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第四章 几个简单而重要的系统

陈陈陈童童童

本章主要讨论几个简单而又重要的量子力学系统。它们包括，两自旋

耦合系统、一维势散射的一个简单例子、单自由度线性谐振子、氢原子、

以及均匀磁场中的电子，最后这个系统也就是著名的朗道能级。这些系统

都精确可解。我们介绍的求解方法是多样的: 对于两自旋耦合系统我们介

绍了矩阵对角化的求解方法; 对于一维势散射和氢原子问题，我们介绍了

解波动力学的定态薛定谔方程; 对于单自由度线性谐振子，我们介绍了算

符代数的方法; 而对于均匀磁场中的电子，我们结合了代数法和求解波函

数的方法。

当然，每一个例子的求解方法往往都不唯一，比如单自由度线性谐振

子也可以通过定态薛定谔波动方程来求解，而氢原子问题也可以利用它

隐藏的SO(4)动力学对称性进而用算符代数的方法求解。在每一个例子中，

我们都仅仅只是介绍更简洁同时相对来说更重要的求解方法。

作为朗道能级的一个重要物理应用，在本章的最后一节我们讨论了在

凝聚态物理领域极其重要的量子霍尔效应，主要是讨论了整数量子霍尔效

应的物理机制。当然，量子霍尔效应本身是一个很大的课题，我们只可能

作一个初步的介绍。
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第四章 几个简单而重要的系统 4

4.1 两自旋耦合系统

铁，钴，镍等物质在很小的外磁场影响下，就能产生远大于其他

物质的磁化效应，这就是铁磁性。这些物质之所以有铁磁性，是因为

在它们的每一个小区域之内都会自发磁化形成磁畴。而自发磁化的原

因，是因为铁磁物质不同原子的磁矩产生了相互平行的指向，就像这

样(↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑)。这些原子的磁矩从哪儿来呢？来自于铁磁原子未配
对的核外电子的自旋，已经配对的那些电子由于泡利不相容原理，它们的

自旋一定是相反的，因而磁矩总是抵消为0。那么不同原子的这些未配对电

子的自旋为什么会平行地指向呢？为什么只有铁磁性物质会这样平行指向

呢？为了对这一问题进行理论研究，海森堡提出，这是因为铁磁性物质邻

近原子的未配对电子存在自旋与自旋间的相互作用，为了反映这种自旋相

互作用是如何导致自发磁化的，海森堡提出了一个简单的模型，这就是今

天依然有大量研究者在研究的著名的海森堡模型，这个模型对于铁磁性的

研究，甚至对于整个凝聚态物理来说都非常重要，因此我们想介绍一下。

海森堡模型的哈密顿算符是下面这样的

H = J
∑
<i,j>

S⃗i · S⃗j, (4.1)

式中的< i, j >表示两个邻近格点位置i和j, S⃗i, S⃗j 分别表示格点位置i, j上

的原子的自旋，式中的求和表示将每一对相互邻近的原子的贡献都加起来，

另外，J的大小表示两自旋之间的耦合强度，更常见的是将之写成−J，不
过后面我们对J取正和取负两种情况都会进行讨论。

对于一个任意的两维或三维格点，求解海森堡模型不是一件容易的事

情，因此我们当然不可能在这里讨论这样的课题。以上所说主要是给我们

提供一个物理背景，我们真正将要研究的，是只考虑两个原子，每个原子

只有一个未配对电子，这两个电子的自旋之间按照海森堡模型的形式进行

耦合。这时候，由于电子的自旋算符可以用泡利算符来进行表达，所以我

们也可以将相应的模型写成下面的形式，

H = J(σx
1σ

x
2 + σy

1σ
y
2 + σz

1σ
z
2). (4.2)

(4.2)才是我们这一节将要进行求解的问题。我们将会看到，即使这样

简单的一个模型也能告诉我们，什么时候系统会出现铁磁性，也就是两电

子的自旋相平行，什么时候系统又会出现反铁磁性，也就是两电子的自旋
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反平行。不过，首先我们想说一下，什么是求解出这个系统？我们这里所

谓的求解出哈密顿算符(4.2)，实际上指的是求解出它的本征值，也就是系

统的本征能量{En}，以及相应的本征态{|ψn⟩}

H|ψn⟩ = En|ψn⟩. (4.3)

正如我们已经知道的，由于在哈密顿算符的本征态|ψn⟩上，系统有确定的
能量取值En，所以这样的本征态也叫做定态，相应的本征能量的集合也称

作系统的能谱或者能级。

4.1.1 泡利算符回顾

为了求解出上面的两电子自旋耦合系统的能谱，这一小节让我们先回

顾一下关于泡利算符的一些相关知识。首先，泡利算符具有下面的基本代

数关系，

[σx, σy] = 2iσz, [σy, σz] = 2iσx, [σz, σx] = 2iσy. (4.4)

并且三个泡利算符的平方均等于1，即(σx)2 = (σy)2 = (σz)2 = 1。由这两组

基本代数关系可以进一步导出三个泡利算符是两两反对易的。

在第二章中我们还曾经引入σ = 1
2
(σx − iσy), σ† = 1

2
(σx + iσy), 并且我

们也知道σ2 = (σ†)2 = 0。另外，利用对易子代数关系(4.4)，我们可以得到

[σz, σ] = −2σ, [σz, σ†] = 2σ†, [σ†, σ] = σz. (4.5)

设|s⟩为σz的本征值为s的本征态，满足本征方程σz|s⟩ = s|s⟩。由[σz, σ†] =

2σ† 可以知道σzσ† = σ†(σz + 2), 因此σz(σ†|s⟩) = σ†(σz + 2)|s⟩ = (s +

2)(σ†|s⟩)，也就是说，σ†|s⟩如果非0，则必为σz的本征值为s + 2的本征态，

即必有

σ†|s⟩ = as|s+ 2⟩, (4.6)

其中as为一个待定复数。类似的，由[σz, σ] = −2σ可以知道，必有

σ|s⟩ = bs|s− 2⟩, (4.7)

其中bs为待定复数。正因为如此，σ通常被称作自旋降算符，因为当它作用

在σz的本征态上时，会把本征值s降2，变成s− 2，相反σ†称为自旋升算符，

因为当它作用在σz的本征态上时，会把本征值升2。
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由于(σz)2 = 1, 所以其本征值必为±1, 即s = ±1。设相应的本征态分别

为| ↓⟩, | ↑⟩, 其中| ↓⟩的本征值为−1，| ↑⟩的本征值为+1, 并且我们假定它们

都已经归一化了，因而是正交归一的。由于| ↓⟩具有最低的本征值−1，所

以它不能再降了，再降就必定为0，因此我们必有

σ| ↓⟩ = 0. (4.8)

类似的，| ↑⟩具有最高的本征值+1，所以它不能再升了，再升必定等于0，

即有

σ†| ↑⟩ = 0. (4.9)

另外, 我们已经知道σ†| ↓⟩ = a−1| ↑⟩, σ| ↑⟩ = b+1| ↓⟩。为了求
出a−1和b+1, 我们将这两个结果厄米共轭就得到⟨↓ |σ = ⟨↑ |a∗−1, ⟨↑ |σ† =

⟨↓ |b∗+1。利用|a−1|2⟨↑ | ↑⟩ = ⟨↓ |σσ†| ↓⟩ = ⟨↓ |[σ, σ†]| ↓⟩ = ⟨↓ | − σz| ↓
⟩ = ⟨↓ | ↓⟩ = 1(其中第二个等号利用了σ| ↓⟩ = 0)，因此就有|a−1|2 = 1，

类似的我们也可以得到|b+1|2 = 1。由于现在我们有两个本征态| ↓⟩, | ↑⟩，
同时有两个不为零的复系数a−1, b+1, 因此我们总是可以通过分别将这两

个本征态乘上合适的复相位，从而使得a−1, b+1都成为正实数。如此一

来|a−1|2 = 1和|b+1|2 = 1，就意味着a−1 = b+1 = 1，从而我们就得到

σ†| ↓⟩ = | ↑⟩, σ| ↑⟩ = | ↓⟩. (4.10)

公式(4.8)、(4.9)以及公式(4.10)，再加上下面的两个本征方程，就是我们后

面会用到的一些基本结论，

σz| ↑⟩ = | ↑⟩, σz| ↓⟩ = −| ↓⟩. (4.11)

4.1.2 求解与讨论

下面我们就可以开始求解(4.2)给出来的两自旋耦合系统了。首先，两

个不同电子的自旋当然是相互独立的，因此任何两个属于不同电子的泡利

算符都必定相互对易。其次，类似于上一小节的做法，我们分别引入两个

不同电子的自旋降算符和自旋升算符，σ1 =
1
2
(σx

1 − iσy
1), σ2 = 1

2
(σx

2 − iσy
2),

σ†
1 =

1
2
(σx

1 + iσy
1), σ

†
2 =

1
2
(σx

2 + iσy
2)。则很容易验证，原来的哈密顿量(4.2)可

以重写成

H = 2J(σ1σ
†
2 + σ†

1σ2) + J(σz
1σ

z
2). (4.12)
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现在，我们给系统选定四个正交归一基矢量{| ↑↑⟩, | ↓↑⟩, | ↑↓⟩, | ↓↓⟩}(请
注意这四个基矢量的排列顺序，后面的处理要与这个顺序一致)，以基矢

量| ↓↑⟩为例，它两个标记符号的前一个↓表示第1个电子的自旋状态，后一

个符号↑表示第2个电子的自旋状态，其余三个基矢量也是用类似办法进行

标记的。

为了求解我们的系统，我们需要将哈密顿算符在这四个基矢量构

成的矢量基中表示出来。为了做到这一点，让我们首先注意一个简单

的数学事实，即，如果有归一化的量子态|u⟩, |v1⟩, |v2⟩，并且|v1⟩和|v2⟩正
交，若某算符A将|u⟩映射到|v1⟩和|v2⟩的某个叠加态，比如A|u⟩ = α1|v1⟩ +
α2|v2⟩(α1, α2为叠加系数)，那么利用|v1⟩和|v2⟩的正交关系可知必有⟨v1|A|u⟩ =
α1, ⟨v2|A|u⟩ = α2。因此为了求出哈密顿算符在我们的矢量基中的表示矩

阵，我们只需要求出它对四个基矢量的作用。为了求出这样的作用，我们

只需要反复利用上一节中的简单公式(4.8)、(4.9)、(4.10)以及(4.11)。比如，

H| ↑↑⟩ = 2J(σ1σ
†
2 + σ†

1σ2)| ↑↑⟩ + J(σz
1σ

z
2)| ↑↑⟩ = J | ↑↑⟩ (注意，σ†| ↑⟩ = 0)，

即H| ↑↑⟩ = J | ↑↑⟩。类似的可以求出，H| ↓↑⟩ = 2J | ↑↓⟩ − J | ↓↑⟩,
H| ↑↓⟩ = 2J | ↓↑⟩ − J | ↑↓⟩, 以及H| ↓↓⟩ = J | ↓↓⟩。因此就容易写出H在
矢量基{| ↑↑⟩, | ↓↑⟩, | ↑↓⟩, | ↓↓⟩}中的表示矩阵Ĥ，

Ĥ = J


1 0 0 0

0 −1 2 0

0 2 −1 0

0 0 0 1

 . (4.13)

很容易求出这个矩阵的四个本征值，分别为J, J, J,−3J , 分别对应下面

的四个归一化本征矢量

ψ1,+1 =


1

0

0

0

 , ψ1,0 =
1√
2


0

1

1

0

 , ψ1,−1 =


0

0

0

1

 , ψ0,0 =
1√
2


0

−1

1

0

 .(4.14)

分别以这四个本征矢量作为叠加系数，相应的就有原来的哈密顿算符H的

四个本征态

|1,+1⟩ = | ↑↑⟩, |1, 0⟩ = 1√
2
(| ↑↓⟩+ | ↓↑⟩) , |1,−1⟩ = | ↓↓⟩, (4.15)

以及

|0, 0⟩ = 1√
2
(| ↑↓⟩ − | ↓↑⟩) , (4.16)
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其中前面三个本征态是简并的，对应的本征值都为J , 这三个简并态称作

两1/2自旋耦合系统的自旋三重态，最后一个本征态|0, 0⟩对应的本征能量
是−3J，它称作两自旋耦合系统的自旋单态。

人们很容易看到，自旋三重态的三个态有一个共同点，那就是它们对

于两个电子来说是对称的，即如果把电子1和电子2进行交换，那么这三个

态都将保持不变，而且下一节我们将看到它们的总自旋大小是两电子贡献

相加的，是1，因此我们常常称三重态为自旋平行态。相反，自旋单态关于

两个电子是反对称的，如果将电子1和电子2进行交换，那相应的自旋单态

就会出一个负号，而且它的总自旋两电子抵消为0了，因此我们常常称单态

为自旋反平行态。

在量子力学中，一个系统的能量最低的本征态又称作系统的基态，基

态的能量就是量子系统可能具有的最低能量，比基态能量更高的定态就称

作激发态。基态(有时候也包括低激发态)对于研究一个系统的性质而言尤

其重要，原因在于，对于一个宏观系统而言，只要环境的温度足够低，那

么它就会处在基态附近，因此基态和低激发态往往决定了一个系统的宏观

行为。

那么我们的两电子自旋耦合系统的基态是什么呢？很显然，答案依赖

于J是正还是负。如果J大于0，那么由于自旋单态的能量为−3J，为最低

能量，因此系统的基态就将是这样一个自旋反平行态，这时我们称系统处

在反铁磁相。想反，如果J < 0，那么能量为J的自旋三重态就将是系统的

基态，注意，这时候系统的基态是简并的，|1,+1⟩, |1, 0⟩, |1,−1⟩张成了一
个简并子空间，任何一个给定的系统当然不可能同时处在这三个态，所以

它就必须从这三个简并基态所张成的简并子空间中随机选取一个态。另一

方面，从我们原来的哈密顿算符(4.2)来看，三个空间方向地位完全平等，

因此我们的系统当然是空间旋转不变的。但是，这个简并子空间中的任意

一个态都有一个特定的总自旋方向，比方说，|1,+1⟩态总自旋沿着z轴向
上，|1,−1⟩态总自旋反着z轴向下，因此不管系统从简并子空间中选择了哪
个态，都意味着它选定了一个特定的空间方向，因此就破坏了空间旋转不

变性，由于这种对空间旋转不变性的破坏完全是系统自发的，而不是因为

我们在系统的哈密顿算符中引入了某个特定指向的磁场之类的东西，所以

我们常常称这种旋转对称性的自发破坏为自发破缺(注意我们不用破坏这个

词，而是用自发破缺)！但是，不管系统破缺到简并子空间中的哪一个态，

它都是一个自旋平行态(比如，|1, 0⟩态的两电子也是自旋平行的，只不过平
行的方向不是在z轴上而已)，这时候我们就称系统处在铁磁相。
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从这个例子我们可以想见，更具一般性的海森堡模型(4.1)到底是铁磁

的还是反铁磁的，这取决于J的符号，要从理论上解释某个材料的铁磁性，

那我们就必须从理论上计算出一个小于0的J。但这是一件相当困难的事情，

很少有人能从理论上计算出某个材料的J。因此人们通常采用的理论研究

方案是，从某一个对系统的更基本描述出发，然后看看有没有一个机制能

够让这个系统的有效描述可以是一个J为负的海森堡铁磁模型。如果理论

上找到了一个这样的机制，那么人们就会设计实验来实现这样的机制，并

看它是否能和理论推导一样使得系统处于铁磁相。总之，即使从海森堡提

出他的模型到现在已经有很长时间了，关于铁磁性的研究依然一直是理论

凝聚态的前沿领域之一，就是因为这种研究并不容易。

两两两自自自旋旋旋耦耦耦合合合系系系统统统的的的总总总自自自旋旋旋

让我们再次回到两自旋耦合的哈密顿算符(4.2), 很显然，我们可以

用泡利算符的矢量形式将它重写成H = Jσ⃗1 · σ⃗2。而且，我们可以引入
一个总泡利算符σ⃗ = σ⃗1 + σ⃗2, 它和系统总自旋S⃗之间的关系是S⃗ = ~σ⃗/2，
所以研究总泡利算符等价于研究系统总自旋。让我们先来考察一下(σ⃗)2 =

(σ⃗1)
2+(σ⃗2)

2+2σ⃗1·σ⃗2，而由于(σ⃗1)
2 = (σx

1 )
2+(σy

1)
2+(σz

1)
2 = 3,同样(σ⃗2)

2 = 3,

所以我们可以知道σ⃗1 · σ⃗2 = (σ⃗)2/2− 3，因此原来的哈密顿算符就可以重写

成H = J [(σ⃗)2/2− 3]。

显然，算符(σ⃗)2和哈密顿算符H的本征态是一样的，由前面求出来

的H的本征值和本征态我们容易知道，自旋三重态|1,+1⟩, |1, 0⟩, |1,−1⟩和
自旋单态|0, 0⟩分别是(σ⃗)2的本征值为8和本征值为0的本征态。如果用总自

