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第三章 坐标表象与波动力学

陈陈陈童童童

本章主要是从量子力学的基本原理出发建立起薛定谔方程在坐标表象

下的表示形式，也就是波动力学。我们主要讨论单个微观粒子的情形，但

是类似的处理当然也可以推广到多粒子情形。在本章中，我们讨论了不考

虑自旋的非相对论薛定谔波动方程，讨论了磁场中带电粒子的薛定谔波动

方程，也讨论了自旋1/2带电粒子的薛定谔波动方程。

作为波动力学的应用，本章中我们还会讨论超导物理的有效理论，讨

论超导的磁通量子化，以及超导约瑟夫森结的基本物理规律。我们也将讨

论带电粒子与磁场耦合的薛定谔波动方程的规范不变性，讨论Aharonov-

Bohm效应以及磁单极子。此外，我们还会用波动力学的半经典近似来讨论

量子隧穿效应，超导约瑟夫森结就是作为量子隧穿效应的一个例子而讨论

的。
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第三章 坐标表象与波动力学 3

上一章我们已经详细地阐明了量子力学的基本原理，而在前面的第一

章中我们也简单介绍了非相对论粒子的波动力学。实际上，后者可以看成

是前者对于非相对论粒子在坐标表象下的表示。如何应用坐标表象的概念

建立波动力学是我们这一章所要讨论的核心内容之一。

让我们先概括一下这一章将要用到的一些普遍公式。首先，任何一个

量子态|ψ⟩随时间的演化，可以用如下一般形式的薛定谔方程描述，

i~∂t|ψ(t)⟩ = H|ψ(t)⟩. (3.1)

H就是所谓的哈密顿算符，它对应的是能量这个物理量。

其次，由共轭转置的基本规则我们很容易知道，一个任意的算符B和

它的厄米共轭算符B†之间满足,

⟨ϕ|B|ψ⟩∗ = ⟨ψ|B†|ϕ⟩. (3.2)

最后，人们总是可以将任意可观测量A的线性独立本征态{|i⟩, i =

1, 2, 3...}取成相互正交归一的，即满足

⟨i|j⟩ = δij. (3.3)

不仅如此，由于对任何量子态进行测量，总是可以得到物理量A的某个值，

因此A的这一组正交归一本征态还必然是完备的，也就是说，任意态|ψ⟩都
可以写成{|i⟩, i = 1, 2, 3...}的线性叠加的形式。正因为如此，这一组本征
态{|i⟩, i = 1, 2, 3...}必然可以作为希尔伯特空间的一组正交归一矢量基，因
此有 ∑

i

|i⟩⟨i| = 1, (3.4)

这里的1就是单位算符，或者说恒等算符。

3.1 单个非相对论粒子

这一节我们将主要以一维运动为例推导单个非对论粒子的波动力学方

程。为此，除了量子力学的一般原理以外，我们还需要一个额外的基本假

设，即著名的德布罗意关系式，也就是，一个动量为p的微观粒子可以用一
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个波数k = p/~的平面波来描述。或者说，动量为p的微观粒子，其波函数
为

ψp(x) = c exp (ipx/~) . (3.5)

当然有些量子力学书是用一些其它假设来取代这个假设的，但是采用这个

假设作为出发点有如下一些好处：首先，德布罗意的这个波粒二象性关系

有直接的实验验证，也可以说它是量子力学中被实验检验得最多的一个基

本事实，这不像其它的一些代替性假设，它们和实验之间的关系往往是间

接的。第二，这么处理也是最符合量子力学的历史发展过程的。第三，它

也许是最不抽象最直观的。

3.1.1 位置本征态和动量本征态

对于一个非相对论粒子来说，它的基本物理量就是坐标和动量，但是

德布罗意关系(3.5)告诉我们，一个动量为p的粒子，其位置是完全不确定

的，也就是说坐标和动量不可同时测定。因此为了选定希尔伯特空间的一

组矢量基，我们要么取一组位置本征态|x⟩，要么取一组动量本征态|p⟩。所
谓的坐标表象，就是将微观粒子的量子态|ψ⟩在位置本征态|x⟩中进行展开。
根据一般性公式(3.4)，位置本征态必然要满足∫

dx|x⟩⟨x| = 1, (3.6)

这里因为位置是一个连续变量，所以我们将公式(3.4)中离散的求和改

成了积分。任意量子态|ψ⟩必然可以展开成，|ψ⟩ =
∫
dx|x⟩⟨x|ψ⟩, 展开系

数⟨x|ψ⟩就叫做微观粒子的波函数ψ(x), 即

ψ(x) = ⟨x|ψ⟩. (3.7)

值得说明一下的是，与方程(3.6)相应的，位置本征态必然要满足⟨x|y⟩ =
δ(x−y)这样的正交归一关系。这是由于δ(z−x) = ⟨z|x⟩ =

∫
dy⟨z|y⟩⟨y|x⟩ =∫

dyδ(z − y)δ(y − x)是一个恒等式，因此只有这样的正交归一方式才能

与(3.6)相容。

利用波函数的概念，我们就可以计算两个量子态之间的内积

⟨ϕ|ψ⟩ =
∫
dx⟨ϕ|x⟩⟨x|ψ⟩ =

∫
dxϕ∗(x)ψ(x) = (ϕ, ψ), (3.8)
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这里的第一个等号是在行矢量⟨ϕ|与列矢量|ψ⟩中间插入了一个单位算符1，

并利用了等式(3.6), 而第二个等号是利用了⟨ϕ|x⟩ = ⟨x|ϕ⟩∗ = ϕ∗(x)。另外，

(ϕ, ψ)是坐标表象下的一个常用记号，它就定义成(ϕ, ψ) =
∫
dxϕ∗(x)ψ(x),

通常称作两个波函数的内积，很显然，它也满足

(ϕ, ψ)∗ = (ψ, ϕ). (3.9)

由于德布罗意告诉我们的波函数(3.5)是一个动量确定的粒子的波函数，

也就是动量本征波函数，因此如果将波函数定义式(3.7)中的|ψ⟩态取作动量
本征态|p⟩即有，

⟨x|p⟩ = c exp (ipx/~) . (3.10)

