physics B202 (1982) 253-316。
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而且，注意到超荷Q是一个厄密算符，我们能够证明超对称系统的能

量本征值必定大于等于0。为了证明这一点，我们任取|ψE⟩ ∈ HE, 定

义|ϕE⟩ = Q|ψE⟩(ϕE可能为零)，其厄密共轭式为⟨ϕE| = ⟨ψE|Q, 从而E =

⟨ψE|H|ψE⟩ = ⟨ψE|Q2|ψE⟩ = ⟨ϕE|ϕE⟩ ≥ 0，等号当且仅当|ϕE⟩ = 0时成立，

这时Q|ψE⟩ = 0。也即是说，H的零本征值态必定也是Q的零化态，我们称

这样的态为超对称不变的。

对于E > 0的能量本征态，容易证明HE,+和HE,−的态之间必定严格地

一一对应。具体来说，任取|ψE,+⟩ ∈ HE,+, 则必定可以定义一个

|ψE,−⟩ =
1√
E
Q|ψE,+⟩ ∈ HE,−, (7.97)

很显然(利用能量本征方程)，反过来也有

|ψE,+⟩ =
1√
E
Q|ψE,−⟩. (7.98)

所以，HE,+和HE,−的确严格一一对应，我们说这两个空间的态一一匹配，

特别的，这两个空间的维数必定一样。

但是，对于E = 0的能量本征态，由于Q|ψE=0,+⟩ = Q|ψE=0,−⟩ = 0,

所以上一段所建立的HE,+和HE,−之间的匹配关系对于E = 0情形并不成

立。(图(7.2)中示意性地画出了超对称系统能量本征态的分布情况。) 这

图 7.2: 一个超对称系统的能量本征态分布示意图，红点表示一个+态，蓝

点表示一个−态，对于E > 0能级，两者一一匹配，但是对于E = 0能级，

两者之间没有匹配关系。
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时候，HE=0,+和HE=0,−的维数就有可能不同，我们记n+为HE=0,+的维数，

n−为HE=0,−的维数，则下面的表达式就有可能不等于0，

n+ − n−. (7.99)

可以论证，n+ − n−是一个拓扑不变量。也就是说，我们可以连续地

调节系统的某些参数，随着参数的调节，n+和n−都可能发生变化，但是它

们的差值将保持不变！这是因为，比方说，随着参数的调节某些E > 0的

能量本征态连续地变成了零能本征态，从而使得n+和n−的数目增加了。但

是，请注意，只要E > 0，那么|ψE,+⟩就和|ψE,−⟩一一匹配，所以如果有一
个|ψE,+⟩态连续地变成了一个零能态，那必定同步地也有一个|ψE,−⟩态连续
地变成零能态，n+和n−都增加1，从而差值保持不变，如图(7.3)所示。 总

图 7.3: 随着系统参数的连续调节，一对E > 0的能量本征态连续地转变成

了零能本征态，n+ − n−保持不变。

之，随着参数的连续调节，n+和n−总是同步增加或者同步减少，使得最后

的差值保持不变，从而n+ − n−是超对称系统的一个拓扑不变量。

n+ − n−这样的拓扑不变量有什么用呢？当然，它在数学上很有用，通

过计算它可以得出一些阿蒂亚-辛格指标定理。那么在物理上，n+ − n−有

什么用呢？如果这个拓扑不变量等于0，那的确不能告诉我们太多有用的

信息，但是，如果n+ − n− ̸= 0，那它就意味着，不管系统怎么变化，不管

系统的参数怎么增强，零能本征态必定存在！因为否则就必有n+ = n− =

0 ⇒ n+ − n− = 0。零能本征态是超对称系统可能的最低能态，因此，对于

这种情形，其基态(在量子场论中也就是真空态)必定为零能本征态。另一

方面，前面我们说过，零能本征态必定满足Q|ψE=0,±⟩ = 0，是超对称不变

的。那这就意味着，对于n+ − n− ̸= 0情形，系统的基态必定是超对称不变

的。
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前面章节讲对称性自发破缺的时候我们了解到，在物理上，如果基态

在某个对称变换下不是不变的，我们就说这个对称性自发破缺了，如果基

态在对称变换下保持不变，我们就说对称性没有自发破缺。因此，以上的

讨论告诉我们，如果计算出一个超对称系统的n+ − n− ̸= 0，那不管系统参

数如何变化，它的超对称性将始终不会自发破缺！

推推推广广广

以上我们只讨论了系统只有一个超荷Q的情形，实际上，在大量

的超对称模型中，系统总是具有多个超荷，比方说K个超荷，分别记

为Q1, Q2, ..., QK。则这时候系统的哈密顿量将为

H = Q2
1 = Q2

2... = Q2
K . (7.100)

不同的超荷之间会满足如下代数关系

QiQj +QjQi = 0, for i ̸= j. (7.101)

很容易验证，所有这些超荷都与哈密顿量对易。

超对称是一个很美妙的理论结构，大量的例子表明，如果一个量子系

统具有超对称性，那它将具有许多美妙的性质。我们的世界是不是超对称

的呢？很明显不是的，因为我们并没有观察到半整数角动量的量子态(比方

说半整数自旋的粒子)和整数角动量的量子态(比方说整数自旋的粒子)之间

的简并和一一匹配。但这很可能是因为我们生活的是一个低能世界，在这

个世界中，超对称性自发破缺了！那在多高的能量量级上世界的超对称性

才可能“恢复”，从而被观察到呢？目前的答案是，我们并不知道。当前

的粒子加速器能够将碰撞粒子的能量加速到十几个TeV，此前人们曾经幻

想在这个能标上能观测到超对称粒子，然而实验结果并没有给出正面的支

持。受此影响，当前大量粒子物理学家对粒子物理的超对称性持有怀疑态

度。然而超对称的想法是很美妙的，它无疑会在许多其它的物理领域产生

应用。