旋(S⃗)2 = (σ⃗)2~2/4来考虑的话，那么自旋三重态就是(S⃗)2的本征值为2~2的
本征态，通常我们说这种态的总自旋为1，这就是三重态的记号中前一

个1所代表的含义，不过，我们暂时不用管为什么把这样的量子态称之为自

旋为1，暂时我们只需要将它理解成一个约定，其含义就是，这种态对应

于(S⃗)2 = 2~2, 也就是说，这三个态的总自旋大小是一样的，都是
√
2~。当

然，用(S⃗)2来考虑，自旋单态就对应于(S⃗)2 = 0，也即是说，自旋单态是总

自旋为0的态，这就是|0, 0⟩这个记号中前一个0的含义。

很明显，(S⃗)2的本征值不足以将两自旋耦合系统的四个本征态都区

分出来，因为自旋三重态的那三个态对于(S⃗)2来说是简并的。因此，人

们通常进一步考察总自旋的z分量Sz = σz~/2。由于(σ⃗)2 = 6 + 2σ⃗1 · σ⃗2 =

6 + 2(σx
1σ

x
2 + σy

1σ
y
2 + σz

1σ
z
2), 我们很容易利用泡利算符的代数关系(4.4)验
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证[σz, (σ⃗)2] = 0, 这也即是说，Sz和(S⃗)2对易，

[(S⃗)2, Sz] = 0. (4.17)

因此，Sz和(S⃗)2可以有共同的本征态，实际上，由于Sz = ~
2
σz =

~
2
(σz

1 + σz
2)，人们很容易验证：Sz|1,+1⟩ = ~|1,+1⟩(即|1,+1⟩是Sz的本征

值为1倍~的本征态，这就是|1,+1⟩记号中后一个+1的含义)，Sz|1, 0⟩ =

0|1, 0⟩(这就是本征态记号中的那个0的含义)，Sz|1,−1⟩ = −~|1,−1⟩(即本
征值为−1倍的~, 这就是记号|1,−1⟩中那个−1的含义)，类似的，Sz|0, 0⟩ =
0|0, 0⟩(这就是本征态记号中第二个0的含义)。简单归纳一下，即，自旋单

态总自旋大小为0，当然Sz也为0，自旋三重态总自旋为1，其Sz的值分别

为+1, 0,−1(以~为单位)。

4.1.3 习题

1.请求解H = J(σx
1σ

x
2 + σy

1σ
y
2 + ∆σz

1σ
z
2)这样一个XXZ模型并对结果进

行讨论，式中∆是一个实参数。

4.2 反射与透射

根据波动力学的观点，微观粒子也是波，而从波动光学的研究我们了

解到波有一些非常典型的现象，比方说反射和透射。让一束波从真空向一

块材料入射，我们可以预期有一部分波会被材料反射，产生反射波，同时

也可能有一部分波会进入材料内部，成为透射波。既然微观粒子也是波，

那假如我们将一束粒子向一块材料入射，也将会有一些粒子被材料反射，

而另一些粒子则进入材料内部。那么，对于单个入射粒子而言，它被材料

反射的概率是多少呢？它透射的概率又是多少呢？这一节我们将通过一个

最简单的数学模型来研究这些问题。

4.2.1 势散射的简单例子

为了简单起见，我们假设所考察的是垂直入射，因此只需要考察粒子

在垂直于材料表面的方向上的运动，问题将简化为一个一维问题。进一步，

我们用一个常数势垒V0来模拟整块材料。如此一来，问题就变成粒子在如

图(4.1)所示的一维势场V (x)中运动的问题。 图中的区域I就对应真空，区
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图 4.1: 一维势能台阶。

域II对应材料，势能函数V (x)可以写成

V (x) =

0, x < 0

V0, x > 0
. (4.18)

而我们需要求解的就是一维定态薛定谔方程[
− ~2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x), (4.19)

式中的E也就是入射粒子能量。

由于势能函数V (x)是一个分段函数。所以我们要分I、II两个区域分别

求解方程(4.19)，然后再将两个区域的解拼接起来。我们记I、II两个区域的

解分别为ψI(x)和ψII(x)。稍微整理一下，人们就能看出，ψI(x)和ψII(x)分

别满足如下方程

d2

dx2
ψI(x) +

2mE

~2
ψI(x) = 0.

d2

dx2
ψII(x) +

2m(E − V0)

~2
ψII(x) = 0. (4.20)

E > V0情情情形形形

首先，假设E > V0。这时候可以令
2mE
~2 = k21、

2m(E−V0)
~2 = k22。从而方

程(4.20)变成

d2

dx2
ψI(x) + k21ψI(x) = 0.

d2

dx2
ψII(x) + k22ψII(x) = 0. (4.21)
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很显然，这两个方程的解可以写成

ψI(x) = A1e
ik1x + A′

1e
−ik1x.

ψII(x) = A2e
ik2x + A′

2e
−ik2x. (4.22)

注意到eikx这样的波函数描述的是一个右行波，而e−ikx这样的波函

数描写的是左行波。如果粒子是从x = −∞处入射，那I区域的A1e
ik1x描

写的就是入射波，而A′
1e

−ik1x描写的就是左行的反射波。类似的，II区域

的A2e
ik2x描写的就是右行的透射波。但是，由于II区域上没有粒子入射，

所以II区域上的左行波A′
2e

−ik2x必定为零，即

A′
2 = 0. (4.23)

我们可以分别计算I、II两个区域上的概率流密度JI、JII，并得到

JI = |A1|2
~k1
m

− |A′
1|2

~k1
m

JII = |A2|2
~k2
m
. (4.24)

局域概率守恒意味着，通过I区域的概率流必定要和通过II区域的概率流相

等，从而必定有 (
|A1|2 − |A′

1|2
)
k1 = |A2|2k2. (4.25)

待会儿我们可以验证这个结果是否成立。

很显然，JI表达式中的|A1|2 ~k1m
代表的是入射粒子概率流密度，−|A′

1|2 ~k1m

代表的是反射粒子概率流密度。我们可以定义反射概率R为|A′
1|2 ~k1m

比

上|A1|2 ~k1m
，从而

R =
∣∣A′

1

A1

∣∣2. (4.26)

从这个定义可以看出R其实就是反射粒子流强与入射粒子流强的比值，也

就是单位时间之内反射粒子数在单位时间入射粒子总数中的比例。类似的，

我们可以定义透射概率T为透射粒子概率流密度与入射粒子概率流密度的

比值，从而

T =
k2
k1

∣∣A2

A1

∣∣2. (4.27)
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R和T就是我们最终要计算的物理可观测量。很显然，概率守恒的要

求(4.25)其实就等价于

R + T = 1. (4.28)

待会儿我们可以验证这个结果。

下面，我们将两个不同区域的解(4.22)拼接起来。为此我们需要注意

到，在任意空间点x，波函数必然都连续。这是因为，波函数的模方反映的

是粒子在空间的概率分布，它没有理由不连续，而要在所有情况下都保证

波函数模方连续，那只有波函数本身连续。特别的，在x = 0点，波函数连

续，即ψI(0) = ψII(0)，利用解(4.22)，我们即有

A1 + A′
1 = A2. (4.29)

但是，我们有三个未定常数A1, A
′
1, A2，而我们要决定两个物理量R, T。所

以这一个拼接条件还不够，我们还得找一个拼接条件。

这另一个解的拼接条件就是波函数的一阶导数要连续。在我们这一例

子中，这其实可以证明。为此，我们任取一点x，然后在x附近对定态薛定

谔方程(4.19)的表达式进行积分，从x− = x− ϵ积到x+ = x + ϵ，ϵ为一个正

的无穷小量。从而就可以得到

− ~2

2m
[ψ′(x+)− ψ′(x−)] =

∫ x+

x−
dx(E − V (x))ψ(x), (4.30)

式中ψ′(x) = ∂xψ(x)。注意到，波函数ψ(x)连续，因此只要V (x)不太奇异，

那么(E − V (x))ψ(x)也必定连续。特别的，对于我们这里涉及到的阶跃

势能，(E − V (x))ψ(x)是连续的。从而
∫ x+

x− dx(E − V (x))ψ(x) → 0。从而

由(4.30)可知，在ϵ→ 0时必有

ψ′(x+) = ψ′(x−). (4.31)

这就意味着波函数的一阶导数在任意x都连续。

根据ψ′
I(0) = ψ′

II(0)，由分段解(4.22)，我们可以得到

k1(A1 − A′
1) = k2A2. (4.32)

结合拼接条件(4.29)和拼接条件(4.32)，我们就可以得到

A′
1

A1

=
k1 − k2
k1 + k2

,
A2

A1

=
2k1

k1 + k2
. (4.33)
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代入(4.26)式和(4.27)式，我们就可以得到

R = 1− 4k1k2
(k1 + k2)2

, T =
4k1k2

(k1 + k2)2
. (4.34)

显然满足R + T = 1，因此的确概率守恒。

E < V0情情情形形形

假设入射粒子能量不够，E < V0。由于入射粒子能量E总大于0，所以

这时候I区域内的解形式上还和之前的情形一样。但是对于II区域，由于这

时候2m(E−V0)
~2 < 0，我们不妨令2m(E−V0)

~2 = −κ22。因此这时候II区域的解就

将变成

ψII(x) = B2e
−κ2x +B′

2e
κ2x. (4.35)

但是，由于x → +∞时波函数得保持有限，从而这个解的指数增长部分必
定要为零，即

B′
2 = 0. (4.36)

这时候我们很容易算得II区域的概率流密度JII = 0。从而由局域概率守恒，

也有JI = JII = 0。根据(4.24)式，我们必有|A′
1|2 = |A1|2，或者说

R = 1. (4.37)

也即是说，这时候粒子必定全反射，稍后我们会验证这个结果。

对E < V0这种情形的求解其实和E > V0情形一样。实际上，我们只需

要将E > V0情形的k2替换成iκ2就会过渡到E < V0情形。所以现在的解其实

很简单，为

A′
1

A1

=
k1 − iκ2
k1 + iκ2

,
B2

A1

=
2k1

k1 + iκ2
. (4.38)

很显然，我们的确有R =
∣∣A′

1

A1

∣∣2 = 1。而且，注意到
A′

1

A1
是一个相位因子，我

们不妨将之记为
A′

1

A1
= eiδ，

eiδ =
k1 − iκ2
k1 + iκ2

. (4.39)



第四章 几个简单而重要的系统 15

因此这时候I区域的波函数可以写成

ψI(x) = A1(e
ik1x + eiδe−ik1x). (4.40)

可见，反射波相对于入射波发生了δ的相位移动。特别的，如果势垒趋于无

穷高，即V0 → +∞, 从而κ2 → +∞, 那由(4.39)式可知，这时候的相移为

δ = ±π. (4.41)

这就是半波损失。

4.2.2 散射态与束缚态

在上一小节的例子中，对于任何大于零的能量E，我们都可以找到相

应定态薛定谔方程的物理解。并没有出现能量量子化，系统的能谱E依然

连续可变。并且我们还看到，无论是E > V0还是E < V0，相应的定态波函

数ψ(x)在x→ −∞时都不趋于零，在物理上，它代表粒子可以从x = −∞处
入射，也可以反射到x = −∞处去，总之，粒子可以出现在x = −∞处。像
这样的，能谱连续，粒子可以出现在空间无穷远处的定态，我们通常称之

为散射态。我们可以将散射态的能量解释成粒子在无穷远处的能量，在物

理上，无穷远处的粒子可以认为远离了一切相互作用势，从而是自由粒子，

从而散射态的能量就等于无穷远处的这个自由粒子的能量，它当然是一个

大于0的连续谱。

之所以称这样的态为散射态，是因为粒子在无穷远处是自由的，而入

射到势场区以后就会被势场散射。一般来说，散射态正是描述了粒子从无

穷远处入射，最后又被散射到无穷远处去的这样一个量子态。就好比上

一小节的例子中，粒子从−∞处入射最终被V (x)散射到−∞(对应反射波)或

者+∞处(对应透射波)。

与散射态相对的，定态薛定谔方程还可能出现另一类不同的解，称之

为束缚态。它描述的是粒子被束缚在一个有限的区域内，无法到达空间无

穷远处的情形。因此，与散射态不同，束缚态要求波函数ψ(x)在空间无穷

远处以足够快的速度趋于零。如果无穷远处势能为0的话，那通常来说束缚

态的能量本征值必然要小于0，因为否则的话粒子就可能有一定的概率隧穿

到无穷远处去。由于束缚态的粒子总是被束缚在一个区域之内，因此它就

会在这个区域内形成某种“驻波”，但并非任意E < 0都能满足“驻波”条

件，因此束缚态的能量通常是量子化的，对应分立的能量本征值。本章后
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面几节将研究一些束缚态的具体例子。下面的图(4.2)示意性地画出了束缚

在一个势阱中的粒子的三个束缚态能级，E0, E1, E2，其中，E0是基态。

图 4.2: 束缚态能级

4.2.3 习题

1. 粒子在一维势场V (x) = −Aδ(x)中运动，假定A > 0。(1). 请问粒子

波函数的一阶导数是否连续，为什么？ (2). 请问这个系统有没有束缚态，

如果有，请求出束缚态能级。

2. 某一维系统的势能函数V (x)如下，

V (x) =

0, x < 0, x > a

V0, 0 < x < a
. (4.42)

其中V0 > 0为势垒的高度。假设粒子从势垒左边x → −∞的地方入射，能
量0 < E < V0。请求出粒子隧穿过势垒的概率，也即粒子的透射概率。并

验证在~很小的半经典近似下，结果和第三章中用WKB近似得到的结果吻

合。

4.3 单自由度线性谐振子

线性谐振子的研究在量子物理中的重要性怎么强调都不过分。首先，

最早普朗克在推导他的黑体辐射公式的时候，就假定辐射电磁波的是谐振

子(这是由于黑体辐射结果的普适性，它并不依赖于具体是什么物质在辐射

电磁波)，为了推导出黑体辐射公式，普朗克假设这些谐振子的能量是量
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子化的，只能取n~ω这样的量子化值。随后，爱因斯坦的光量子理论紧接
着说，其实电磁场本身就是量子化的，电磁场的量子叫做光子，一个角频

率为ω的光子其能量是~ω，n个相同的光子能量就是n~ω。从我们今天的观
点来看，爱因斯坦的电磁场量子化假设和普朗克的谐振子量子化假设其实

密切相关，原因在于，我们可以把任何电磁波分解成平面波(或者空腔里的

驻波)的线性叠加，任何电磁场都由这种平面波叠加的叠加系数唯一性地

决定，代入麦克斯韦方程人们就能发现，这些叠加系数所满足的方程就是

标准的线性谐振子方程，所以，电磁场可以看成是一个多自由度的谐振子

系统，每一个波模式对应一个谐振自由度。但是，无论普朗克也好还是爱

因斯坦也好，他们都没有从理论上解释为什么线性谐振子的能量会量子化

为n~ω这样的形式，首先用量子力学理论推导出这个结论的是海森堡。用
量子力学推导出这个结论就是我们这一节的主要内容，我们将要给出来的

推导方法是相当标准的，而且类似的方法在量子理论中应用非常广泛。

爱因斯坦不仅提出了电磁场的光量子，他还将类似的观念应用于固体

里面的声波，因为声波的每一个模式同样是一种简谐振动，声波的量子就

叫声子，正是因为考虑了声波的量子化，爱因斯坦才能成功地解释固体在

低温下的比热容，而这是此前的经典理论无法解释的。类似的，在铁磁体

和反铁磁体这些自旋相互作用的体系中还存在自旋波，自旋波的量子通常

叫做磁振子(Magnon)，等等。总之，谐振子的概念无论是在量子场论中还

是在凝聚态物理中都是基础性的。

不仅如此，任何力学系统在其稳定平衡位置附近的运动都是一种简

谐振动，而组成一个分子的若干原子在通常的温度下就是在其平衡位置

附近来回振动，因此谐振子的研究同样可以应用于诸如分子振动光谱之

类的原子分子物理问题。关于线性谐振子的更多讨论，我们推荐读者参

考Cohen-Tannoudji的《量子力学》第一卷。

4.3.1 单自由度线性谐振子的量纲分析

所谓的单自由度线性谐振子，我们指的是问题中只涉及一个力学变

量X(以及和它相应的正则动量P )，并且哈密顿量为H = P 2

2m
+ 1

2
mω2X2的

系统, 这里ω就是这个线性谐振子的角频率， 1
2
mω2X2当然就是线性谐振子

的弹性势能。从这个哈密顿量我们可以看到，单自由度线性谐振子只涉

及m,ω这两个物理常量，当然由于我们将要进行的是一个量子力学分析，

所以我们还需要加上普朗克常量~。因此整个问题只涉及m,ω, ~这三个有量
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纲的物理常量，也即是说，所有我们将要分析的物理量，能级也好，X的