同样，作为希尔伯特空间的一组矢量基，动量本征态|p⟩当然也要满足
类似的 ∫

dp|p⟩⟨p| = 1. (3.11)

由δ(x−y) = ⟨x|y⟩ =
∫
dp⟨x|p⟩⟨p|y⟩ =

∫
dp⟨x|p⟩⟨y|p⟩∗ =

∫
dp|c|2 exp (ip(x− y)/~)

= |c|22π~δ(x− y)(式中第四个等号我们代入了(3.10)式，最后一个等号则利

用了
∫
dkeikx = 2πδ(x))，我们可以知道，c应该取成1/

√
2π~, 因此，

⟨x|p⟩ = 1

(2π~) 1
2

exp (ipx/~) . (3.12)

从这个式子我们可以很容易注意到

−i~∂x⟨x|p⟩ = p⟨x|p⟩. (3.13)

3.1.2 算符在坐标表象下的表示

我们已经将抽象的量子态|ψ⟩表示成了坐标表象下的波函数ψ(x)，现在
来考察算符在坐标表象下的表示。对于一维的非相对论粒子，它最基本的

算符就是位置算符X和动量算符P，其它物理量的算符都可以由这两个算

符通过算符乘法、加法、以及乘上一个常数倍数这样的操作生成，也就是

说，都具有O(X,P )这样的形式。这里O(X,P )表示某个X和P的函数，当

然我们还要求它有厄米性。
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对于任何一个希尔伯特空间的抽象算符A，我们定义它在坐标表象中

的表示为Â, Â由下式定义

Âψ(x) = ⟨x|A|ψ⟩, (3.14)

式中|ψ⟩是任意一个量子态，ψ(x)是它的波函数。很显然，如果抽象算

符A作用在态|ψ⟩上得到|ϕ⟩，即A|ψ⟩ = |ϕ⟩。那么根据我们的定义(3.14)，就

有Âψ(x) = ⟨x|A|ψ⟩ = ⟨x|ϕ⟩ = ϕ(x)，即有Âψ(x) = ϕ(x)。也就是说，Â在

波函数上的作用与抽象算符A在相应狄拉克符号上的作用完全对应，因此

它的确够成了抽象算符A的表示，也因此，只要A是一个线性算符，那么相

应的Â也必然是一个线性算符。假设A的本征方程为A|un⟩ = λn|un⟩, 那么相
应就有Â的本征方程，Âun(x) = λnun(x)，两者的本征值和本征矢量都完全

对应。

不仅如此，我们还可以计算任意算符A在任意两个态|ψ⟩和|ϕ⟩上的矩阵
元⟨ϕ|A|ψ⟩，⟨ϕ|A|ψ⟩ =

∫
dx⟨ϕ|x⟩⟨x|A|ψ⟩ =

∫
dxϕ∗(x)Âψ(x) = (ϕ, Âψ), 即

有

⟨ϕ|A|ψ⟩ = (ϕ, Âψ). (3.15)

那么，在坐标表象中我们怎么定义一个算符Â的厄米共轭算符Â†呢？很简

单，由于Â是抽象算符A在坐标表象下的表示，我们就相应地定义Â†为A†在

坐标表象下的表示，即，

Â†ψ(x) = ⟨x|A†|ψ⟩. (3.16)

因此我们同样有⟨ψ|A†|ϕ⟩ = (ψ, Â†ϕ),而由公式(3.2)我们可以知道⟨ψ|A†|ϕ⟩∗ =
⟨ϕ|A|ψ⟩，因此(ψ, Â†ϕ)∗ = (ϕ, Âψ)。又由于根据波函数内积所满足的(3.9),

(ψ, Â†ϕ)∗ = (Â†ϕ, ψ), 因此我们就有

(Â†ϕ, ψ) = (ϕ, Âψ). (3.17)

这就是我们定义的Â†所满足的基本关系式, 它和人们在波函数空间中对一

个算符的厄米共轭算符的通常定义完全一样。根据这个结果我们可以知

道，任何一个抽象的厄米算符，其在坐标表象中的表示也必然是一个厄米

算符！特别的，位置算符X的表示X̂必然是一个厄米算符，动量算符P的表

示P̂也必然是一个厄米算符。我们下面要做的，就是根据我们对算符表示

的定义(3.14)，求出X̂和P̂的具体形式。
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3.1.3 位置算符，动量算符，哈密顿算符

我们先来看位置算符。由于|x⟩是位置本征态，相应的坐标值是x，所
以X|x⟩ = x|x⟩，也即⟨x|X = x⟨x|。因此根据我们的定义(3.14)，X̂ψ(x) =

⟨x|X|ψ⟩ = x⟨x|ψ⟩ = xψ(x)，这也就是说，在坐标表象中，位置算符X̂其实

就是给波函数乘上x, 你也可以简记为X̂ = x。

对于动量算符，由定义(3.14)，P̂ψ(x) = ⟨x|P |ψ⟩ =
∫
dp⟨x|P |p⟩⟨p|ψ⟩ =∫

dpp⟨x|p⟩⟨p|ψ⟩ =
∫
dp−i~∂x⟨x|p⟩⟨p|ψ⟩ = −i~∂x

∫
dp⟨x|p⟩⟨p|ψ⟩ = −i~∂xψ(x)

(式中第三个等号我们利用了|p⟩作为动量本征态的定义，即P |p⟩ = p|p⟩，
第四个等号我们利用了等式(3.13), 而且整个式子我们还利用了(3.11)),

即P̂ψ(x) = −i~∂xψ(x), 由此可见，坐标表象下的动量算符P̂为

P̂ = −i~∂x. (3.18)

由X̂和P̂的表达式，我们容易得到[X̂, P̂ ] = (−i~)(x · ∂x − ∂x · x) =

(−i~)(x · ∂x − 1 − x · ∂x) = i~, 即[X̂, P̂ ] = i~。由于X̂和P̂分别是抽象算
符X和P的表示，因此这也就说明了

[X,P ] = i~. (3.19)

抽象算符写法的好处是，它不依赖于具体的表象。

前面在第二章的习题中我们证明了，如果两个可观测物理算符A,B不

对易，那么在任意量子态|ψ⟩上将有，

(∆A)2 · (∆B)2 ≥ 1

4

∣∣[A,B]
∣∣2. (3.20)

我们将这个结果应用于A = X,B = P，并记δX =

√
(∆X)2, δP =√

(∆P )2分别为X,P的测量不确定度，那么利用[X,P ] = i~，我们即有

δXδP ≥ ~
2
. (3.21)

这就是著名的海森堡不确定关系。它告诉我们粒子的位置和动量不可同时

测定，两者测量不确定度的乘积必须大于等于~/2。
假设记哈密顿算符H在坐标表象下的表示为Ĥ, 那么由于一维非相对论

粒子的总能量等于动能与势能之和，即为 p2

2m
+ V (x)，所以很容易猜到相

应的哈密顿算符应该是H = P 2

2m
+ V (X), 也就有Ĥ = P̂ 2

2m
+ V (X̂), 代入上
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面我们找到的X̂和P̂的表达式，即有Ĥ = − ~2
2m
∂2x + V (x)。又由i~∂tψ(x, t) =

i~∂t⟨x|ψ(t)⟩ = ⟨x|i~∂t|ψ(t)⟩ = ⟨x|H|ψ(t)⟩ = Ĥψ(x, t)(式中第三个等号我们

使用了一般形式的薛定谔方程(3.1)), 我们就有i~∂tψ(x, t) = Ĥψ(x, t)。由此

就可以知道一维非相对论粒子在坐标表象下的薛定谔方程为

i~
∂

∂t
ψ(x, t) =

[
− ~2

2m

∂2

∂x2
+ V (x)

]
ψ(x, t). (3.22)

这就是最广为人知的薛定谔波动方程。这样我们就从作为量子力学基本原

理之一的最一般形式的薛定谔方程(3.1)推导出了薛定谔波动方程，当然，

在这个过程中，为了得到动量算符的具体表示形式，我们需要额外用到德

布罗意关系(3.5)。

人们很容易把上面的推理过程推广到三维空间，这时候动量算符P的

坐标表象表示就是P̂ = −i~∇。进一步写出相应的坐标表象薛定谔方程是
直接了当的，结果是，

i~
∂

∂t
ψ(x, t) =

[
− ~2

2m
∇2 + V (x)

]
ψ(x, t). (3.23)

当然，人们也很容易得到三维空间位置算符和动量算符之间的对易关系，

我们可以用分量形式将它们概括如下

[Xi, Xj] = [Pi, Pj] = 0, [Xi, Pj] = i~δij. (3.24)

式中指标i, j = 1, 2, 3，分别对应x, y, z分量。

3.1.4 概率流密度

在第二章中我们已经看到，薛定谔方程有幺正性，会保证概率守恒。

而且我们也知道，对于单粒子波动力学，我们还可以引入局域的概率密度

概念，即ρ(x, t) = |ψ(x, t)|2。因此一个自然的问题是，在单粒子波动力学
中有没有局域的概率守恒？换言之，我们想知道存不存在一个概率流密

度J(x, t)，使得下面的连续性方程成立

∂tρ+ ∂xJ = 0. (3.25)

J(x, t)代表的就是单位时间沿着x轴正方向流过x点的概率。如果能找到这

样的J(x, t)，我们就说单粒子波动力学是局域概率守恒的。
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实际上，J(x, t)的确存在，为此我们将单粒子薛定谔波动方程及其复

共轭方程重写如下

i~
∂

∂t
ψ(x, t) =

[
− ~2

2m

∂2

∂x2
+ V (x)

]
ψ(x, t).

−i~
∂

∂t
ψ∗(x, t) =

[
− ~2

2m

∂2

∂x2
+ V (x)

]
ψ∗(x, t). (3.26)

然后我们用ψ∗乘以上式的第一个方程，用ψ乘以上式的第二个方程，再将

结果相减，就可以得到

i~
∂

∂t

(
ψ∗ψ

)
=

(
− ~2

2m

)[
ψ∗ ∂

2

∂x2
ψ − ψ

∂2

∂x2
ψ∗
]

=
∂

∂x

[
− ~2

2m
(ψ∗∂xψ − ψ∂xψ

∗)

]
. (3.27)

很显然，最终的这个方程的确能够写成连续性方程(3.25)的形式，只需要我

们取

J(x, t) =
−i~
2m

(
ψ∗∂xψ − ψ∂xψ

∗)
=

1

2m

(
ψ∗P̂ψ − ψP̂ψ∗). (3.28)

这就是一维非相对论粒子概率流密度的表达式。

我们也很容易将上面的结果推广到三维情形，这时候概率流密度将是

一个矢量J(x, t)，代表的是在这个矢量的横截面上，单位时间之内通过单

位横截面积的概率。这时候相应的局域概率守恒方程就是

∂tρ+∇ · J = 0. (3.29)

为了得到J(x, t)的表达式，人们只需将(3.28)式中的一维动量算符替换成三

维动量算符P̂ = −i~∇, 从而即有

J(x, t) =
−i~
2m

(
ψ∗∇ψ − ψ∇ψ∗). (3.30)

读者可以直接写出三维的薛定谔波动方程，然后按照和一维情形完全一样

的推导来证明这一表达式的确是对的。
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3.1.5 习题

1. 假设某一维运动的自由粒子(即势能等于0)在t = 0时刻的波函数为

高斯型波包ψ(x, 0) = Ce−
1
4
x2/σ2
，这里σ为某个非0实数。(1).请将这个波函

数归一化，定出常数C。(2).假设定义动量空间波函数为ψ(p, t) = ⟨p|ψ(t)⟩，
请计算ψ(p, 0)。(3).请导出ψ(p, t)所满足的薛定谔波动方程，并根据上一