方差也好，最终都应该是仅涉及这三个物理常量的某个表达式。在具体求

解问题之前，我们不妨先对这样的表达式进行一下量纲分析。首先我们注

意到，m,ω, ~这三个量无法构造出任何无量纲的量(因为它们实际上对应于

三个相互独立的基本量纲，比方说1/ω有时间量纲，m有质量量纲)，这就

告诉我们用量纲分析的方法得出来的表达式将是唯一的(除了未定的数值系

数以外)，因为没有任何未定的无量纲因子可以再乘上去。

很显然，m,ω, ~能够构造出来的有能量量纲的表达式是~ω, 也就是说，
线性谐振子的能级将有E ∼ ~ω的形式。其次我们注意到[~ω] = [P 2/m](符

号[]表示取一个表达式的量纲)具有能量量纲，因此[P 2] = [m~ω], 这也即
是说，

√
m~ω有动量量纲。类似的，[~ω] = [mω2X2]也具有能量量纲，因

此[X2] = [~/(mω)], 这也即是说，
√

~/(mω)具有长度量纲。有了这些量纲
表达式以后，我们就可以将所有的力学变量都无量纲化，完成这一步的最

简单办法是直接令~ = 1,m = 1, ω = 1, 这样我们的哈密顿算符就变成,

H =
1

2
(P 2 +X2), (4.43)

现在X,P,H都已经无量纲了, 因此我们求解这个无量纲问题(4.43)最终得

出来的就是一些数值。而恢复量纲的办法也很简单，比如，对于(4.43)的

本征值你直接乘上量纲表达式~ω就得到原来谐振子的能级了，再比如对
于(4.43)的本征波函数ψ(x)里面的x，你直接替换成ψ( x√

~/(mω)
), 那替换以后

的x就不再是无量纲，而是有通常的长度量纲了。事先进行量纲分析的好处

在于，作了无量纲化处理以后，我们就只需要求解一个数学上更简洁的无

量纲哈密顿量(4.43)，最后再将得到的结果恢复量纲就可以了。

4.3.2 求解与讨论

下面我们来具体求解算符(4.43)的本征值和本征态。我们用到的关键算

符代数关系就是[X,P ] = i~这样一个基本对易关系，当然由于作了无量纲
化处理~ = 1, 所以现在这个代数关系应该写成

[X,P ] = i. (4.44)

观察一下我们要求解的哈密顿量H = 1
2
(X2+P 2),你会发现，如果我们

处理的不是算符，而是普通的数，那很显然我们可以引入复变量，将这个
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二次型的哈密顿量写成某个复数的模方的形式，即H = 1
2
(X−iP )(X+iP )。

这就启发我们引入两个新的算符a和a†, 它们的定义是

a =
1√
2
(X + iP ), a† =

1√
2
(X − iP ), (4.45)

注意这两个算符都不是厄米算符，而是互为厄米共轭的。利用代数关

系(4.44), 我们很容易得到[a, a†] = 1
2
[X + iP,X − iP ] = 1

2
([X,−iP ] +

[iP,X]) = 1，即

[a, a†] = 1. (4.46)

另外，由于a†a = 1
2
(X − iP )(X + iP ) = 1

2
(X2 + P 2 + iXP − iPX) =

1
2
(X2 + P 2)− 1

2
，所以我们知道原来的哈密顿算符(4.43)可以写成

H = a†a+
1

2
, (4.47)

式中多出来的这个1/2就是因为我们处理的是相互不对易的算符，而不是普

通的数。算符a和a†通常分别称作湮灭算符和产生算符，它们的典型特征就

是满足代数关系(4.46)。

不妨记a†a = N，很显然，算符N和哈密顿算符H有完全一样的本

征态，而且N的本征值加上1/2就是H的本征值。我们很容易论证N的本

征值一定大于或者等于0。这是因为，任给一个量子态|ψ⟩，假设我们
记|ϕ⟩ = a|ψ⟩，则有⟨ϕ| = ⟨ψ|a†, 因此⟨ϕ|ϕ⟩ = ⟨ψ|a†a|ψ⟩ = ⟨ψ|N |ψ⟩, 而很
显然⟨ϕ|ϕ⟩ ≥ 0，之所以这里允许⟨ϕ|ϕ⟩等于0，是因为可能出现a|ψ⟩ = 0的

情况, 这时候|ϕ⟩本身就是0。这就告诉我们，对于任意量子态|ψ⟩，我们总
有⟨ψ|N |ψ⟩ ≥ 0, 因此N的本征值总是大于等于0的，并且等于0的情况仅

在a|ψ⟩ = 0时才会出现。

为了下面的推导，我们介绍一个算符恒等式，假设有三个算符A,B,C，

那么我们将有下面的恒等式

[A,BC] = [A,B]C +B[A,C], (4.48)

把两边按照对易子的定义展开，人们就能很容易地验证这个恒等式。在计

算算符对易子的时候这样的恒等式非常有用。

利用上面的恒等式和(4.46), 人们很容易算出[a,N ] = a, [a†, N ] = −a†,
也常常写作

[N, a] = −a, [N, a†] = a†. (4.49)
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假设我们有厄米算符N的某个本征值为λ的本征态|λ⟩, 即

N |λ⟩ = λ|λ⟩. (4.50)

则由于(4.49)式，我们可以知道，N(a|λ⟩) = (Na)|λ⟩ = (aN − a)|λ⟩ =

(λ− 1)(a|λ⟩)(注意由[N, a] = −a⇒ Na = aN − a), 即，如果a|λ⟩ ≠ 0, 那它

必定是N的本征值为λ− 1的本征态，即有

a|λ⟩ = αλ|λ− 1⟩, (4.51)

式中αλ为某个复系数。也即是说，a作用在N的本征态上，可以得到一个

本征值降低1的新本征态。为了看清楚什么情况下a|λ⟩等于0，我们不妨

记a|λ⟩ = |φ⟩, 则有⟨φ|φ⟩ = ⟨λ|a†a|λ⟩ = ⟨λ|N |λ⟩ = λ⟨λ|λ⟩，很显然，只
要λ ̸= 0, 那么a|λ⟩就不等于0，反过来λ = 0就一定意味着a|λ⟩ = 0。

上面的分析有一个很重要的推论，即N的任何本征值λ都必须是非负整

数。因为否则的话我们就可以不断重复地用a作用在相应的本征态上，得到

一串新的本征态，它们的本征值分别为λ, λ−1, λ−2, λ−3, ....。如果λ不是

非负整数，那这一串本征值都将不为0，那么由上一段的分析就有，a作用

在这一串本征态的任何一个上面都将不是0。因此用a进行作用的这个过程

就可以无限地重复下去，这样一来，给定任何一个初始的λ，我们总能作用

任意m个a在其本征态上，得到一个本征值为λ −m的本征态，只要m足够

大，λ −m就必定为负数。但这是不可能的，因为前面我们已经证明过了，

N的本征值必须大于等于0。因此，λ必须为非负整数，我们记为λ = n。

类似的，利用(4.49)式我们还可以得到，a†作用在N的某个本征态|n⟩上
将会得到一个本征值为n+ 1的本征态。归纳一下即有

N |n⟩ = n|n⟩, a|n⟩ = αn|n− 1⟩, a†|n⟩ = βn+1|n+ 1⟩, (4.52)

这里n ≥ 0, αn, βn+1为待定复系数。同时，由于n|n⟩ = a†a|n⟩ = αna
†|n −

1⟩ = αnβn|n⟩，所以必有

αnβn = n. (4.53)

我们已经得到了第一个重要结论，即哈密顿算符(4.47)的本征谱为n +

1/2，如果恢复量纲，那么我们就有，单自由度线性谐振子的本征谱为

(n+
1

2
)~ω, (4.54)
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可见，除了多出来一个(1/2)~ω之外，这个结果正符合普朗克最初的假设。
多出来的这个(1/2)~ω其实有重要的效应: 首先, 它意味着即使对于n =

0的基态，线性谐振子的能量也不为0，所以这个能量通常叫做零点能。之

所以有零点能，是因为量子力学的不确定关系δxδp ∼ ~, 所以即使在基态，
谐振子的坐标和动量也不能同时确定为0，而是有涨落，零点能就是这个

涨落的能量。其次，按照当前的观点，一切物质最终都是由基本粒子组成

的，而所有的基本粒子都可以用场来描述，在忽略相互作用的时候，场可

以看成是许许多多的谐振子，因此，即使所有的场都处在基态，它们也还

是有零点能。基本粒子场活动的舞台当然就是我们的时空，所有基本粒子

都处在基态所对应的就是真空态，因此场的零点能的存在就告诉我们，真

空其实并不真正空，而是总有基本粒子场的涨落，这些涨落表现出来的零

点能就叫作真空能。所以，真空其实充满能量，并且人们已经测到了真空

的能量，这就是所谓的卡西米尔效应。另一方面，宇宙的大部分区域当然

是真空，因此按照道理来说，宇宙中应该充满了真空能，它的一个效应就

是会使得宇宙加速膨胀，今天的天文学观测的确发现我们的宇宙在加速膨

胀，但是，宇宙学观测计算出来的使得宇宙加速膨胀的这个能量虽然占了

宇宙总能量的大部分，但却还是比量子场论计算出来的真空能小太多太多，

这到底是怎么回事现在还没有人搞清楚，这个问题就是著名的暗能量问题，

它问的就是，第一，使得宇宙加速膨胀的暗能量的来源到底是什么，第二，

为什么量子场论计算出来的宇宙真空能不对。

下面我们接着来研究线性谐振子的本征态|n⟩, 我们还是采用无量纲
化的处理，只在最后才进行量纲恢复。假定所有的这些本征态|n⟩都已经
正交归一了，因此我们首先要做的就是确定(4.52)式中的待定系数αn, βn。

为此，我们注意到由a†|n⟩ = βn+1|n + 1⟩可以得到，|βn+1|2⟨n + 1|n + 1⟩ =
⟨n|aa†|n⟩ = ⟨n|a†a+1|n⟩ = (n+1)⟨n|n⟩(注意由[a, a†] = 1 ⇒ aa† = a†a+1)，

进一步利用本征态的归一性就有|βn+1|2 = (n+ 1)。同时，在假定|n⟩态的相
位已经设定的前提下，我们总是可以合适地调节|n + 1⟩态的相位，使得由
方程a†|n⟩ = βn+1|n + 1⟩定义出来的βn+1变成一个正实数。如此一来，我们

就有βn+1 =
√
n+ 1, 代入(4.53)式就可以进一步得到αn =

√
n。因此我们有

a|n⟩ =
√
n|n− 1⟩, a†|n⟩ =

√
n+ 1|n+ 1⟩. (4.55)

特别的，对于n = 0的基态，我们有

a|0⟩ = 0. (4.56)
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另外，将(4.55)式进行递推，我们可以得到

|n⟩ = 1√
n!
(a†)n|0⟩. (4.57)

到此为止实际上我们已经完成了所有的求解过程，但有时候人们还是

希望得到坐标表象下的本征波函数。不妨让我们先来求坐标表象下的基

态波函数，首先由(4.56)式，我们有⟨x|a|0⟩ = 0, 进一步由产生湮灭算符的

定义式(4.45)可知⟨x|X + iP |0⟩ = 0。最后，将坐标表象下的基态波函数记

为ψ0(x) = ⟨x|0⟩，并利用动量算符在坐标表象下的表示P̂ = −i∂x(已经作
了~ = 1的无量纲化)，我们就有0 = ⟨x|X + iP |0⟩ = (x+ ∂x)⟨x|0⟩, 即

(
∂

∂x
+ x)ψ0(x) = 0, (4.58)

求解这个微分方程并将结果进行归一化就可以得到

ψ0(x) =

(
1

π
1
2

) 1
2

exp

(
−1

2
x2
)
. (4.59)

为了求激发态波函数，我们记ψn(x) = ⟨x|n⟩。由(4.57)式我们可以知

道ψn(x) =
1√
n!
⟨x|(a†)n|0⟩ = 1√

2nn!
⟨x|(X − iP )n|0⟩ = 1√

2nn!
(x− ∂x)

n⟨x|0⟩, 即

ψn(x) =

(
1

π
1
22nn!

) 1
2

(x− ∂x)
n exp

(
−1

2
x2
)
. (4.60)

如果人们将这个式子中的(x − ∂x)
n的作用结果算出来，就会发现它对应于

一个n次多项式Hn(x), 通常称作厄米多项式。最后，让我们恢复量纲，从

而就有

ψn(x) =

(
κ

π
1
22nn!

) 1
2

Hn(κx) exp

(
−1

2
κ2x2

)
, (4.61)

式中κ = 1/
√
~/(mω) =

√
mω
~ 是长度的负一次方量纲。值得注意的是，由

波函数归一化
∫
dx|ψ(x)|2 = 1可以知道，波函数本身也是有量纲的，在一

维是长度的−1/2次方量纲，这就是为什么在最后恢复量纲的时候(4.61)式

的前面会多出一个κ
1
2因子的原因。下面的图(4.3)示意性地画出了一些线性

谐振子的定态波函数，以及相应的概率分布。 从这幅图中可以清楚地看

到，线性谐振子的定态ψn(x)都是一些束缚态。实际上，由于线性谐振子的

势能在无穷远处趋于无穷大，因此任何情况下粒子都不可能出现在无穷远

处，所以线性谐振子系统没有散射态。
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图 4.3: 线性谐振子波函数以及概率分布

4.3.3 位力定理

利用上一小节的求解结果，让我们来作一些简单的计算，我们的计算

都将采用先在无量纲化下处理，最后再恢复量纲的办法。

先让我们计算在定态|n⟩上，谐振子坐标的平均值⟨n|X|n⟩。利用产生湮
灭算符的定义式我们显然有⟨n|X|n⟩ = 1√

2
⟨n|a + a†|n⟩, 进一步利用(4.55)式

以及不同本征态的正交性很容易得到最终结果为0。类似的，我们也可以得

到动量的平均值也为0，即有

⟨n|X|n⟩ = ⟨n|P |n⟩ = 0. (4.62)

下面我们来计算X2的平均值。由⟨n|X2|n⟩ = 1
2
⟨n|(a+a†)2|n⟩ = 1

2
⟨n|a2+

(a†)2 + aa† + a†a|n⟩ = 1
2
⟨n|2a†a+1|n⟩ = (n+ 1

2
), 式中我们利用了(4.55)式以

及不同本征态的正交性。类似的我们也可以计算出⟨n|P 2|n⟩ = (n + 1
2
)。由

此我们就可以得到一个重要的结论，即在定态上，谐振子动能1
2
P 2的平均

值和势能1
2
X2的平均值相等，都等于相应能级的一半。恢复量纲即有

⟨n| P
2

2m
|n⟩ = ⟨n|1

2
mω2X2|n⟩ = 1

2
(n+

1

2
)~ω. (4.63)

上面的这个结论其实是所谓的位力定理的一个特殊情况，下面我们就

以一维问题为例来推导一下位力定理。假设我们考虑的系统哈密顿算符

为H = P 2

2m
+ V (X), |n⟩为它的第n个定态，相应的能级为En，即

H|n⟩ = En|n⟩. (4.64)
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那么我们容易有⟨n|[PX,H]|n⟩ = ⟨n|PXH − HPX|n⟩ = En⟨n|PX|n⟩ −
En⟨n|PX|n⟩ = 0，式中最后一个等号我们利用了⟨n|H = En⟨n|。然而在
另一方面，[PX,H] = [PX, P 2

2m
] + [PX, V (X)] = P [X, P 2

2m
] + [P, V (X)]X =

i~
(

P 2

m
−X ∂

∂X
V (X)

)
,式中我们利用了公式(4.48)以及基本对易关系[X,P ] =

i~。将这两个计算结合起来，即有

2⟨n|T |n⟩ = ⟨n|P
2

m
|n⟩ = ⟨n|X ∂

∂X
V (X)|n⟩. (4.65)

这就是位力定理，式中的T就表示动能算符。特别的，对于线性谐振子，

V (X) = 1
2
mω2X2，因此X ∂

∂X
V (X) = 2V (X), 如此一来即有

⟨n|T |n⟩ = ⟨n|V |n⟩. (4.66)