问求出来的ψ(p, 0)解出ψ(p, t)。(4).请根据上一问求出来的ψ(p, t)求出这

个粒子在t时刻的波函数ψ(x, t)。(5).请计算ψ(x, t)态上粒子位置坐标X以

及X2的期望值，再计算粒子动量P和P 2的期望值，进而验证海森堡不确定

关系。

2. 这道题是两个基本的计算。 (1).假设粒子的波函数为ψ(x) =

Ceik·x(C为某个非0复数)，请计算概率流密度。(2).假设粒子的波函数为

球面波ψ(x) = Ceikr/r，请计算相应的概率流密度。

3. 假设我们定义能量密度w(x, t) = ~2
2m

(∇ψ) · (∇ψ∗) + ψ∗V (x)ψ, 以及

能量流密度S = − ~2
2m

(
∂ψ∗

∂t
∇ψ + ∂ψ

∂t
∇ψ∗)(注意这里的S不是表示自旋算符)，

这里ψ(x, t)为粒子的波函数，V (x)为势能。请证明，它们满足局域的能量

守恒方程

∂w

∂t
+∇ · S = 0. (3.31)

4. 假设粒子处于形如ψ(x, t) = e−iEt/~ψ(x)的定态上，满足定态薛定谔

方程
[
− ~2

2m
∇2 + V (x)

]
ψ(x) = Eψ(x)。请证明，在这样的定态上，粒子的

概率密度和概率流密度均与时间无关。同样，请证明粒子的能量密度和能

量流密度也都与时间无关，并请证明S = EJ。

3.2 带电粒子与磁场的相互作用

3.2.1 磁场中带电粒子的薛定谔波动方程和概率流密度

我们这里还想讨论另一个也很常见的薛定谔波动方程，即一个带电粒

子(假设电荷为e)在磁场中的薛定谔方程。在电动力学中我们知道，磁场总

可以用矢量势A(x)来描述。而且从理论力学中我们知道，处于磁场中的一
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个非相对论带电粒子的哈密顿量可以写成 (p−eA)2

2m
+ V (x), p就是带电粒子的

动量，或者更严格地说是正则动量。因此很容易猜到，带电粒子的哈密顿

算符为

H =
(P− eA)2

2m
+ V (X). (3.32)

由于动量算符P在坐标表象下的表示为P̂ = −i~∇，因此我们很容易得到相
应的坐标表象下的哈密顿算符，进而就可以得到如下薛定谔波动方程，

i~
∂

∂t
ψ(x, t) =

[
− ~2

2m

(
∇− ie

~
A(x)

)2

+ V (x)

]
ψ(x, t). (3.33)

从这个方程(3.33)可以看到，磁场的引入就相当于在薛定谔波动方程中

将梯度算符∇替换成∇− ie
~A，而这个表达式是复的。注意到这一点，我们

就可以完全按照前面推导概率流密度的类似办法来推导磁场中带电粒子的

概率流密度，最终的结果是

J(x, t) =
−i~
2m

(
ψ∗∇ψ − ψ∇ψ∗)− e

m
Aρ. (3.34)

我们看到，加了磁场以后，带电粒子的概率流密度多了一个正比于Aρ的

项。特别的，假设我们把波函数ψ(x, t)写成ψ(x, t) =
√
ρeiθ(x,t)的形式(式

中θ(x, t)为波函数的相位，为实数)，则上面的概率流密度就可以重写成

J(x, t) =
(
~∇θ − eA

)
ρ/m. (3.35)

对于一块导体而言，假设我们近似认为其传导电子是相互独立的，

总粒子数为N，那么，如果它的所有传导电子都可以处于相同的量子

态ψ(x, t)的话，那它的电荷密度将是ρe = eNρ = en(x, t)，n(x, t) = Nρ为

传导电子数密度，而电流密度将是Je = eNJ。这时候，如果导体内传导电

子的电荷密度不为零，那磁场的存在就会引起一个额外的电流− e2

m
An。但

是，正如我们将会在后面的章节中进一步讨论的，电子是费米子，由于泡

利不相容原理，不同的传导电子不可能处于相同的量子态，所以正常来说，

这一段的分析并不能成立。

但是，在传统的超导体中，电子成双成对，通过声子传递相互作用，

两个电子配成了所谓的库珀对，妙就妙在，由于库珀对由两个费米子组成，

所以它其实是一个玻色子。费米子总是孤独的，但是就好比大量光子能凑

在一起形成宏观的电磁波，在温度足够低时，作为玻色子，所有库珀对会



第三章 坐标表象与波动力学 12

凝聚到相同的最低能态上去，因此对于库珀对上一段对电荷密度以及电流

密度的讨论就可以成立了。这时候前面的波函数ψ(x, t)可以看成是单个库

珀对的波函数，当然，由于所有库珀对都处于相同的状态，ψ(x, t)其实同

时是任何库珀对的波函数，而前面的e现在就应该理解成库珀对的电荷(也

即是电子电荷的两倍)。

由于超导材料背景正离子的电荷分布几乎是均匀的，所以电荷平衡要

求库珀对的电荷密度在超导内部也是一个不为零的常数，即库珀对在超导

体内部会是一个均匀分布(从而ρ是一个常数)。一般来说这也意味着，超导

体的基态将具有空间平移不变性，从而库珀对波函数的相位θ也将是一个常

数，因此根据(3.35)式，对于这种情形的超导体将有

J(x, t) = −eAρ/m. (3.36)

这时候根据(3.36)式，磁场所满足的电动力学方程∇2A = −µ0Je就会变

成，∇2A = µ0
e2n
m
A。这个方程的解是指数衰减的(指数增长解非物理)，

A ∼ e−x/λ, 式中(1/λ)2 = µ0
e2n
m
，这也就是说，磁场线只能穿透到超导材料

表面很薄的一层(穿透深度大概为λ), 也即是说，无论初始状态为何，超导

体总会将磁场线排斥出去，在超导体内部磁场总是0，超导体有完全抗磁

性，这就是著名的迈斯纳效应。

3.2.2 超导体的磁通量子化

上一小节最后的分析也告诉我们，超导电流只分布在超导体表面穿

透深度约为λ的一个小薄层里面，超导体内部是没有电流的。实际上，我

们可以将整个论证过程反过来，根据超导体内部没有电流的事实，进而

由(3.35)式得出, 在超导体内部有

~∇θ = eA, (3.37)