这正是我们前面通过具体计算发现的结论。

4.3.4 习题

1. 对于线性谐振子，人们可以定义一种特殊的量子态，叫做相干态。

任给复数z，没有归一化的相干态|z)(我们用右括号而不是⟩来强调这个量子
态没有归一化)可以定义为|z) = eza

† |0⟩。
(1). 请证明|z) =

∑+∞
n=0

zn√
n!
|n⟩。

(2). 请证明|z)是湮灭算符a的本征态，满足a|z) = z|z)。请注意，由
于a不是一个厄米算符，因此其本征值可以是复数z。

(3). 请将|z)归一化，并计算相干态|z)与相干态|w)的内积为(w|z)。
(4). 假设记归一化以后的相干态为|z⟩。请证明|z⟩可以取为|z⟩ =

D(z)|0⟩，式中D(z) = eza
†−za为幺正算符。提示：可以应用第二章习题

中证明的算符恒等式eA+B = eAeBe−
1
2
[A,B]。

(5). 假设记复数z = u+ iv，记d2z = dudv。请证明 1
π

∫
d2ze−|z|2 |z)(z| =

1，这里的积分是对整个复平面积分，最后的结果1表示的是恒等算符。

(6). 请计算相干态|z⟩上，位置算符X以及动量算符P的不确定度δX和δP，
并证明δXδP取最小值，即δXδP = ~/2。

(7). 请求出相干态|z⟩在坐标空间的波函数ψz(x) = ⟨x|z⟩, 从而证明相干
态在坐标空间的概率分布|ψz(x)|2是高斯分布。

(8). 假设t = 0时刻，线性谐振子处在相干态|z⟩，请证明t时刻它将处
在相干态e−iwt/2|ze−iωt⟩。
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(9). 请研究处在相干态上的谐振子其在坐标空间的概率分布如何随时

间演化，即研究概率分布|ψze−iwt(x)|2。请将结果与谐振子的经典振动行为
进行比较，进而领会为什么相干态是一种准经典态。

2. 超导LC振荡电路和普通的经典LC振荡电路不同，它是量子的，也

即是说超导LC电路电容器上的电荷Q，以及电路中的电流都是量子算符。

超导LC振荡电路的哈密顿量可以写成

H =
Q2

2C
+

1

2
LI2. (4.67)

但是可以论证，电流算符I和电荷算符Q必定不对易。

论证方式有两种：第一种方式是通过利用I = −Q̇, 进而将哈密顿量写
成H = 1

2
LQ̇2+Q2

2C
,很显然这样写以后，我们可以将Q类比成粒子坐标，Q̇类

比成速度，L类比成质量，从而磁场能量1
2
LQ̇2就可以类比成动能，而电场

能量Q2

2C
就可以类比成势能。当然，在这样的类比之下LQ̇ = −LI = −Φ就

应该类比成粒子动量(这里Φ = LI表示电感线圈的磁通，它同样是算符)。

那么根据位置坐标和动量之间的基本对易关系我们就应该有[Q,−Φ] = i~。
第二种论证方式是，利用−Φ̇是电感线圈两端的电压(电磁感应定律)，

从而Φ̇等于电容器两端的电压，从而CΦ̇ = Q, 进而将电路的哈密顿量重

写为H = 1
2
CΦ̇2 + 1

2
Φ2

L
。很显然，这样重写哈密顿量以后就可以将Φ类比

成粒子坐标，Φ̇类比成速度，从而电场能量1
2
CΦ̇2就类比成动能，磁场能

量1
2
Φ2

L
就应该类比成势能。当然，这时候CΦ̇ = Q就应该类比成粒子动量，

因此同样应该有

[Φ, Q] = i~. (4.68)

很明显，在这两种不同的论证方式中，电场能量和磁场能量的角色刚

好互换了，但是，结果是一样的，即都有

[I,Q] = i~/L. (4.69)

这种结果的一致性反映了电和磁的相互对偶。我们的问题是，请根

据Q, I之间的对易关系求出超导LC振荡电路的量子化能级。

4.4 氢原子

玻尔的氢原子模型成功地解释了氢原子的光谱。但是玻尔的模型还只

是一个半经典的理论，因此从物理理论的逻辑来说依然需要发展一个关于
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氢原子的更基本的理论。薛定谔正是通过解决这个问题证明了其薛定谔方

程的威力。我们这里正是要仿照当年的薛定谔，通过求解薛定谔方程来得

到一个氢原子的量子力学理论。

其实玻尔的氢原子模型更令人不满意的地方在于，它只适用于氢原

子，对于其它原子光谱的解释都很不成功。尤其是，玻尔的理论作为一个

关于原子的理论，它却完全无法解释元素周期表。比方说，我们知道元素

周期表的排布规律中出现了几个神秘的数字2, 8, 18, 32....。玻尔等人的原子

模型完全无法解释这几个神秘的数字。但是，正如我们将要看到的，对氢

原子的量子力学研究不仅能让我们得到正确的氢原子能级，而且只要作一

个很平凡的推广就几乎能解释这些数字。这里说几乎是因为，正如我们即

将看到的，通过求解薛定谔方程，我们的确能得到一串神奇的数字，但它

们是1, 4, 9, 16, ...。你已经发现了，这和元素周期表的数字规律正好差2倍。

正是为了解释这个两倍，泡利提出电子还有一个内部自由度，这内部自由

度只有两种可能的取值，对应电子的两个不同内部状态，这刚好带来一

个2倍，这样从数字上来说就完全对得上了。电子的这个内部自由度当然就

是人们发现的电子自旋。所以你看，通过用薛定谔方程来研究氢原子我们

不光能得到氢原子能级，还能解释元素周期表，不仅如此，我们还能预言

电子有自旋。

不仅如此，如果我们足够小心，其实还能发现其它伟大的隐藏秘密。

正如我们将会看到的，加上电子自旋以后，我们的确得到了正确的数

字2, 8, 18, 32....，但它是能级简并度，也即是说，是每一个能级可以有多少

个完全不同的量子态。但是，元素周期表的2, 8, 18, 32....似乎是核外电子数

目呈现出来的排布规律。你想一想，这是不是意味着每一个量子态里面只

能排一个电子。如果你这么想，你就和当年的泡利一样发现了自然界的一

个伟大的秘密。为什么每一个量子态最多只能排一个电子呢？对于当年的

泡利来说，这也许是完全不可思议的，因为你想光子就不是这样，n个光子

可以处在一个完全相同的量子态，给出nhν的能级，这几乎是爱因斯坦提

出光量子的时候就已经知道的事情(当然这本身也是一件神奇的事情，第一

个研究光子这个神奇特性的人是印度物理学家玻色，所谓的玻色-爱因斯坦

凝聚就是爱因斯坦在玻色工作的基础上提出来的)。所以，泡利为此专门提

出了一条物理学原理，就是泡利不相容原理，它即是说，任何两个电子都

不能处在完全相同的量子态上。泡利不相容原理是我们这个世界的深层秘

密之一，可以说没有这条原理，就不可能有我们的世界。当然，这不是我

们这里要讨论的话题，这里提到这个只是想表明我们即将进行的数学推导
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的背后隐藏着多少自然界的秘密。

要要要求求求解解解的的的方方方程程程

对于氢原子来说，我们要考虑的就是一个核外电子围绕原子核运动的

问题。由于原子核比核外电子重1千多倍，因此为了使得分析简单一点，我

们可以假设原子核处在坐标原点不动，要考虑的只是核外电子在原子核

所产生的库伦场中的量子力学。当然，核外电子和原子核之间有库伦势

能V (r), 它由下面的式子给出

V (r) = − e2

4πϵ0r
= −αc~

r
, (4.70)

式中我们已经引入了无量纲的精细结构常数α = e2

4πϵ0~c ≃ 1/137, 其中c是

光速，但是我们即将要求解的是非相对论量子力学，所以从根本上来说应

该是和c无关的，正因为如此αc必须作为一个整体出现，因为很显然αc中

的c其实消掉了。如果我们记核外电子的质量为me，那简单的量纲分析就

可以使得我们引入一个长度量纲的量，a0 =
~

meαc
, 这就是所谓的玻尔半径，

另外，我们还常常构造一个能量量纲的量1
2
meα

2c2，很显然只要将αc理解

成衡量了电子的速度我们很快就能理解这两个量。

我们要求解的就是核外电子的定态薛定谔方程(
− ~2

2me

∇2 + V (r)

)
ψ(x) = Eψ(x). (4.71)

使得这个方程有符合物理要求的非零解的E就是氢原子的能级。当然，我

们关心的是核外电子被原子束缚围绕原子核运动的情形，也即是所谓的束

缚态。束缚态上的电子当然不可能出现在空间无穷远处，因此我们的定态

波函数必须满足下面的物理要求

r = |x| → +∞ : ψ(x) → 0. (4.72)

4.4.1 角动量算符

由于我们要求解的是电子绕核运动，这种问题根据我们在经典力学里

的经验，角动量将是一个至关重要的物理量，因为在这种问题中角动量是

守恒的。而且，开普勒三定律告诉我们，行星绕太阳运动只取决于两个物

理量，那就是角动量和能量，开普勒第二定律告诉了我们角动量的重要性，
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第三定律实际上进一步告诉了我们能量的重要性，给定了角动量和能量，

行星绕太阳运动的轨道就定了。当然，我们这里的电子绕核运动不是一个

经典运动，而是一个量子力学问题，所以当然不可能照搬经典物理的分析，

但是经典物理的分析至少告诉我们，在这样的问题中，真正重要的物理量

就是角动量和能量。能量的算符当然就是哈密顿算符，这已经反映在我们

要求解的定态薛定谔方程中了。我们这一小节就是要对角动量算符进行一

些研究。

我们用x标记三维坐标矢量，它的三个分量x1, x2, x3分别对应通常

的x, y, z分量。假设我们记∂i =
∂
∂xi

, 那么角动量算符L = x × P = −i~x ×
∇的三个分量就可以写成

L1 = −i~(x2∂3 − x3∂2), L2 = −i~(x3∂1 − x1∂3), L3 = −i~(x1∂2 − x2∂1).(4.73)

或者，我们也可以利用列维-西维塔符号ϵijk将这些表达式统一写成

Li = −i~ϵijkxj∂k, (4.74)

式中i, j, k的取值范围都是{1, 2, 3}, 并且在这里和本节后面我们都约定对表
达式中重复出现两次的指标默认求和。

为了研究角动量的大小，我们常常需要考察角动量算符的平方L2 =

LiLi。为此我们注意到L
2
i = −~2(ϵijkxj∂k)(ϵij′k′xj′∂k′) = −~2(δjj′δkk′ −

δjk′δkj′)xj∂kxj′∂k′ = −~2(xj∂kxj∂k − xj∂kxk∂j) = −~2(xjxj∂k∂k + δkjxj∂k −
xjxk∂k∂j − 3xj∂j) = −~2(x2j∂2k −xkxj∂k∂j − 2xj∂j) = −~2(x2j∂2k −xk∂kxj∂j −
xj∂j)(式中，第二个等号我们利用了ϵijkϵij′k′ = δjj′δkk′ − δjk′δkj′ , 这个等式

读者可以直接验证，注意到列维-西维塔符号的全反对称性，以及所有指

标只能在1, 2, 3中进行取值，这个等式其实不难验证。前面推导中的第四

个等号我们利用了∂kxj = xj∂k + δkj和∂kxk = xk∂k + 3, 之所以出现3是因

为要对指标k的三个取值进行求和。推导中的最后一个等号我们再次利用

了xj∂k = ∂kxj − δkj)，因此我们最终得到

L2 = −~2(x2j∂2k − xk∂kxj∂j − xj∂j) (4.75)

= −~2[r2∇2 − (r∂r)
2 − r∂r] (4.76)

= −~2[r2∇2 − r∂2rr], (4.77)

这里我们进一步利用了x2j = r2, ∂2k = ∇2, 以及xj∂j = x · ∇ = r∂r，r表示位

置矢量的长度，在球坐标系中它就是径向坐标。有时候我们也会将上面这
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个式子重写成

∇2 =
1

r
∂2rr −

L2

~2r2
, (4.78)

后面我们会用这个表达式将球坐标中的动能算符表示成径向的动能算符和

由角动量平方提供的转动动能算符之和。

但是，除了角动量算符的平方以外，我们还常常需要关心角动量算符

的各个分量在不同坐标系中的形式。比方说，引入下面的复坐标常常是很

有用的，

x± = x1 ± ix2. (4.79)

假设我们记∂± = ∂
∂x±

, 则很显然∂1 = ∂+ + ∂−, ∂2 = i(∂+ − ∂−)，因此Lz =

L3 = −i~(x1∂2−x2∂1) = −i~[i(x++x−)(∂+−∂−)+i(x+−x−)(∂++∂−)]/2 =

~[x+∂+ − x−∂−], 即

Lz = ~[x+∂+ − x−∂−]. (4.80)

另外，注意到∂+和∂−的相互独立性，也就是两者的相互对易性，我们还可

以很容易地得到

∂21 + ∂22 = 4∂+∂−. (4.81)

另外，由于我们要求解的问题(4.71)是球对称的，即V (r)是球对称

的，因此球坐标也将会非常有用，它的定义是x1 = r sin θ cosϕ, x2 =

r sin θ sinϕ, x3 = r cos θ。很显然我们有x± = x1 ± ix2 = r sin θe±iϕ。这

些就是我们将要用到的几种坐标之间的联系。

下面让我们来考察因为ϕ的无穷小改变δϕ所引起来的坐标改变δx±,

由x±的球坐标表达式，很显然结果是δx+ = ix+δϕ, δx− = −ix−δϕ, 也
即是说δϕ既会引起x+的无穷小改变，又会引起x−的无穷小改变(但显

然δϕ与x3无关)。因此假设有一个函数f(x+, x−, x3), 我们考虑它在δϕ的改变

下所产生的无穷小改变δf，那就必然有 ∂
∂ϕ
f = δ

δϕ
f = δx+

δϕ
∂f
∂x+

+ δx−
δϕ

∂f
∂x−

=

i(x+
∂

∂x+
− x−

∂
∂x−

)f，注意到函数f是任意的，因此我们可以将这个结果应

用到(4.80)式，就会得到

Lz = −i~ ∂

∂ϕ
. (4.82)
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从这个式子我们可以看到，在球坐标中Lz只和角度坐标有关，而和径向

坐标r无关。然而，在角动量的三个分量中，Lz在物理上并没有任何特殊

的地方，因此这也就告诉我们，在球坐标中，另外两个分量的角动量算

符Lx, Ly同样也只会和角度坐标θ, ϕ有关，而和径向坐标r必然是无关的。

当然由于球坐标的具体定义式对于x, y, z三个分量的不对称性，所以算

符Lx和Ly在球坐标中的具体表达式可能会比Lz的表达式复杂一些，但是这

并不意味着它们在物理上有什么不平等性，正因为如此，我们只需要选

择Lz来研究通常就够了。

4.4.2 能级和径向波函数

下面我们开始具体的求解过程。首先利用(4.78)式，我们可以将要求解

的定态薛定谔方程(4.71)重写为，(
− ~2

2me

1

r
∂2rr +

L2

2mer2
+ V (r)

)
ψ(x) = Eψ(x). (4.83)

这个方程的下面这一等价形式也将是有用的，

L2ψ(x) = 2mer
2(E − V (r))ψ(x) + ~2r∂2rrψ(x). (4.84)

让我们首先来考察波函数在坐标原点附近的行为。很显然，核外

电子出现在坐标原点处的概率必定是有限的，而且由于V (r) ∼ 1/r，从

而r2V (r) ∼ r, 因此对于核外电子来说，坐标原点并不存在什么根本的

奇异性，所以波函数ψ(x)在坐标原点附近必然是有限且光滑的。因此，

我们可以在直角坐标中将波函数ψ(x)在坐标原点处进行泰勒展开，假

设领头阶是l阶小量(l ≥ 0且是整数)，这也即是说，我们假设在泰勒展

开的领头阶，波函数是三个直角坐标分量xi, i = 1, 2, 3的l阶齐次函数，

之所以得是齐次当然是因为所有的领头阶小量都得有相同的阶(比方

说ax21 + bx1x2 + cx2x3 + dx23就是一个2阶齐次函数)，在球坐标中由于每一

个xi的球坐标表达式中都含有一个r, 因此我们可以将这个l阶齐次函数记

为CrlY (θ, ϕ)(C是一个常数)。

为了考察方程(4.84)在坐标原点附近，即当r → 0时的行为。我们

注意到V (r) ∼ 1/r, 而能量E是一个常数，因此当r → 0时，2mer
2(E −

V (r))ψ(x)将是一个l + 1阶小量，而r∂2rrψ(x) ∼ (r∂2rr)(Cr
lY (θ, ϕ)) = C ·

l(l + 1)rlY (θ, ϕ) + O(rl+1)(O(rl+1)表示更高阶的小量)。因此，保留到领头
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的l阶而忽略所有的更高阶小量，我们可以看到方程(4.84)在原点附近将变

成 L2(rlY (θ, ϕ)) = l(l + 1)~2rlY (θ, ϕ)，同时，由于角动量算符只和角度坐

标有关，而和径向坐标r无关，所以我们可以将这个等式两边的rl消去，从

而得到

L2Y (θ, ϕ) = l(l + 1)~2Y (θ, ϕ). (4.85)

这个方程意味着，L2的本征值为l(l + 1)~2, l是非负整数，而且前面通过直
角坐标分量的l阶齐次函数所引入的Y (θ, ϕ)正是L2的本征函数。由于l是非