这个式子是一个更为一般性的结果，因为它允许我们讨论系统没有空间平

移不变性的θ不是常数的情形。根据这个结果(3.37)，我们马上就有，在超

导体内部B = ∇×A = ~/e∇×∇θ = 0, 即超导体内部磁场恒为0，这也就

是迈斯纳效应。

但是，为什么超导体内部通常没有超导电流呢？为了看清楚这一

点，首先由局域概率守恒方程∂tρ + ∇ · J = 0可知, 当超导材料达到稳

定状态，从而库珀对的密度不随时间变化时，ρ将与时间无关，从而必
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有∇ · J = 0，也即是说，这时候超导体内部的超导电流必为稳恒电流。进

一步取ψ(x, t) =
√
ρeiθ(x,t)(假设库珀对均匀分布，从而ρ是一个常数)，代入

薛定谔波动方程(3.33), 再利用(3.35)式，就有

−~
∂θ

∂t
=

m

2ρ2
J2 + V (x). (3.38)

假设系统达到稳定状态，从而方程(3.38)右边与时间无关，因此可以

记−~∂θ
∂t

= ε(x), 从而θ(x, t) = θ0(x) − ε(x)t/~, 也即是说，库珀对的波
函数将具有ψ(x, t) = ψ(x)e−iε(x)t/~的形式，因此这时候，ε(x) = −~∂θ

∂t
可

以看成是x点的库珀对的能量。另一方面，当温度非常低时，库珀对将处

于最低能态，而从(3.38)式可以清楚地看到，要让这个能量ε最低就必定要

求J = 0，这就是超导体内部通常没有超导电流的根本原因。

迈斯纳效应告诉我们，超导体内部磁场必定为0。但是，有可能出现这

样一种情况，即在超导材料中间的某个很小的管状区域内，材料可能不处

在超导态，而是处在通常的物态，这个通常态的管状小区域被超导态包围

着。因为这个小区域是通常态，所以它允许磁场通过，因此我们可以设想

有磁通从这个通常态小管子内通过，如图(3.1)所示。 我们知道，在通常态

图 3.1: 超导体的磁通量子化。

管状区域与周围超导态交界的一个厚度为λ的小薄层内会有超导电流。当

通常态小管子内的磁场发生变化时，它就会在这个薄层内产生感生电场，

由于超导电流的电阻为0，所以即使一点点感生电场也可以产生足够大的感

生电流，因此，当通常态小管子内的磁场发生变化时，在这个交界薄层内

将会有足够大的超导电流阻碍这个磁通的变化。因此，可以设想，被超导
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态包围的通常态小管子内的磁通将保持恒定不变。实际上，正如我们将要

证明的，这个磁通不仅恒定不变，而且它还是量子化的。

由于中间有磁场通过，所以在如图(3.1)所示的这种情况下，超导态内

部任何一条包围通常态小管子的闭合回路上，矢量势A将不为0，这是因

为，沿着这样的闭合回路
∮
L
A · dl =

∫
S
B · dS = Φ，式中S表示回路L所包

围的面积，Φ就是通常态小区域上的磁通。

另一方面，我们又知道，在超导态内部，电流必定为0，从而有方

程(3.37)，根据这个方程，
∮
L
A · dl = ~/e

∮
L
∇θ · dl = ~/e

∮
L
dθ，但是

由于θ是波函数的相位，因此围绕着闭合回路一周，θ的改变量只可能

取2nπ(n ∈ Z)，从而必有

Φ =

∮
L

A · dl = n2π~/e. (3.39)

因此，超导体允许的磁通必然是量子化的，其量子化单位为

Φ0 = 2π~/e, (3.40)

称为一个磁通量子。

人们通常称超导体内部出现的这种带量子化磁通的通常态小管子为超

导体的涡旋线激发，因为从远处看，它就是一根内部有磁力线通过的细线，

而上一段中的整数n就称为相应涡旋线的拓扑量子数。这样的涡旋线激发

实际上可以在超导体里面运动变形，不仅如此，两个不同拓扑量子数的涡

旋线还可以合并成一个涡旋线，而一个高拓扑量子数的涡旋线也可能分裂

成多个低拓扑量子数的涡旋线，但是，在整个这样的合并或分裂过程前后，

总拓扑量子数是守恒的。

拓扑量子数的守恒可以这样来论证：假设在超导体内取一个很大的闭

合回路L，则很显然， 1
2π

∮
L
dθ = w ∈ Z, 而这个结果显然不依赖于θ(x, t)在

回路L所包围的区域内的具体细节，只要θ(x, t)在区域的边界L上渐近不变，

那无论θ(x, t)在区域内部如何变化， 1
2π

∮
L
dθ = w都将保持不变。另一方面，

由于θ是波函数的相位，ψ ∼ eiθ，因此对于任何闭合回路C， 1
2π

∮
C
dθ其实

就是当我们围绕C逆时针走一周时，波函数ψ(是一个复数)在复平面内围绕

着原点转动的圈数。从而涡旋线的拓扑量子数其实就是当我们围绕着涡旋

线走一周时，波函数在复平面内转动的圈数。而 1
2π

∮
L
dθ = w就是当我们围

绕着大闭合回路L走一圈时波函数在复平面内转动的总圈数，很显然，它

必然等于围绕L包围的区域内每一个涡旋线激发走一圈时波函数在复平面
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内转动的圈数的总和，也就说，w必然等于L所包围的区域内所有涡旋线的

拓扑量子数之和，如图(3.2)所示。 从而w的恒定不变性就意味着拓扑量子

图 3.2: 超导体的横截面图，回路L之内包围了三个涡旋线。

数守恒。

3.2.3 规范不变性

在电动力学中我们知道麦克斯韦方程组有所谓的规范不变性，即在如

下规范变换

ϕ→ ϕ− ∂tε, A → A+∇ε, (3.41)

的作用下，电场强度E和磁场强度B都保持不变。式中ε(x, t)为一个任意的

实函数，ϕ为电磁场标量势，A为矢量势，我们这里主要关心矢量势以及与

之相关的磁场，因此下面我们将仅仅考察ε(x)与t无关的规范变换。

下面我们想要考察的是，带电粒子的薛定谔波动方程(3.33)如何才

能保持规范不变性。答案其实非常简单，只要在矢量势作规范变换A →
A+∇ε的同时，让带电粒子的波函数ψ(x, t)同时作如下变换

ψ(x, t) → eieε(x)/~ψ(x, t) with A → A+∇ε. (3.42)

因为很容易验证，在这样的变换下将有，(
∇− ie

~
A(x)

)
ψ(x, t) → eieε(x)/~

(
∇− ie

~
A(x)

)
ψ(x, t). (3.43)

进而就容易知道，带电粒子的薛定谔波动方程(3.33)将在规范变换(3.42)下

保持形式不变。
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正因为算符∇ − ie
~A在规范变换(3.42)下有形如(3.43)这样美好的数学

性质，即
(
∇− ie

~A
)
ψ(x, t)和ψ(x, t)的变换规律是一样的。所以，数学家常

常称∇− ie
~A为协变导数，用分量形式可以记作Di, 即

Di = ∂i −
ie

~
Ai(x). (3.44)

与协变导数密切相关，数学家也常常称矢量势Ai为U(1)向量丛上的联络。

读者不要被U(1)向量丛这样的数学术语吓住，其实它就是在空间每一

点x上指定一个复数(向量)ψ(x), 并且这些复数可以按照规则(3.42)进行变

换。所谓的U(1)其实指的就是ψ(x)的变换规则是乘上相因子eieε(x)/~。

人们常常类比于动量算符P̂i = −i~∂i(也称作正则动量算符), 但是将普

通的偏导替换成协变导数，进而引入力学动量算符Π, 其分量形式可以定义

成

Πi = −i~Di = P̂i − eAi(x). (3.45)

与通常的正则动量算符不同，力学动量算符两两不对易，读者可以计算出

它们的对易关系是

[−i~Di,−i~Dj] = (i~e)Fij, (3.46)

式中Fij = ∂iAj − ∂jAi, 人们很容易看出，它实际上就是对矢量场A求旋度

的分量式写法，比如∂xAy − ∂yAx其实就是(∇ × A)z。因此，Fij和磁场强

度B的分量形式是一一对应的，人们可以通过使用所谓的列维-席维塔符

号ϵijk并结合求和约定，从而将这两者之间的对应关系写成Fij = ϵijkBk。这

里ϵijk关于三个指标是全反对称的，即任意两个指标交换顺序都会出一个负

号(因此当三个指标中有两个取值一样时就会得到0)，比如说ϵjik = −ϵijk，
并且ϵ123 = 1。而所谓的求和约定是指，当一个表达式中出现两个重复指标

时，就默认对这个指标进行求和，比方说刚才的表达式ϵijkBk我们就默认对

指标k的三个不同取值进行求和。

在数学上，求和约定并不是本质性的东西，但是它有时候可以省略掉

一大堆求和符号，从而使得式子更加简洁明了，据说爱因斯坦在研究广义

相对论的时候最早引入了这样的求和约定，所以有时候也称之为爱因斯坦

求和约定。利用Fij = ϵijkBk，我们又可以将(3.46)式重写成

[Πi,Πj] = (i~e)ϵijkBk. (3.47)
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之所以称Π = P̂− eA为力学动量的原因是，利用它我们可以将磁场中带电

粒子的哈密顿量写成标准的动能加势能的形式

Ĥ =
Π2

2m
+ V (x). (3.48)

列维-席维塔符号ϵijk结合求和约定的一个很常见的应用是用来表示三

维矢量的叉乘，比方说假设c = a × b，那么我们很容易验证ck = ϵijkaibj，

注意这里对指标i, j都是要求和的。因此，我们也可以将Fij和磁场强度B的

分量形式之间的对应关系反过来写成，Bk =
1
2
ϵijkFij。

如果将波函数ψ(x)推广成一个多分量的列矢量波函数，同时将变换的

相因子eieε(x)/~推广成一个多行多列的幺正矩阵，矢量势Ai(x)也作相应的推

广(也要变成矩阵)，那我们就把电磁场推广到了所谓的杨-米尔斯场(或者说

非阿贝尔规范场)。你可能知道，杨-米尔斯场可以描写夸克和胶子的相互

作用，也是粒子物理标准模型的基础。但杨-米尔斯场其实是电磁场的推

广，而杨-米尔斯场的杨就是指的杨振宁，因为他和米尔斯两个人最早做出

了这一理论推广。不过，在非阿贝尔规范场的推广中，公式(3.46)依然成

立，实际上这时候它可以看成是Fij的定义式。但是，由于Ai(x)变成了矩

阵，所以[−i~Di,−i~Dj] = (i~e){∂iAj − ∂jAi + (e/i~)[Ai, Aj]}, 也即是说，
这时候Fij = ∂iAj − ∂jAi+ (e/i~)[Ai, Aj]，在Fij的表达式中额外多加一个矩
阵对易子项(e/i~)[Ai, Aj]从而使得公式(3.46)普遍成立，就是杨振宁和米尔

斯在规范场数学上的关键性突破。

规范变换告诉我们，当我们用波函数ψ(x)来描写带电粒子，同时用

矢量势A来描写电磁场时，我们的描述并不唯一，两个可以通过规范变

换(3.42)联系起来的数学描述在物理上其实相互等价。也就是说，真正物理

上可以测量的量必须是规范不变的，ψ(x)和A本身不是物理可观测量，而

只是我们描述物理规律的时候用到的数学变量，这样的数学描述可以相差

一个规范变换，因此在物理上它们是一种冗余的描述。人们之所以采用这

种冗余的描述，是因为它可以使得方程很简洁。

总之，真正物理上的可观测量必须规范不变。什么样的量在规范

变换(3.42)下会保持不变呢？首先我们很容易发现，带电粒子的概率密

度ρ(x, t) = |ψ(x, t)|2是规范不变的，因此可观测。其次，我们注意到，在
规范变换(3.42)下，从空间某点a到空间某点b的线积分exp

(
i e~
∫ b
a
A · dl

)
(如

图(3.3)所示)将变换为exp (ieε(b)/~) exp
(
i e~
∫ b
a
A · dl

)
exp (−ieε(a)/~)。 因
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图 3.3: 矢势场A中的一条路径。