负整数，所以这里隐含着一个重要的物理结论，即角动量的大小是量子化

的，但是具体的量子化形式和玻尔在其氢原子模型中所假设的形式有所不

同。而这里的l, 就称为角量子数，因为它决定了角动量的大小。

现在我们考察方程(4.84)在任意位置的一般行为。注意到方程(4.84)等

号左边的算符只涉及到角度坐标而与径向坐标无关，而等号右边的算符

只涉及到径向坐标而与角度坐标无关，因此我们可以知道，这个方程必

定可以分离变量，即必有ψ(x) = R(r)A(θ, ϕ)的形式。但是由于r → 0时，

ψ(x) = R(r)A(θ, ϕ) → CrlY (θ, ϕ), 因此必有A(θ, ϕ) = Y (θ, ϕ), 即

ψ(x) = R(r)Y (θ, ϕ), (4.86)

而且径向波函数R(r)在r → 0时的渐进行为是

R(r) → Crl + .... (4.87)

另外，由于我们考察的是束缚态，因此由通常的波函数归一化条件∫
S2 sin θdθdϕ

∫∞
0
r2drR2|Y |2 = 1可以知道，径向波函数和角度部分波函

数分别都得归一化，而且在径向波函数的归一化中，由于
∫∞

drr2R2(r)在

无穷远处的积分贡献必须有限，这就意味着当r → +∞时，必有

rR(r) → 0. (4.88)

将波函数的表达式(4.86)代入定态的薛定谔方程(4.83), 并利用L2的本

征方程(4.85), 进而将方程(4.83)两边的角度部分波函数Y (θ, ϕ)消掉，我们

就可以得到径向波函数R(r)所满足的方程，(
− ~2

2me

1

r
∂2rr +

l(l + 1)~2

2mer2
+ V (r)

)
R(r) = ER(r). (4.89)
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下面我们令rR(r) = u(r), 则方程(4.89)可以转化为一个关于u(r)的方程，

− ~2

2me

∂2ru(r) +

(
l(l + 1)~2

2mer2
+ V (r)

)
u(r) = Eu(r). (4.90)

如果我们将r看作是定义在[0,+∞)区间上的一维坐标变量，那么这个方

程(4.90)就是一个标准的一维定态薛定谔方程，其中有效的势能为 l(l+1)~2
2mer2

−
αc~
r
。而且由原来的径向波函数渐进条件(4.87)和(4.88)可以知道，u(r)必定

满足如下渐进条件

r → 0 : u(r) → Crl+1 (4.91)

r → +∞ : u(r) → 0. (4.92)

我们可以引入无量纲的坐标ρ以及无量纲的能量ϵ,

ρ = r/a0, ϵ = E/(
1

2
meα

2c2). (4.93)

从而可以将方程(4.90)变成，

∂2ρu(ρ) +

(
ϵ+

2

ρ
− l(l + 1)

ρ2

)
u(ρ) = 0. (4.94)

考虑这个方程在ρ → +∞时的渐进形式，会得到∂2ρu(ρ) + ϵu(ρ) = 0, 如

果ϵ > 0，那这个方程的解是cos和sin形式的振荡解，因此不可能满足无穷

远处的衰减型边界条件(4.92)。这也即是说，仅当ϵ < 0时才可能有束缚态

的存在。为此我们令ϵ = −γ2(γ > 0),因此渐进方程就是∂2ρu(ρ)−γ2u(ρ) = 0,

渐进解就是u(ρ) → e−γρ (还有一个指数增长的特解由于不满足无穷远处的

衰减边界条件而必须抛弃)。因此，令u(ρ) = e−γρf(ρ), 代入方程(4.94),就可

以得到一个关于函数f(ρ)的微分方程(
∂2ρ − 2γ∂ρ +

2

ρ
− l(l + 1)

ρ2

)
f(ρ) = 0. (4.95)

由于在ρ→ 0处的边界条件(4.91), 我们可以知道f(ρ)在原点附近泰勒展

开的领头阶一定有ρl+1这样的形式。不妨设整个f(ρ)可以写成级数形式

f(ρ) =
+∞∑

k=l+1

akρ
k, (4.96)

注意由于渐进条件，这个级数必然是从l + 1阶开始的。将这个级数代入

方程(4.95), 并比较所得结果每一个ρk项的系数，我们可以得到，对于领头



第四章 几个简单而重要的系统 33

阶k = l + 1，方程给出来的是一个恒等式，这是不出意外的，因为在我们

求解整个问题的一开始我们就已经考察过方程在坐标原点处的领头阶了，

我们的边界条件(4.91)就是这样导出来的。对于k ≥ l + 2阶，方程给出来的

是一个递推关系

ak = 2
γ(k − 1)− 1

k(k − 1)− l(l + 1)
ak−1. (4.97)

因此给定al+1我们就能递推出后面所有的ak，这也就是说，我们能够将整

个函数f(ρ)确定到只剩下一个整体的未定常数al+1。到此为止好像我们已

经完成所有的求解了。

但，还是让我们来检验一下这个解符不符合物理要求，为此我们

取k → ∞, 则根据递推关系(4.97)就有

ak
ak−1

→ 2γ

k
. (4.98)

注意到e2γρ =
∑

k
(2γ)k

k!
ρk, 其相邻两个展开项系数之比正好是2γ

k
, 因此这就

意味着当ρ → +∞时(这时候级数展开的高阶项是绝对主导的)，我们解出

来的f(ρ) → e2γρ。而这又进一步意味着原来的u(ρ) = e−γρf(ρ) → eγρ, 显然

不满足无穷远处的衰减性边界条件。因此，我们找到的这个解实际上不符

合物理要求。

那这是不是意味着这个问题没有解呢？不是的，问题在于我们刚才的

分析中其实有一个漏洞，如果γ是一个任意的大于0的实数，那我们刚才的

分析没有任何问题，这时候的确不存在满足物理要求的解。但是，如果

γ =
1

n
, (4.99)

这里n是某个正整数(即n ≥ 1)，那我们的递推关系(4.97)就会在k = n+ 1的

地方截断。也就是说我们将有an+1 = 0, 那么根据递推公式(4.97)，此后

所有k > n + 1的系数ak也都会等于0。因此这时候我们解出来的f(ρ)其

实是一个n次多项式(这时候我们不能再任意取k → +∞了，(4.98)式的

分析也就不再适用了)，它在无穷远处当然不会指数增长，那这时候关

于u(ρ) = e−γρf(ρ)在无穷远处的衰减性边界条件(4.92)就能够得到满足，相

应的解就是符合物理要求的。当然，需要注意的是，由于n次多项式f(ρ)的

所有级数阶都必须大于等于l + 1, 所以我们有

l + 1 ≤ n. (4.100)
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也就是说，对于任意正整数n, 任意非负整数l, 只要它们满足l ≤ n− 1,

那就有一个符合物理要求的解, 我们记为fnl(ρ)。利用fnl(ρ)我们最终就能得

到相应的径向波函数，为了强调它依赖于n和l, 现在我们将之记为Rnl(r),

Rnl(r) =
unl(r)

r
= Nnle

− r
na0Fnl(r/a0), (4.101)

其中Fnl(ρ) = fnl(ρ)/ρ是一个n−1次多项式，其最低次项为ρl项，式中Nnl为

归一化系数。对于这种符合物理要求的解，我们的无量纲能量ϵ = −γ2 =

−1/n2，因此也就意味着最初的能量本征值E必须满足

E = − 1

n2
(
1

2
meα

2c2). (4.102)

这正是完全正确的能够成功解释氢原子光谱数据的能级公式。

但是，现在我们已经比玻尔多得到一些东西了，注意到能级公式(4.102)

只依赖于n, 而和角量子数l无关，因此通常将n称为主量子数。也就是说，

给定主量子数n, 我们不只有一个本征态的解，而是所有满足l ≤ n − 1的

解Rnl(r)都对应相同的能量本征值，这些不同l的解是简并的。能级简并这

是玻尔的模型不可能描述的。

实际上，径向波函数可以用标准的特殊函数表达出来，为了方便读者

查阅，我们将结果写在下面

Rnl(r) =
1

(2l + 1)!

(
2r

na0

)l

e−r/na0

[( 2

na0

)3 (n+ l)!

2n(n− l − 1)!

]1/2
× F (−n+ l + 1; 2l + 2; 2r/na0). (4.103)

式中F (a; b; x)为合流超几何函数。这个径向波函数已经归一化了，满足归

一化条件
∫ +∞
0

u2nl(r)dr =
∫ +∞
0

R2
nl(r)r

2dr = 1。

散散散射射射态态态

以上我们关心的都是束缚态，因为我们是在研究氢原子，假设认为原

子核近似不动，那氢原子的定义就是一个电子在库伦势场V (r) = −αc~
r
中的

束缚态。但是，电子在库伦势场中除了有束缚态，其实还有散射态，对应

于电子被库伦势场V (r) = −αc~
r
散射的问题。假设电子距离原子核无穷远时

的动量大小为~k, 那么这种散射态的能量就应该是连续谱E = ~2k2
2me
，因为距

离无穷远时，电子当然可以看成是自由粒子。
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我们可以这样来得到散射态的径向波函数: 首先，我们注意到氢原子

的能级为E = −1
2
me(αc)

2/n2, 因此 1
n
=
√

−2E
me(αc)2

当然，这里E是小于0的。

现在，假设我们将E解析延拓到E = ~2k2
2me

> 0的散射态情形，那这时候 1
n
就

应该延拓成

1

n
= ik

~
meαc

= ika0. (4.104)

最后，我们将这个新的解析延拓后的n值代入径向波函数(4.103), 从而就可

以得到散射态的径向波函数Rkl(r)

Rkl(r) = Ckl(2kr)
le−ikrF (

i

ka0
+ l + 1; 2l + 2; 2ikr). (4.105)

这里我们已经注意到，由于散射态波函数在无穷远处不趋于零，无法进行

通常的归一化，所以我们干脆保留了一个整体常数Ckl。

4.4.3 球谐函数

上一节的求解过程虽然得到了一些最重要的物理结论，但是我们仅仅

只求出了径向波函数的具体形式，对于角度部分的波函数Y (θ, ϕ), 我们只

有两个一般性的结论：第一，当把rlY (θ, ϕ)用直角坐标来表达时，它是三

个直角坐标分量的齐次度为l的齐次函数，也就是我们上一节所谓的l阶齐

次函数，这里我们将把它记为Gl(x), 当然这个记号和原来的r
lY (θ, ϕ)仅仅

只有坐标系的不同，因此

Gl(x) = rlY (θ, ϕ), (4.106)

第二，rlY (θ, ϕ)满足L2的本征方程(4.85)。但是，我们还没有解出Y (θ, ϕ)的

具体表达式，这一节我们就来完成这件事情。

为了具体解出rlY (θ, ϕ)，关键就是要求解本征方程(4.85)。最简单地做

到这一点的办法是，注意到L2和拉普拉斯算符∇2之间的关系式(4.77)和(4.78),

我们很容易验证，L2的本征方程(4.85)其实等价于下面的方程

∇2(rlY (θ, ϕ)) = ∇2Gl(x) = 0. (4.107)

这个方程在直角坐标中是最容易求解的，或者等价地说在{x+, x−, x3}坐标
中是最容易求解的，原因在于，首先，拉普拉斯算符在直角坐标中的形式

远比球坐标简单，更重要的原因是，我们已经知道了rlY (θ, ϕ)在直角坐标，
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或者等价的在{x+, x−, x3}坐标中是一个齐次函数Gl(x), 而这样的函数在数

学上处理起来比其它函数远为简单。

下面我们将主要采用{x+, x−, x3}坐标，这其实是因为一会儿我们还要
接着研究Lz的本征波函数, 而Lz在{x+, x−, x3}坐标中的表达形式(4.80)比它

在更通常的直角坐标中的表达形式还要容易处理一些。

由于公式(4.81)，我们容易知道∇2 = ∂21 + ∂22 + ∂23 = 4∂+∂− + ∂23 , 所以

我们可以将方程(4.107)改写成

(4∂+∂− + ∂23)Gl(x+, x−, x3) = 0. (4.108)

注意这个方程是一个线性方程，所以所有可能解所构成的解空间一定是一

个线性空间，再加上Gl是齐次函数，那这个方程其实就很容易求解。比方

说，对于l = 2的情况，G2(x+, x−, x3)有如下五个线性无关的特解

x2+, x+x3, x+x− − 2x23, x−x3, x
2
−. (4.109)

人们很容易验证这五个解都满足方程(4.108), 因此它们的任意线性叠加

也都是(4.108)的解。找到这些解的方法很简单，比方说，由于G2的齐次

度是2，你可以假设G2 = ax+x− + bx23, 代进方程(4.108), 你很容易发现仅

当b = −2a时，方程(4.108)才能满足，这就得到了特解x+x− − 2x23, 你作其

它的不同假设就会得到不同的特解。如果你一开始假设一个最一般性的2阶

齐次函数，那代入方程(4.108)，你将得到所有上面5个特解的线性组合，这

也就是l = 2时的通解。这种方法显然可以推广到任意l的情形。

(4.109)式给出来的这个例子足以说明，给定一个l，Gl有多个线性无

关的可能解，由于方程(4.108)与L2的本征方程等价，这也就是说，L2对

应同一个本征值l(l + 1)~2的本征态是简并的，有多个可能性。那么如
何进一步区分这些简并的解呢？这就要用到角动量算符的z分量Lz，尤

其是用到它的Lz = ~(x+∂+ − x−∂−)的形式, 简单来说就是，我们可以

取方程(4.108)的每一个线性独立的特解同时为Lz的本征波函数。比方

说，由Lz = ~(x+∂+ − x−∂−)人们很容易验证，上面式子(4.109)给出来

的5个l = 2的特解在Lz的作用下分别具有如下本征值

2~, ~, 0,−~,−2~. (4.110)

所以我们常将这5个解分别记作

G22 ∼ x2+, G21 ∼ x+x3, G20 ∼ x+x− − 2x23, G2−1 ∼ x−x3, G2−2 ∼ x2−,(4.111)
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很容易看出来，这里我们给齐次函数G添上的第2个指标是用来标记Lz的不

同本征值相对应的量子数的。

其实人们很容易验证，对于任何变量x，如果将算符x∂x作用在x的某

个p次齐次函数上xp上，那么得到的就是pxp, 即x∂x(x
p) = pxp. 也即是说，

x∂x这样的算符的作用效果其实就相当于数一个表达式关于x的齐次度。

很显然，算符Lz/~ = x+∂+ − x−∂−就是由两个这样的数齐次度的算符

相减而构成的，x+∂+数的是一个表达式中含有x+因子的多少次方，x−∂−数

的是同一个表达式中含有x−因子的多少次方，假设某一个表达式为x
ν+
+ x

ν−
− ,

那么这个表达式对应的Lz/~的本征值就是ν+ − ν−, 通常记为m, 即

m = ν+ − ν−. (4.112)

而所谓我们取方程(4.108)的解同时是Lz的本征态，也就是要求任何一个给

定解中的每一项都有相同的ν+ − ν− = m，这时候这个ν+ − ν− = m就是这

个解在Lz/~作用下的本征值，我们就是利用不同的m来区分方程(4.108)的

那些相互简并的解。

那么给定一个l, 有多少个不同的m = ν+ − ν−呢？由于l是Gl总的齐次

度数，其中除了x+, x−的贡献之外还要包括x3的贡献，所以很显然，任何

解中的所有项都得满足

ν+ + ν− ≤ l. (4.113)

满足这个约束的ν+ − ν−有多少可能取值呢？稍微想一下就能发现(你可以

注意ν+ − ν−必然是整数，而且−ν+ − ν− ≤ ν+ − ν− ≤ ν+ + ν−)，只有下面

这些可能取值

l, l − 1, l − 2, .....− l + 1, −l, (4.114)

即一共有2l + 1个不同的可能性。

(4.114)式给出来的就是在给定l的前提之下，Lz/~的本征值m的所有可
能性，通常我们把每一个可能性所对应的本征波函数记为Glm，因此通过

引入量子数m，我们就可以将L2的所有简并本征态一一区分开来。也就是

说，Glm同时满足如下本征方程

L2Glm = l(l + 1)~2Glm, LzGlm = m~Glm, (4.115)

其中，m的2l + 1个不同取值由(4.114)式给出。
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解出来所有的Glm以后，利用x± = r sin θe±iϕ, x3 = r cos θ变换到球坐

标中，再根据定义(4.106), 我们就能得到角度部分的波函数Ylm(θ, ϕ),

Glm = rlYlm(θ, ϕ). (4.116)

通常人们称Ylm(θ, ϕ)为球谐函数，它显然满足

L2Ylm = l(l + 1)~2Ylm, LzYlm = m~Ylm. (4.117)

比方说，对于前面给出来的5个l = 2的本征函数(4.109), 我们很容易变换到

球坐标中得到5个相应的球谐函数

Y22 ∼ sin2 θei2ϕ, Y21 ∼ sin θ cos θeiϕ, Y20 ∼ sin2 θ − 2 cos2 θ,(4.118)

Y2−1 ∼ sin θ cos θe−iϕ, Y2−2 ∼ sin2 θe−i2ϕ, (4.119)

当然，我们没有对这些球谐函数进行归一化，不过人们很容易将它们在单

位球面上进行归一化。

由于球谐函数是角度部分的波函数，它所对应的量子态由量子

数l,m标记，因此可以记为|l,m⟩，根据(4.117), 它将同时是L2和Lz的本征

态，满足

L2|l,m⟩ = l(l + 1)~2|l,m⟩, Lz|l,m⟩ = m~|l,m⟩. (4.120)

作为厄米算符的不同本征态，|l,m⟩当然是正交归一的，满足

⟨l′,m′|l,m⟩ = δl′lδm′m. (4.121)

另外，利用波函数与狄拉克符号的关系，我们也可以将球谐函数写成

⟨θ, ϕ|l,m⟩ = Ylm(θ, ϕ). (4.122)

作为球面上的位置本征态，|θ, ϕ⟩当然满足∫
dΩ|θ, ϕ⟩⟨θ, ϕ| = 1. (4.123)

式中的积分是在整个单位球面上积分，Ω为立体角，dΩ = sin θdθdϕ，因此

通过插入(4.123)式，我们就可以将正交归一关系(4.121)转化为球谐函数的

正交归一关系 ∫
dΩY ∗

l′m′Ylm = δl′lδm′m. (4.124)
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我们正是利用这个式子来将球谐函数归一化的。

有时候我们也会将球坐标中的θ, ϕ角的方向用某个单位矢量n来表示，

这时|θ, ϕ⟩态就可以记为|n⟩, 球谐函数Ylm(θ, ϕ)就可以记为Ylm(n)。而球谐
函数与相应狄拉克符号之间的关系就可以重写成

⟨n|l,m⟩ = Ylm(n). (4.125)

当然，人们容易按照我们这一小节的方法求出任意球谐函数的表达式，

并将它们归一化。不过，其实数学家们早就得到球谐函数的统一表达式了，

对于m ≥ 0, 它可以由下式给出

Ylm(θ, ϕ) =
(−)l

2ll!