此，下面的表达式是规范不变的

ψ∗(b) exp

(
i
e

~

∫ b

a

A · dl
)
ψ(a). (3.49)

在物理上，这个表达式正比于一个概率幅，即ψ态的带电粒子，我们测

到它从a点出发沿着如图(3.3)所示的积分路线运动到b点的概率幅，式中

的ψ∗(b)ψ(a)就正比于矢量势A = 0时的相应概率幅。

从上面的表达式(3.49)可以看到，当带电粒子在矢量势A中沿着某条路

径L运动时，它的量子力学概率幅要额外多乘一个因子

exp

(
i
e

~

∫
L

A · dl
)
, (3.50)

这是规范不变性所要求的。

另外，如果我们将波函数写成ψ(x, t) =
√
ρ(x, t)eiθ(x,t)的形式，那(3.49)式

的规范不变性也等价于下面的相位差∆θA的规范不变性，

∆θA = θ(b)− θ(a)− e

~

∫ b

a

A · dl. (3.51)

3.2.4 Aharonov-Bohm效应

我们知道，矢量势A本身不物理，磁场强度B才是物理的。因此人们可

以会想，在磁场区之外运动的带电粒子应该不受磁场影响。在经典物理的

层次上，这个结论无疑是对的，因为磁场区之外的带电粒子受到的洛伦兹

力当然是0。但是，在量子力学的层次上，我们从薛定谔波动方程(3.33)可

以看到，与带电粒子直接耦合的是矢量势A，而不是磁场强度B，因此这

个结论是否依然成立就值得进一步研究了。
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实际上，Aharonov-Bohm指出，在量子力学的层次上，上面所说的结

论并不对，磁场可以对带电粒子产生非局域的影响。为了看清楚这一点，

Aharonov-Bohm重新考察了著名的电子双缝干涉实验，只不过Aharonov-

Bohm在双缝的背后添加了一个细小的螺线管，它内部携带一个垂直于纸

面的磁通Φ，如图(3.4)所示。 电子从源S发出，经过双缝，然后在屏幕上

图 3.4: Aharonov-Bohm双缝干涉实验。

干涉。由于螺线管基本上在电子的运动路径之外，而螺线管外面并没有磁

场，所以如果按照经典理论告诉我们的直觉，螺线管的存在将对屏幕上的

电子干涉条纹没有影响，特别的，即使我们改变螺线管内的磁通Φ，干涉

条纹也不会移动。

但是实验发现，情况并非如此，螺线管的存在会影响到干涉条纹，改

变螺线管内的磁通Φ，电子的干涉条纹就会发生移动。看起来，螺线管内

磁场的存在可以对电子产生非局域的影响。这是为什么呢？

正确的解释是，在量子力学的层次上，与电子直接耦合的是矢量势A，

而不是磁场强度B。虽然在螺线管之外，B = 0，但是由于管内磁场的存

在，螺线管之外的A ̸= 0。虽然A本身不是物理的，但是由A可以定义一个

规范不变的物理量exp
(
i e~
∮
L
A · dl

)
，正是这个量会影响到干涉条纹。

具体来说：在没有加螺线管时，假设我们记电子从S出发经过上面的

第1条缝到达屏幕上P点的概率幅为ϕ1，记经过第2条缝到达P点的概率幅

为ϕ2，那么由于双缝同时打开，电子到达P点的概率将由下式给出

|ϕ1 + ϕ2|2 = |ϕ1|2 + |ϕ2|2 + (ϕ∗
1ϕ2 + ϕ1ϕ

∗
2). (3.52)

上面这个式子最后的交叉项就是所谓的干涉项，它解释了屏幕上的干涉条
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纹。实际上，假设将ϕ1、ϕ2重写成ϕ1 =
√
ρ1e

iθ1、ϕ2 =
√
ρ2e

iθ2，那么人们

很容易看到，这个交叉项(ϕ∗
1ϕ2 + ϕ1ϕ

∗
2) = 2Re(ϕ∗

1ϕ2) = 2
√
ρ1ρ2 cos(θ2 − θ1)，

即取决于两个概率幅的相位差。当然，这些都属于我们已经在第一章中讨

论过了的通常的电子双缝干涉内容。

加上螺线管以后，根据我们在上一小节的讨论，我们要给电子的概率

幅额外乘上因子exp
(
i e~
∫
L
A · dl

)
。因此，电子经过缝1到达P点的概率幅将

是exp
(
i e~
∫
L1

A · dl
)
·ϕ1，经过缝2到达P点的概率幅将是exp

(
i e~
∫
L2

A · dl
)
·

ϕ2 。从而，由于螺线管的存在，电子到达P点的概率现在将是∣∣ exp(i e
~

∫
L1

A · dl
)
ϕ1 + exp

(
i
e

~

∫
L2

A · dl
)
ϕ2

∣∣2
= |ϕ1|2 + |ϕ2|2 + 2Re{ϕ∗

1ϕ2 exp

[
i
e

~
( ∫

L2

A · dl−
∫
L1

A · dl
)]
}(3.53)

注意到积分路径L1的方向是S → P , 假设我们改变路径的方向为P → S, 并

记变向后的路径为L1，则很显然exp
(
i e~
∫
L1

A · dl
)
= exp

(
−i e~

∫
L1

A · dl
)
。

从而，exp
[
i e~
( ∫

L2
A · dl−

∫
L1

A · dl
)]

= exp
(
i e~
∫
L2∪L1

A · dl
)
。很明显，

L2 ∪ L1是围绕螺线管的一条闭合路径，因此，exp
(
i e~
∫
L2∪L1

A · dl
)

=

exp
(
i e~Φ

)
= exp (i2πΦ/Φ0)。因此，我们最后得到，加了螺线管以后电子

到达P点的概率将为

|ϕ1|2 + |ϕ2|2 + 2Re{exp (i2πΦ/Φ0)ϕ
∗
1ϕ2}. (3.54)