√
(2l + 1)

4π

(l +m)!

(l −m)!
eimϕ 1

sinm θ

dl−m

d(cos θ)l−m
(sin θ)2l,(4.126)

另外还有

Yl−m(θ, ϕ) = (−)mY ∗
lm(θ, ϕ). (4.127)

这两个式子就统一给出了所有的球谐函数。特别的，从这些式子我们可以

知道，对于m = 0的球谐函数Yl0(θ, ϕ)，我们有

Yl0(θ, ϕ) =

√
2l + 1

4π
Pl(cos θ), (4.128)

式中Pl(x)为勒让德多项式。

4.4.4 理解元素周期表的神秘规律

到此为止就已经完成了我们对氢原子的量子力学研究。但是，前面我

们说过，关于氢原子的这个研究只要作一个很平凡的推广，就能用来理解

元素周期表所呈现出来的2, 8, 18, 32...这样的规律。为此，让我们来考察一

个原子序数为Z的原子，暂时让我们假设只有一个电子在围绕它的原子核

运动，我们来看一下这样一个系统会有什么样的能级和什么样的定态波函

数。很显然，现在的情况和氢原子其实是完全类似的，只不过现在的库伦

势能为

V (r) = − Ze2

4πϵ0r
= −Zαc~

r
. (4.129)
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很显然，关于氢原子的所有推导和求解都可以照搬，只需要将氢原

子问题中出现的αc替换成Zαc就可以了。因此这也就意味着，氢原子解中

的a0要替换成a0/Z, 而所得到的单电子能级现在应该是

− 1

n2

(
1

2
meZ

2α2c2
)
. (4.130)

相应的定态波函数ψnlm(r, θ, ϕ)也完全类似于氢原子，都可以写成径向波函

数Rnl(r)和球谐函数Ylm(θ, ϕ)的乘积,

ψnlm(r, θ, ϕ) = Rnl(r)Ylm(θ, ϕ). (4.131)

也即是说，每一个量子态要由三个量子数(n, l,m)来刻画，当然0 ≤ l ≤
n − 1, m = 0,±1,±2, ...,±l，而相同n不同l,m的所有量子态都是简并的。
我们可以计算一下，给定n的简并度是多少，首先m有2l + 1种可能性，其

次l可以从0取到n− 1，所以这个简并度就是

n−1∑
l=0

(2l + 1) = n2. (4.132)

对于n = 1, 2, 3, 4..., n2的简并度将给出1, 4, 9, 16..., 正如泡利所注意到的，

这串数字正好是元素周期表的2, 8, 18, 32...的一半。如果我们考虑到电子自

旋，由于自旋有自旋向上和自旋向下两种可能性，那最终的简并度将正好

是2n2，与元素周期表的规律完全一致。

之所以单电子量子态的简并度能与元素周期表相吻合，是因为我们可

以设想，核外电子是一个接着一个地加入到原子核外面的。作为一个初步

的近似，我们可以忽略不同电子之间的相互作用，这样，每一个新加进来

的电子的量子力学处理都可以看是上面所论述的单电子问题。先加进来的

电子会占据能量较低的那些量子态，而由于泡利不相容原理，一个量子态

上只能占据一个电子，后加进来的电子就只能占据其它的未被占据的量子

态。电子就这样一个接着一个地从低能级填充到高能级，直至填满Z个电

子。根据这样的理解，元素周期表的电子排布规律和单电子的量子态之间

就能一一对应，因此2n2的简并度正好对应元素周期表的规律也就不难理解

了。

当然，上面这幅物理图像在细节上有很多不对的地方。问题之一在于

我们忽略了电子与电子之间的相互作用，基于此人们不难想见，即使我们

只关心每一个核外电子所带来的能量增量，由公式(4.130)所给出来的结果
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肯定也是不对的，因此根据这个结果而把每一个电子的贡献加起来得到的

整个原子的能级也不会对。更何况，除了电子间的相互作用之外，还有一

个严重的物理问题我们也没有考虑，那就是全同性原理，也就是说，所有

的电子是完全全同完全不可区分的。因此，一个原子所有的核外电子之间

也完全不可区分，这一点也会给原子最终的能级带来不小的修正。当然，

怎么正确地算出任意一个原子的能级是原子物理学的专门研究课题，所以

我们还是到此为止吧。

4.4.5 习题

1. 请按照本节的方法计算出l = 3时的7个球谐函数Y3±3、Y3±2、Y3±1、

Y3±0，并请将它们归一化。

2. 设|ψn⟩为某个系统H的束缚态，满足定态薛定谔方程H|ψn⟩ =

En|ψn⟩。请证明

∂En

∂g
= ⟨ψn|

∂H

∂g
|ψn⟩. (4.133)

其中g为系统的某个任意参数，也就是哈密顿量H中的某个任意参数。这个

结果有时候也被称作Hellmann-Feynman定理。

3. 请利用上一题证明的Hellmann-Feynman定理，(1). 证明对于线

性谐振子，必有⟨n|T |n⟩ = ⟨n|V |n⟩。(2). 对于氢原子的任何一个本征

态|nlm⟩(波函数为ψnlm)，请计算⟨nlm|1
r
|nlm⟩。(3). 对于氢原子定态|nlm⟩，

证明⟨nlm|T |nlm⟩ = −1
2
⟨nlm|V |nlm⟩，式中T = P2

2me
为动能算符。

4. 一量子的刚性转子，转动惯量为I，哈密顿量为H = L2

2I
。求下列情

况下的定态能量和定态波函数。(1). 转子绕一固定转轴转动。(2). 转子绕

一固定点转动。

5. 假设用一半径为R的球形空腔将粒子束缚起来，系统的势能为

V (r) =

0, r < R

+∞, r ≥ R
. (4.134)

求粒子的能级和定态波函数。
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4.5 朗道能级

4.5.1 朗道能级

让我们来考察一个在两维x − y平面内运动的电子，电荷为e(对于电

子e当然为负，但为了公式简单，下面我们不妨默认e > 0)，假设我们在垂

直的z方向加上一个均匀磁场B，朗道发现，虽然并没有施加一个势阱将电

子约束在有限的区域内，这个系统依然出现了能量量子化现象，这就是所

谓的朗道能级。另外，这个系统的每一个量子化能级都有很高的简并度，

包括基态能级。而且，这样一个两维系统并不是理论家们的虚构之物，实

际上，后面我们将看到，它和所谓的量子霍尔效应密切相关。

根据我们在第三章中所学的知识，上面所说的这样一个系统的哈密顿

量可以写成

H =
Π2

2m
=

Π2
x

2m
+

Π2
y

2m
. (4.135)

式中Π = P − eA就是所谓的力学动量，现在它当然只有x, y两个分量。根

据第三章的知识我们知道，Πx和Πy不对易，它们的对易子为

[Πx,Πy] = i~eBz = i~eB. (4.136)

不妨引入一个特征长度lB, 称之为磁长度，其定义是

lB =

√
~
eB

. (4.137)

对于处于强度为1特斯拉的磁场中的电子，其磁长度约为2.5 × 10−8m。因

此，在2πl2B面积上的磁通为B(2πl2B) = 2π~/e = Φ0，即刚好为一个磁通量

子。

这个二次型的哈密顿量(4.135)和相应的对易关系(4.136)都很容易使

我们想起线性谐振子。因此，下面我们引入产生湮灭算符a和a†，其定义

是(注意到根据德布罗意关系，~除以长度将具有动量量纲)

(
~
lB

)a =
1√
2

(
Πx + iΠy

)
, (

~
lB

)a† =
1√
2

(
Πx − iΠy

)
. (4.138)

则根据(4.136)式可以验证，[a, a†] = 1，因此它们的确是产生湮灭算符。而

且由这个产生湮灭算符的定义式(4.138)可以知道

(
~
lB

)2
(
a†a+

1

2

)
= (

~
lB

)2
1

2

(
a†a+ aa†

)
=

1

2

(
Π2

x +Π2
y

)
. (4.139)
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从而我们就可以把系统的哈密顿量(4.135)重写成标准的谐振子形式

H = ~ωB

(
a†a+

1

2

)
, (4.140)

式中~ωB = ( ~
lB
)2/m，从而ωB = eB/m, 称为回旋频率，因为它就是经典物

理里电荷受磁场洛伦兹力而作回旋运动的角频率。

因此，由单自由度线性谐振子一节的推导可以知道，产生湮灭算符的

代数关系将意味着哈密顿量(4.140)的本征值是量子化的，从而系统的能量

是量子化的，为

En = ~ωB

(
n+

1

2

)
. (4.141)

这就是朗道能级。很显然，朗道能级的能级差~ωB正比于磁场强度，磁场

不强朗道能级的量子化效应就无法体现出来，这就是量子霍尔效应为什么

需要强磁场的原因之一。

为了进一步看清楚朗道能级的简并，下面我们来求解一下定态波函数。

我们首先关心的是基态波函数ψ0 = ⟨x, y|0⟩。由基态的定义，它得满足微分
方程

aψ0 = 0. (4.142)

为了求解上面这个方程，我们需要选择一个确定的规范，我们将选

取(Ax, Ay) =
B
2
(−y, x)的对称规范。从而Πx = −i~Dx = −i~(∂x − i e~Ax) =

−i~(∂x + i1
2
y/l2B)。类似的，Πy = −i~Dy = −i~(∂y − i1

2
x/l2B)。则，根据产

生湮灭算符的定义式(4.138)，我们有

1√
2
(
~
lB

)a = −i~
[
1

2
(∂x + i∂y) + (x+ iy)

1

4l2B

]
. (4.143)

在x− y平面内引入复坐标w = x+ iy、w = x− iy。则有

a = −i
√
2lB

(
∂ +

w

4l2B

)
, (4.144)

式中∂ = ∂
∂w

= 1
2
(∂x + i∂y)。同样的，我们也有

a† = −i
√
2lB

(
∂ − w

4l2B

)
, (4.145)
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式中∂ = ∂
∂w

= 1
2
(∂x − i∂y)。

因此，我们要求解的基态波函数方程(4.142)就等价于(
∂ +

w

4l2B

)
ψ0(w,w) = 0. (4.146)

令ψ0(w,w) = e
− |w|2

4l2
B f(w,w)，则由这个ψ0的方程可以得到

∂f(w,w) = 0, (4.147)

从而f(w,w)是一个任意的全纯函数，记为f(w)。因此，朗道能级的基态波

函数为

ψ0(w,w) = f(w)e
− |w|2

4l2
B . (4.148)

由于任意全纯函数都可以给出一个基态，所以朗道能级的基态高度简并。

将产生算子a†不断作用在基态ψ0上就可以得到其它的激发态。由产生

算子的表达式(4.145)可知，朗道第n能级的波函数ψn(w,w)将为

ψn(w,w) ∼
(
∂ − w

4l2B

)n
(
e
− |w|2

4l2
B f(w)

)

= e
− |w|2

4l2
B

[
e
+

|w|2

4l2
B

(
∂ − w

4l2B

)
e
− |w|2

4l2
B

]n
f(w)

= e
− |w|2

4l2
B

(
∂ − w

2l2B

)n
f(w). (4.149)

可见任意朗道能级波函数中都包含一个和基态波函数一样的未定全纯函

数f(w)，因此任意朗道能级都高度简并，并且简并度和基态一模一样。

那么，基态朗道能级的简并度是多少呢？为了确定这一点，我们可以

将全纯函数f(w)展开成级数形式f(w) =
∑+∞

m=0 cmw
m，很显然，这个级数

的每一项都给出一个基态，因此任意基态应该记成

ψ0,m ∼ wme
− |w|2

4l2
B . (4.150)

实际上，ψ0,m同时是角动量算符Lz的本征态，本征值为m~。这是因为，
在2维复坐标中，Lz可以写成Lz = ~(w∂ − w∂)(前面在处理氢原子时，我们

实际上已经知道这个结果了，只不过在那里，w记作x+，w记作x−)。很容

易验证(w∂ − w∂)ψ0,m = mψ0,m，所以ψ0,m的角动量量子数为m。
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波函数ψ0,m呈环状，其概率密度|ψ0,m|2最大的地方为一个半径rm的圆
周，

rm =
√
2mlB. (4.151)

因此ψ0,m包围的面积为πr
2
m = 2πl2Bm。当然，ψ0,m−1的半径要小一些，它所

包围的面积是2πl2B(m − 1)。这相邻两个态的面积差为2πl2B, 这个面积上的

磁通正好是一个磁通量子Φ0。因此，这也就是说，面积每增加一个磁通量

子就增加了一个量子态，即每一个磁通量子对应一个量子态。所以简并基

态的总数目其实就等于x− y平面上能通过的磁通量子数NΦ，假设整个材料

平面的面积是S，由于它的每一个2πl2B面积的磁通为一个磁通量子，所以

NΦ =
S

2πl2B
=
eBS

2π~
. (4.152)

显然，每一个朗道能级都高度简并！而电子的量子态要用两个量子

数n和m来标记，其中n标记朗道能级，m标记轨道角动量量子数，这样

的量子态可以记作|n,m⟩，相应的波函数可以记为ψn,m，n相同m不同的所

有量子态都是简并的。

值得注意的是，朗道能级是指单个电子的能级，而不是整个两维材料

的能级，前面所说的基态简并也是指单电子的基态简并，而不是整个两维

材料的基态简并。整个两维材料里面有大量的电子，它的最低能态不见得

简并。比方说假如这些电子间没有相互作用，因此每一个电子都独立的在

填充朗道能级，考虑到泡利不相容原理，一个单电子量子态上只能填充一

个电子，假如所有的电子刚好填充完某一个朗道能级，那这就没有任何自

由度留下了，填充方法唯一，因此整个材料系统的基态(最低能态)反而没

有任何简并。一块材料的基态是否有简并是一种很重要的特性，因为如果

一个没有对称性保护的系统基态有简并，那它就很可能有长程量子纠缠，

有拓扑序(否则的话这种简并早就被相互作用微扰破坏掉了)，这是人们正

在研究的前沿课题之一。

4.5.2 习题

1. 请在Ax = −By, Ay = 0的规范下重新求解朗道能级的本征波函数。

由于这一规范有明显的沿着x轴的平移不变性，所以用来讨论长方形的两

维材料薄片更为方便一些。现在假设一个这样的薄片长为Lx宽为Ly, 请用
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这个新规范下求解出来的波函数重新讨论朗道能级的简并度，并和文中对

称规范下的结果相比较。

4.6 量子霍尔效应

4.6.1 经典霍尔效应

1879年Edwin Hall做了一个经典的实验，它让电流沿着x方向通过一

个两维薄片(即片的厚度相对可以忽略)，然后在垂直于薄片平面的z方向

加上一个均匀磁场B，如图(4.4)所示。 霍尔发现，在薄片的y方向出现

图 4.4: 经典霍尔效应

了电势差VH，而且VH与电流强度I成正比。这个实验的不寻常之处在于

电压和电流不在一个方向上，因此意味着出现了一种新的横向电阻ρxy，

它把x方向的电流和y方向的压降VH联系起来，VH = ρxyI。或者用电导

率σxy = 1/ρxy来写即是

I = σxyVH . (4.153)

这就是经典霍尔效应，它的解释并不难。实际实验中载流子往往是电

子，它们的电荷e当然是负的，不过下文的推导中我们都默认e > 0来进行

分析，e < 0情形的推导我们留给读者。经典霍尔效应的原因是，电子在磁

场中受洛伦兹力的作用会发生偏转，从而在材料薄片y方向两个平行于x轴

的侧面上就会积累正负电荷(注意整个材料是电中性的，载流子的电荷要

与背景离子的电荷相平衡)，从而在y方向产生一个电场E。当达到稳定时，

电子受到的洛伦兹力会和这个电场力相平衡，从而有

vB = E, (4.154)
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式中v是电子沿着x轴的漂移速度。另外，我们知道x方向的电流密度Jx为

Jx = nev, (4.155)

式中n为电子数密度，即每单位体积内的电子数。因此我们即有

Jx =
ne

B
E, (4.156)

将这个式子沿着y轴积分(注意x方向的电流密度按照定义是每单位横截

线上的电流强度，因此Jx沿着横向的y轴积分就得到电流强度I)，就会得

到I = ne
B
VH，这也即是说

σxy =
ne

B
. (4.157)

从而我们知道横向电阻ρxy ∝ B。

我们知道，通常的电阻会引起能量的耗散，也就是发热。这种能量耗

散主要是因为传导电子不断被背景离子散射而引起的，因为这种散射的

结果是使得传导电子的运动方向发生随机的改变，从而将定向运动的能

量转化为无规热运动的能量。很显然，这样的电阻将反比于电子在两次散

射之间的平均飞行时间τ(也称为散射时间)，或者说通常的电导应该正比

于τ。但是从公式(4.157)我们清楚地看到，霍尔效应的横向电导σxy与散射

时间τ无关。这就意味着，霍尔电阻根本不会带来能量的耗散！因此如果

一块材料通常的电阻(我们称之为纵向电阻，电阻率记为ρxx)为零，而只有

霍尔电阻的话，那它根本就不会消耗能量，因此也就不需要持续的能量输

入！

在霍尔效应中，洛伦兹力不做功，因此当然不会输入能量，而横向的

电场由于和电子运动的x方向相垂直，因此做功也为零，也不会输入能量。

不过，在经典霍尔效应中，纵向电阻实际上并不为零，沿着霍尔薄片的纵

向x方向实际上也要加一个电场，这个纵向电场的电能输入最终转化为了

纵向电阻的能量耗散。

而且，似乎我们可以论证，在霍尔效应中纵向电阻不可能为零。这是

因为，考虑到纵向和横向两种不同的电阻以后，电阻率就应该推广成一

个2× 2的矩阵，同样电导率也应该推广成一个2× 2的矩阵，而电流密度和

电场强度之间的关系式就应该推广成(
Ex

Ey

)
=

(
ρxx ρxy

−ρxy ρyy

)(
Jx

Jy

)
,

(
Jx

Jy

)
=

(
σxx σxy

−σxy σyy

)(
Ex

Ey

)
. (4.158)
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很显然，电导率矩阵和电阻率矩阵互为逆矩阵。通过求逆矩阵，我们可以

得到

σxx =
ρxx

ρ2xx + ρ2xy
. (4.159)

很显然，如果横向电阻率是零，那我们就有通常的σxx = 1/ρxx。但是我们

已经看到了，在霍尔效应中，横向电阻ρxy ̸= 0。根据(4.159)式，如果这时

候ρxx = 0, 那么将有σxx = 0，即纵向电导也等于0。因此这时候沿着纵向材

料实际上是绝缘的，根本不会有纵向电流。而在霍尔效应中，沿着纵向x轴

当然有电流，这就说明σxx ̸= 0，从而ρxx ̸= 0。

然而，下面我们将会看到，在量子霍尔效应中，一切都将变得不同！

4.6.2 整数量子霍尔效应

前面我们看到，在经典霍尔效应中，横向电阻ρxy ∝ B。然而1980 von

Klitzing做了一个实验，它在很低的温度(∼ 1K)下测量了一个比较干净的

样品的霍尔电阻ρxy，实验结果如图(4.5)所示。 从图中可以看到，当磁场

图 4.5: 整数量子霍尔效应。图中的两条曲线分别对应横向电阻率ρxy和纵

向电阻率ρxx。

比较弱时，的确有ρxy ∝ B的线性关系。但是，当磁场变得很强时，ρxy出

现了量子化的台阶，也即是说，当磁场在一些合适的区域内变动时，ρxy可

以保持在一个平台值不变，然后随着磁场进一步增加到一定时候，它再迅
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速地跳到下一个平台。而且仔细的研究发现，ρxy的各个平台值刚好与正整

数ν ∈ Z成反比，或者，用霍尔电导σxy来说即是

σxy ∝ ν. (4.160)

这是一种典型的量子化现象，但是，霍尔电阻或者霍尔电导的量子化是非

常不同寻常的，因为它们并不是一个微观系统的物理量，而是一个宏观系

统的物理量，其中涉及到了大量电子的行为，所以这是一种非常独特的现

象，问题是这一现象的物理解释是什么呢？

很快人们就意识到，霍尔电导σxy的量子化可以用朗道能级来初步解

释。首先，在很低的温度下，量子力学效应将变得重要，因此通过霍尔薄

片的电子气要用量子力学来描述。其次，假设忽略电子间的相互作用，那

就可以近似将薄片中的每一个电子看成是独立的，而单个电子在磁场中的

量子力学行为就是我们上一小节研究过的朗道能级。因此我们可以将霍尔

薄片中的电子气的量子态看成是在填充朗道能级，从低能级逐渐往高能级

填充，由于泡利不相容原理，每一个单电子量子态上只能填充一个电子，

因此每一个朗道能级都可以填充NΦ = eBS
2π~个电子，假设每一个填充满的朗

道能级都会贡献一个单位的霍尔电导的话，那如果有ν个朗道能级被填充，

最后的霍尔电导就将是ν单位，这样就可以解释σxy ∝ ν的量子化现象。

而且以上并不是一种牵强的解释。为了看清楚这一点，我们可以将经

典理论中的霍尔电导公式(4.157)作如下改写

σxy =
neS

BS
=
eN

Φ
=

eN

NΦΦ0

=
e2

2π~
N

NΦ

. (4.161)

式中S是霍尔薄片的面积，因此nS = N是霍尔片内的电子总数，Φ是霍尔

片上的总磁通，它当然等于NΦΦ0。由于每个朗道能级有NΦ个量子态，所

以上面公式最终的N/NΦ就是霍尔片内的电子总共能够填充的朗道能级数，

也就是ν，从而我们就得到

σxy =
e2

2π~
ν. (4.162)

正好解释了von Klitzing发现的霍尔电导量子化现象。而且，仔细检验人们

还发现，公式(4.162)给出的电导量子单位 e2

2π~ = e2

h
也和实验值完全吻合。

由于朗道能级的简并度NΦ ∝ B, 所以当磁场较小时，每个朗道能级的

态数目就比较小，这样电子就可以填充较多的朗道能级，每一个被填充的

朗道能级都贡献一个 e2

2π~的量子化霍尔电导，从而磁场较小时的霍尔电导
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就较大，霍尔电阻ρxy就较小。随着磁场的增加，每个朗道能级上的态数

目NΦ会逐步增加，从而原来占据在更高朗道能级的电子就会跃迁到低朗道

能级多出来的态上，这样被电子占据的朗道能级数就会变少，霍尔电导就

变小，而霍尔电阻ρxy就会跳跃到更高的台阶。这和实验(4.5)也完全吻合。

但是，von Klitzing的实验除了发现霍尔电导的量子化以外，它还发

现，在霍尔电阻的每一个平台区，纵向电阻ρxx = 0, 如图(4.5)中的另一条

实验曲线所显示。但，之前在讨论经典霍尔效应时我们已经论证过了，这

似乎是不可能的！因为这将意味着纵向电导也是零，即σxx = 0, 从而意味

着当磁场处在平台区的时候，霍尔片沿着纵向实际上是绝缘的，因此根本

就不会有纵向电流。但纵向电流在实验中当然存在，我们就是利用纵向电

流强度与横向电压的比值来测量霍尔电导σxy的。看起来我们的结果自相矛

盾了。

对上面这个矛盾的解答揭示了量子霍尔效应的另一个重要特性。结

果人们发现，的确，霍尔薄片的体内是绝缘的，没有纵向电流，纵向电

流实际上沿着霍尔片的边缘流动，是一种新奇的边缘态。我们可以用如

图(4.6)所示的经典图像来直观地理解这个物理机制。 如这幅图所显示的，

图 4.6: 量子霍尔效应的手性边缘态。

在磁场中，电子将作回旋运动，在霍尔薄片的体内，相邻电子的回旋运动

刚好抵消，所以宏观上并没有电流，因此是绝缘的。但是，在靠近霍尔薄

片的边缘处，电子的回旋运动会被边缘挡住，从而不能完成一个完整的

回旋，这样的电子碰到边缘以后只能反弹，但是由于电子的回旋方向固

定，所以最终靠近边缘的这个电子就会像图(4.6)中所示的那样运动。从这

幅图中我们可以看得很清楚，从宏观上看，上边缘处的电子只能向右行，

而下边缘处的电子只能向左行！这些右行和左行的电子就分别构成上下

边缘上的边缘电流。所以在量子霍尔效应中，纵向电流沿着边缘流动。从

图(4.6)中我们可以看得很清楚，上下边缘的电流流向相反。如果这两个边
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缘没有电势差，那这两个流向相反的电流强度将刚好相等，从而纵向的总

电流就是零，但是如果上下边缘有一个电势差，那它们的电流强度就不能

完全抵消，从而会有一个净的纵向电流，它的强度正比于横向的这个电势

差，比例系数就是霍尔电导σxy。

边缘电子只能沿着一个方向运动是一个很奇妙的性质。因为通常导线

中的电子不是这样的，通常电子可以前进也可以后退，它的运动方向可以

向正方向，也可以向负方向。这样的电子碰到障碍物(比方说碰到背景离

子)的时候就可以被散射回来，从而失去原来的运动方向，因此它的能量就

被耗散掉了，这种能量耗散的宏观表现就是一个非零的纵向电阻。但是，

由于霍尔薄片边缘上的电子只能沿着一个方向运动，这样，即使它碰到障

碍物，它也不能被散射回反方向，它只能绕过去，如图(4.7)所示。 因此，

图 4.7: 手性电流不会有能量耗散。图片来自论文“The quantum spin Hall

effect and topological insulators”, Xiao-Liang Qi and Shou-Cheng Zhang

量子霍尔效应的这种边缘态在输运电流的时候就没有能量的耗散，从而纵

向电阻就为零。这就解释了实验中观测到的ρxx = 0。

由于量子霍尔效应的边缘态只能沿一个方向运动，所以人们常常称之

为手性边缘态。手性边缘态有不会耗散能量的奇妙性质，然而它并不能

在通常的导线中实现。因为有一个定理叫Nielsen-Ninomiya theorem告诉我

们，通常导线中的电子一定既有左行波态又有右行波态，无法限制它只取

一种手性(用量子场论的话来说，是因为否则就会有手征反常，它会破坏规

范对称性)。不过，这与量子霍尔效应中出现手性边缘态并不矛盾，因为在

量子霍尔效应中这种一维的手性边缘态是出现在一个两维系统的边缘上，

而这是允许的(因为霍尔薄片体内的物理也是反常的，而这种反常刚好可以

和边缘态的手征反常抵消掉，这也是为什么量子霍尔效应中必须有手性边

缘态的原因之一，因为否则体内的规范不变性就会因为反常而破坏掉)。
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4.6.3 量子力学的分析

然而以上对整数量子霍尔效应的分析应用了很多经典物理的东西。比

方说，我们在解释霍尔电导的量子化时其实是从经典的霍尔电导公式出发

的。而我们在解释手性边缘态时也用了经典物理的图像。完全用量子力学

该如何分析上面的问题呢？

为了更好地应用我们在朗道能级那一节中的量子力学结果来分析整

数量子霍尔效应。现在假设我们的样品霍尔薄片是如图(4.8)(a)所示的圆

环(这种具有旋转对称性的情形能够使得我们更好地利用朗道能级一节中求

出的角动量本征态ψn,m)。除了和磁场相互作用以外，样品中的电子还会感

受到一个由背景离子和其它电子共同产生的势场，尤其是在样品边缘处，

为了阻止电子从边缘逸出样品，那里一定有一个很高的势垒，最终势能作

为径向坐标r的函数V (r)大致会如图(4.8)(b)所示。 考虑到这个势能V (r)以

图 4.8: (a)圆环状霍尔片，磁场垂直于这个薄片。(b)样品内的势能曲线。

后朗道能级就需要作适当的修正。不过我们也不必重新求解带势能V (r)的

带电粒子定态薛定谔方程，简单的分析就能告诉我们大致应该怎样修正。
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首先，由(4.151)式可以知道，一个绕圆心的轨道角动量为m~的电子大体上
会分布在半径rm =

√
2mlB处, 这个地方的势能为V (rm), 它要加到原来的朗

道能级上去，所以一个|n,m⟩态的电子，其能量En,m大约为

En,m = ~ωB(n+
1

2
) + V (rm). (4.163)

我们可以将En,m重写成En(rm), 并将之看成是不同朗道能级的能量曲线，

大致如图(4.9)所示。 我们可以看到，这些能量曲线在样品的内外两个边

图 4.9: 不同朗道能级的能量曲线，水平坐标是r，每一条曲线代表一个朗

道能级。每一个点都代表一个量子态，同一朗道能级上不同的点有不同

的m量子数，相应即有不同的径向坐标rm。蓝色的实心点代表填充了电子

的量子态，空心点代表未被占据的量子态。

缘处相互趋近。而且，由于m和rm之间的一一对应关系，同一个朗道能级，

不同m的那些量子态就落在不同的径向坐标处。

由于能量最低原理，电子当然是按从低能到高能的顺序填充这些能量

曲线的。填充进来的电子的最高能量就叫费米能，记作EF。也即是说，能

量比费米能更低的量子态都已经填充了电子，如图(4.9)所示。在这幅图中，

我们假定费米能是落在两个朗道能级之间，下面我们的推导也是基于这种

情况。但是，如果费米能落在某个朗道能级的底部，那情况就会比较复杂，

因为它可能意味着最上面的这个朗道能级只被填充了一部分，如图(4.10)所

示，这种情况我们后面再来讨论。

现在，在样品圆环上取极坐标，以ϕ表示极角，我们来计算整个样品

围绕圆环环流的电流强度Iϕ。首先，样品内一个在T秒内围着圆心转一
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图 4.10: 最上面的朗道能级只部分填充的情况。当然这朗道能级上面还有

更多完全未填充的朗道能级。

圈的电子贡献的电流强度将是Iϕ = e/T , 用电子的旋转角速度ω来表达即

是Iϕ = e
2π
ω。不过在量子力学层次，角速度ω将是一个算符，我们计算的

其实是它的期望值。因此，一个填充在|n,m⟩态上的电子贡献的电流强度
将是Iϕ = e

2π
⟨n,m|ω|n,m⟩。由于角速度是ϕ角对时间的导数，因此我们可以

记⟨n,m|ω|n,m⟩ = (ϕ̇)n,m。另外，在经典物理中角动量Lz和角度ϕ是一对正

则变量，满足正则方程ϕ̇ = ∂H
∂Lz

(H为哈密顿量)。而哈密顿量就是能量，而

且一个|n,m⟩态的电子，其角动量Lz = m~, 能量为En,m, 因此可以想见，在

量子力学层次，近似地应该有(ϕ̇)n,m = 1
~
∂En,m

∂m
。所以，一个填充在|n,m⟩态

上的电子贡献的电流强度为Iϕ = e
2π

1
~
∂En,m

∂m
= e

2π~
∂En,m

∂m
。而每一个已经填充

了电子的量子态都会贡献类似的电流强度，所以最终总的电流强度就是

Iϕ =
e

2π~
∑

(n,m)∈F

∂En,m

∂m
. (4.164)

式中F表达已经填充了电子的量子态集合。

为了计算出(4.164)式，现在我们来考察如上面图(4.9)所示的情形，假

设费米能落在第ν个朗道能级和第ν + 1个朗道能级之间。公式(4.164)实

际上是对m的差分进行求和，我们近似地可以替换成积分，从而将公

式(4.164)改写成

Iϕ =
e

2π~
∑∫

(n,m)∈F
dm

∂En,m

∂m

=
e

2π~
∑∫

(n,rm)∈F
drm

∂En(rm)

∂rm
. (4.165)
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式中的第二个等号是从m到rm的一个变量代换。

显然，对于每一个被填充的朗道能级，公式(4.165)关于rm的积分结果

都是内外两个边缘上的能量差，当然也就是内外两个边缘上的费米能之

差∆EF , 它当然和m没什么关系，所以(4.165)式其实就是

Iϕ =
e

2π~

ν−1∑
n=0

∆EF =
e

2π~
ν(∆EF ). (4.166)

对于如图(4.9)所示的这种情况，最后结果实际上是零，因为两个边缘上的

费米能是一样的。不过，如果内外两个边缘上有电势差，那由于不同的电

势能，填充在不同边缘上的电子最高能量也会不同，也就是说，这时候内

外两个边缘上的费米能就会有差别，如图(4.11)所示，这个费米能的差别当

然就等于电子的电势能之差eVH，VH就是内外两个边缘上的电势差。因此

这时候我们就有

Iϕ =
( e2
2π~

ν
)
VH . (4.167)

这正好是我们想要推导出来的霍尔电导公式。不过这一次，我们基本上是

用量子力学推导出来的。

图 4.11: 电势差导致内外两个边缘的费米能有差别。注意我们只示意性地

画了一条朗道能级，并且我们只画了占据态，没画空态。

不光如此，公式(4.165)还告诉我们一些额外的信息。由于电流强度是

电流密度沿着横截方向的积分，即Iϕ =
∫
drJϕ, 与(4.165)式比较，我们可
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以看到，第n朗道能级在半径r处贡献的电流密度Jϕ,n(r)其实应该是

Jϕ,n(r) =
e

2π~
∂En(r)

∂r
. (4.168)

但是，在前面的图形中我们清楚地看到，能量曲线En(r)在样品体内是平坦

的，对r的导数是零，因此，在样品体内将没有环绕样品圆环的电流！但

是，在样品边缘附近，能量曲线En(r)对r的导数不等于零，所以样品边缘

才有电流！而且，从能量曲线可以清楚地看到，在外边缘， ∂En(r)
∂r

> 0, 而

在内边缘∂En(r)
∂r

< 0, 因此公式(4.168)就告诉我们，内外两个边缘的电流方

向相反，一个顺时针，一个逆时针，如图(4.12)所示，这当然就是我们上一

小节通过经典图像发现的手性边缘态。

图 4.12: 量子霍尔效应的手性边缘态

4.6.4 无序―最终的解释

但是，以上解释依然有问题。问题就在于朗道能级的能量曲线在霍尔

片体内其实并不是平坦的。比方说，如果内外两个边缘有电势差，那在霍

尔片体内沿着径向方向就会有一个横向电场，这个电场会改变体内电子的

电势能，考虑到这个电势能以后，朗道能级的能量曲线就会是倾斜的，如

图(4.13)所示。这时候如果体内填充有电子的话，那它们的∂En(r)
∂r
就不等于

零，根据(4.168)式,这些电子就会在体内产生电流，这在解释霍尔电阻的平

台区时就会遇到困难。

为了解释清楚问题，我们不妨假设磁场从一个非常强的磁场逐渐降低，

也就是说，我们要从右往左读整数量子霍尔效应的实验结果(4.5)。在霍尔

电阻的ν平台上，前ν个朗道能级都已经填充满了，这时随着磁场的减小，
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图 4.13: 电场中的朗道能级以及部分填充

每个朗道能级的态数目NΦ就在减少，这样原来填充在前ν个朗道能级上的

电子就会有部分多出来，这些多出来的电子就会开始填充第ν + 1个朗道

能级，当然，这时候这第ν + 1个朗道能级是部分填充的，填充情况大体如

图(4.13)所示，随着磁场的连续减少，它会逐渐填充得越来越多。但是，霍

尔电阻实验测量的平台区意味着，这第ν + 1个部分填充的朗道能级并没有

参与导电，否则由于导电的电子数逐渐变多，霍尔电导就会连续变大，霍

尔电阻就会连续变小，那就根本不会保持在一个平台值不变。但是，根据

刚才我们的理论分析，图(4.13)中所示的部分填充的第ν + 1个朗道能级是

要参与导电的，而且是在霍尔薄片的体内导电。由于这些电子是在体内导

电，而不是处于手性边缘态，那它们当然就要和背景离子散射从而损耗能

量，因此理论上纵向电阻也不能为零。很显然，这些理论分析结果都和实

验观测相矛盾。

解决问题的关键在于，实际上，朗道能级的能量曲线在霍尔片体内不

仅仅不平坦，而且是相当不平坦，相当崎岖。这是因为，实际的霍尔片不

可能完全纯净(如果太纯净那反而观察不到霍尔电阻的平台)，它里面有各

种杂质，我们统称为无序。在效果上，这些无序就相当于一个各点势能取

值随机分布的随机势，这样的势能当然会非常崎岖，从而使得整个霍尔片

内部布满了各种坑坑洼洼，各种势能的“山峰”和“山谷”。这样的系统当

然没有绕z轴的旋转对称性，因此前面的角动量量子数m就不再是一个好量

子数，不同的量子态不再对应不同的径向坐标，我们也就不再能将分析简

化为沿着径向坐标的一维分析。不过，由于每一个磁通量子对应一个量子

态，我们很容易想到，薄片上每一个面积为2πl2B的极小的局部小圆盘，都

可以用来标记一个量子态。由于这些小圆盘极小，可以近似看成一个圆点，

因此x− y平面的每一个圆点都相应于一个量子态，它的能量是该点处的随
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机势能加上标准的~ωB(n + 1
2
)，由于势能很崎岖，所以不同点的量子态通

常并不简并。这样，加上这个崎岖的随机势能以后，前面朗道能级能量曲

线的概念就应该推广成两维的能量曲面，一个朗道能级就对应一个这样的

崎岖能量曲面。当然，在霍尔片边缘处，分析基本上还和前面一样，因为

边缘一定会有一个很高的势垒(否则电子就从样品边缘逃逸出去了)。

在图(4.14)中，我们示意性地画出了一个长方形霍尔薄片某一个朗道能

级的等能量曲线(类似于地图中的等高线)，等能量线的密度反映能量曲面

的梯度，等能量线越密的地方，能量梯度就越大。图中的+号标记的是能

量的“山峰”，−号标记能量的“山谷”。同一个朗道能级的不同量子态就
以一个个面积为(2πl2B)的非常小的小圆点的形式分布在这个能量“地形”

中。当然，这个图形是示意性的，真实霍尔片中的能量地形可能要崎岖得

多，“山峰”和“山谷”都会很多。

图 4.14: 霍尔薄片某一个朗道能级的能量“地形”图

以上的图像并不完全。因为占据在一个局部小圆点上的电子实际上还

会跳到邻近的小圆点上去，从而产生运动。这些电子如何运动呢？为了搞

清楚这个问题，我们再来仔细观察一下前面在圆周对称的情形中得到的电

流密度公式(4.168), 我们发现公式中的∂En(r)
∂r
实际上就是能量的梯度，而电

流密度的方向ϕ实际上就是和这个梯度垂直的方向。因此，我们可以这样

来推广电流密度Jn的公式，我们说: 在量子霍尔效应的一般情形中，n朗道

能级上占据在某小圆点上的电子贡献的电流密度Jn大小等于
e

2π~乘以这点的

能量梯度，并且电流沿着与梯度方向相垂直的方向流，也就是沿着等能量

线流，而电流的正负号则由能量梯度的正负号决定。

当电子填充朗道能级的时候，如果它们填充到霍尔片的边缘，那由于

边缘处有很高的能量梯度，所以就会产生较大的电流密度，又由于边缘处

的等能量线都沿着霍尔薄片的边缘走，所以这些电流也沿着边缘流，而且，

边缘处能量梯度的正负号是确定的，因此这些电流只有一个流向，这就是

手性边缘电流。
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当然，实际电子填充朗道能级的时候是按照能量最低原理进行的，也

就是会先填充体内那些能量“山谷”。最先填在谷底的电子，由于谷底的

能量梯度为零，所以它就待在谷底不动了。接着填进来的电子就会填在围

绕谷底的能量稍高一些的等能量线上，上面我们已经分析过了，这些电子

就会沿着这些等能量线围绕着谷底打转。所以这些电子实际上已经被局

域在某个能量“山谷”的附近了，我们称之为局域态。局域态的电子运动

范围很小，所以当然不能产生宏观的电流，因此它们实际上是不参与导电

的。

类似的，在最后填充进霍尔片体内的电子已经没有地方可占据了，它

就只能填充到能量“山峰”附近，同样，这些电子也只能围绕着某个能量

“山峰”打转，从而实际上也被局域化了，也无法参与导电。

能参与导电的是在中间的时候填充进来的电子，这时候它将刚好填在

能量的“海平面”附近，它也只能沿着等能量线运动，但是“海平面”附

近的等能量线范围会很大，如图(4.14)所示，因此这些电子就可以在一个

宏观的范围内运动，产生宏观的电流。这样的态就称为延展态。在霍尔片

体内，只有延展态可以参与导电。局域态、延展态的讨论通常主要是指霍

尔片体内的电子态，但是当然，我们也可以把手性边缘态看成是一种延展

态。

现在我们就可以解释霍尔电阻的平台是怎么回事了。当电子填充满

前ν个朗道能级开始填充第ν + 1朗道能级的时候，由于最先填进来的那些

电子都被能量“山谷”局域化了，根本不导电，所以它们对霍尔电导根本

就没有贡献，从而虽然电子在持续填充，但是霍尔电导会保持不变，从而

就出现一个平台。而且由于这些局域化的电子根本不导电，所以这时候纵

向电导就是零，纵向电阻也就是零。霍尔片上的电流都来自于前ν个朗道能

级的手性边缘态。

但是，如果电子填充到了第ν + 1个朗道能级的“海平面”附近，那体

内就会出现延展态，这些延展态有可能连接到手性边缘态上，从而使得手

性边缘态可以被散射，产生能量耗散，进而使得纵向电阻出现非零的跳

变，这就是图(4.5)中所显示的纵向电阻在两个相邻平台过渡的时候出现的

跳变。

当ν + 1能级的“海平面”附近被填满以后，霍尔电阻实际上就已经跳

到ν + 1平台区去了，这时候接着填充进来的电子又是被能量“山峰”局域

化的局域态，同样不导电，霍尔电阻就会保持在新的ν + 1平台上。

至此，我们才算真正解释了量子霍尔效应的实验观测结果。
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虽然有这么多复杂性，但每一个填充满的朗道能级贡献的霍尔电导依

然是e2/(2π~)。为了看清楚这一点，我们来计算第n朗道能级沿着纵向x方
向的电流强度Ix,n。正如我们分析过的，x方向的电流密度Jx,n将由能量曲

面沿着y方向的梯度给出，Jx,n = e
2π~

∂En(x,y)
∂y

, 从而

Ix,n =
e

2π~

∫
dy
∂En(x, y)

∂y
. (4.169)

很显然，对于每一个填满的朗道能级，这个式子对y坐标积分的结果都只依

赖于霍尔片上下边缘的费米能之差，从而也就只依赖于上下边缘的电势差，

而和能量曲线在霍尔片体内的具体细节没有关系，如图(4.15)所示。 不管

图 4.15: 能量曲面沿着y方向的横截图

能量曲线在霍尔片体内多么崎岖，最终的结果都是一样的，从而每一个填

满的朗道能级都会贡献恒定不变的霍尔电导e2/(2π~)。当然，从宏观上看，
局域态根本不导电，对霍尔电导有贡献的是朗道能级中的延展态，其实主

要是手性边缘态。

4.6.5 分数量子霍尔效应

整数量子霍尔效应已经够令人吃惊了，但是，1982年Tsui和Stormer发

现了更为令人吃惊的事情。它们也在低温和强磁场的条件下测量了霍尔

电阻ρxy, 结果发现，不仅是在ν等于整数的时候会出现量子化平台，而且

在ν等于分数时也会出现量子化平台，如图(4.16)所示。 比方这幅图中最

右边的那个霍尔电阻平台就对应ν = 1/3(因此ρxy = 3h/e2)。不仅如此，图

中ν = 2/5的地方也有一个很明显的量子化平台(对应ρxy = 2.5h/e2)。前面
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图 4.16: 分数量子霍尔效应

我们已经理解了ν等于整数时的量子化现象，它相应于前ν个朗道能级被填

充满的情形。那么ν = 1/3是什么意思呢？它不应该对应最低朗道能级仅仅

被填充1/3这种部分填充的情况吗？为什么也会出现量子化平台呢？

不仅如此，此后人们又不断观测到了更多的量子化平台，它们对应

的ν都是有理数。这就带来两个问题：第一，为什么朗道能级部分填充也会

出现量子化平台。第二，为什么刚好是有理数，既然部分填充能出现量子

化平台，为什么没有ν = 1/
√
2的量子化平台1。到今天为止，对这两个问题

人们其实已经有了很多了解，尤其后一个问题，一定意义上其实可以从数

学上证明，不过这种数学证明的深度超出我们这本书的范围了。

显然，为了理解这种分数量子霍尔效应，我们不再能忽略电子间的相

互作用。否则的话前面我们理解整数量子霍尔效应时使用的单电子填充朗

道能级的图像就依然完全成立，那我们就只能得到整数量子霍尔效应。为

了解释朗道能级部分填充时出现的分数量子化现象，电子间的库伦排斥力

将非常重要。实际上，如果人们用 e2

4πε0lB
= ~αc

lB
来估算这个库伦排斥势能的

话，就会发现它并不比朗道能级差~ωB小。所以某种意义上，人们反而是

要解释为什么在讨论整数量子霍尔效应的时候可以忽略电子间的库伦排斥

力。不过，由于单电子近似是凝聚态物理中的传统近似，它在固体能带论

中取得了巨大成功，而且它的成立性可以用朗道的费米液体理论来解释(后

1当然，ν = 1/
√
2可以用两个较大的整数之比来近似，但这种难以分辨的有理数也没有

观测到
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面的章节中我们会简单地讨论这个问题)。所以分数量子霍尔效应的发现其

实是使得人们开始意识到，单电子近似有时候是不成立的，电子间的相互

作用可能非常重要，这也就是所谓的强耦合强关联问题。

在理解整数量子霍尔效应时，我们之所以可以忽略电子间的相互作用，

还因为这时候最重要的是讨论朗道能级被填满的情形，而对于这种情形，

电子间的相互作用并不会实质性地改变我们的物理图像，因为我们可以设

想将电子间的相互作用从零连续调节到实际值，这时候朗道能级可能会发

生一些“形变”，但它被填满的实质并不会改变。

但是，对于分数量子霍尔效应，它的朗道能级是部分填充的，如果忽

略相互作用，那就会有巨量的不同填充方式。比方说对于ν = 1/3的情形，

这时候是将N = NΦ/3个电子填充到最低朗道能级的NΦ个态上去，填充方

式将有
( NΦ

NΦ/3

)
种，考虑到NΦ非常大，所以这将是一个非常大的组合数。而

这些不同填充方式都是简并的，对应整个材料的简并量子态(注意，不是单

电子的简并态)。对于这样的简并态空间，任何相互作用微扰都可能非常重

要，都会极大地改变系统的行为。关于这一点，我们后面学习了量子力学

微扰论以后再回头看会更加清楚。

神奇的是，在分数量子霍尔效应的系统基态(整个材料的基态)之上，

可以出现奇异的准粒子激发。所谓的准粒子，意思就是，它们并不是自然

界中普遍存在的粒子，因此不是组成霍尔片材料本身的电子和离子，而是

在霍尔片中出现的行为和一个粒子的行为完全类似的一种局部状态。它们

本质上是分数量子霍尔效应中的电子通过相互作用产生的东西。但是，分

数量子霍尔效应中出现的这些准粒子非常奇怪，它们可以有分数电荷！比

方说在ν = 1/3的霍尔态中，可以出现e/3电荷的准粒子激发。而且，我们

知道，自然界中的粒子可以分成两大类，玻色子和费米子，但是，这些准

粒子既不是玻色子，也不是费米子，它们是一种被称为任意子(anyon)的东

西。而且，我们知道，电子可以有两种不同的自旋状态，自旋向上和自旋

向下，它们是电子的内禀状态，但是，在某些分数量子霍尔态中出现的准

粒子甚至可以有诸如
√
2这样的无理数个不同的内禀状态！

对这些奇异任意子的研究是当前的前沿之一，因为，原则上它们有实

现大规模量子计算的能力。当前凝聚态研究中的拓扑序和量子计算研究中

的拓扑量子计算有很大一部分都是在从不同的角度研究这样的任意子。