从这个结果我们清楚地看到，螺线管的引入会在双缝干涉项中引入一个额

外的相位差2πΦ/Φ0, 因此只要螺线管的磁通不是磁通量子Φ0的整数倍，那

它就会影响干涉条纹，尤其是，当我们改变螺线管内的磁通时，电子的干

涉条纹会发生移动。

3.2.5 磁单极子

麦克斯韦的电磁场方程关于电场和磁场其实非常对称，然而电场可以

从单个带电粒子发出，电场有源，而磁场却只能由电流产生，无源。人们

很早就想到，既然电和磁这么对称，那类比于电子，可不可能存在可以直

接发出磁场的磁单极子呢？虽然实验上到今天为止都还没有观测到磁单极

子，但是这不妨碍人们进行理论上的探讨。
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所谓的一个磁单极子，就是一个能产生下面这种磁场的粒子，

B =
g

4πr2
er, (3.55)

式中，er为径向方向的单位矢量。很显然，在包围这个磁单极子的闭合曲

面S上磁通量为 ∮
S

B · dS = g. (3.56)

所以g又称为磁荷。

很显然，如果存在磁单极子，那磁场B与矢量势A之间的关系式B =

∇ × A就不能在空间整体上成立了，因为否则的话，闭合曲面S上的磁通

将为
∮
S
B · dS =

∮
S
(∇×A) · dS, 利用斯托克斯公式并注意到闭合曲面没有

边界线，从而必有
∮
S
(∇ × A) · dS = 0，这当然和上一段的结果矛盾。不

过，在每一个空间局部上(而不是象闭合曲面这样的整体上)，我们都依然

有B = ∇ ×A。也即是说，如果存在磁单极子，那矢量势A就不能整体上

定义，而只能在每一个空间局部上分别定义。这其实并不会有任何问题，

因为我们知道A本身并不是物理的，也不是唯一的。也因为如此，不同空

间局部上分别定义的矢量势之间其实可以相差一个规范变换。

总之，在经典物理的层次上，磁单极子的存在完全可能。但是考虑到

量子力学，情况会变得有些微妙的不同。正如我们即将看到的，考虑到电

荷与磁单极子相互作用的量子力学，磁单极子仅在一个电荷量子化的世界

里才有可能，换言之，如果存在磁单极子，那么电荷必须是量子化的。所

谓电荷量子化，也就是所有带电体的电荷总量都是某个最小电荷单元的整

数倍的现象。显然，我们生活的这个世界是电荷量子化的，所以原则上可

以有磁单极子存在，实际上，狄拉克最早就是用磁单极来解释电荷量子化

现象的。不过，实际上电荷量子化可以有其它的解释(关于这一点我们将在

关于对称性与守恒定律的相关章节中再来讨论), 因而更合适的看法应该是，

在量子力学的层次上，只有电荷量子化才能允许磁单极子存在。下面我们

来解释其原因。

假设有一个磁荷为g的磁单极子位于坐标原点，一个电荷为e的带电粒

子在这个磁单极子的磁场中沿着闭合路径C运动一圈，如图(3.5)所示。 则

根据我们在第(3.2.3)小节中的讨论，磁场的存在将在带电粒子的概率幅中

额外引入一个相因子

exp

(
i
e

~

∮
C

A · dl
)
. (3.57)
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图 3.5: C包围面积S。图片来源于D. Tong的讲义。

然而关于这个相因子我们有两种不同的计算方法。第一种方法是，我们

取闭合路径包围的曲面为S, 如图(3.5)所示，则应用斯托克斯公式我们

有
∮
C
A ·dl =

∫
S
(∇×A) ·dS =

∫
S
B ·dS，假设曲面S对应的立体角是Ω, 则

由于4π立体角上的总磁通为g，所以
∫
S
B · dS = Ω

4π
g, 因此按照这第一种计

算方法，单极子的磁场在带电粒子概率幅上额外引入的相因子为

exp

(
i
e

~

∮
C

A · dl
)

= exp

(
i
eg

~
Ω

4π

)
. (3.58)

但是，我们还有另一种不同的计算相因子exp
(
i e~
∮
C
A · dl

)
的方法，那

就是取闭合路径C包围的曲面为S ′，如图(3.6)所示。 这时候由于S ′对应的

图 3.6: C包围面积S ′。图片来源于D. Tong的讲义。

立体角为4π − Ω, 而且，假设回路C的绕行方向与之前的曲面S的外法线方
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向成右手关系的话，那C的绕行方向就会与曲面S ′的外法线成左手关系，

从而在应用斯托克斯公式的时候得额外加一个负号，所以最终我们将得出

exp

(
i
e

~

∮
C

A · dl
)

= exp

(
i
eg

~
(−)

4π − Ω

4π

)
. (3.59)

很显然，要让结果(3.58)和结果(3.59)不相互矛盾，除非

eg = n2π~, n ∈ Z. (3.60)

这个结果就是著名的狄拉克量子化条件，它是理论中任意带磁荷g的粒子和

任意带电荷e的粒子之间必须满足的关系式。

给定一个磁荷为g的粒子，那么方程(3.60)将告诉我们，任何带电粒子

的电荷都必须取n2π~/g的形式，也就是电荷必须量子化，否则就不可能有
任何磁单极子存在。反过来，给定一个最小的电荷单元e，方程(3.60)将告

诉我们，所有磁单极子的磁荷也必须量子化为n2π~/e = nΦ0。

理论上，不只可能有磁单极子，甚至还可能有所谓的双荷子(dyon)，

即既携带磁荷同时又携带电荷的粒子，假设我们考虑一个荷为(e1, g1)的双

荷子在另一个荷为(e2, g2)的双荷子的电磁场中运动，那么上面的狄拉克量

子化条件将要推广成

e1g2 − e2g1 = n2π~. (3.61)

3.2.6 习题

1. 对于一个均匀磁场B, 我们可以将相应的矢量势取成A = 1
2
B × x。

请证明，在这样的一个均匀磁场中，电荷为e的带电粒子的哈密顿算符Ĥ可

以写成,

Ĥ = − ~2

2m
∇2 − e

2m
B · L+

e2

8m

(
B× x

)2
. (3.62)

式中L = x× P̂ = −i~x×∇是粒子的角动量算符，因此这个带电粒子的轨
道运动磁矩为µ⃗L = e

2m
L，因此上面哈密顿算符表达式的第二项正是标准的

磁矩与磁场的相互作用势能项。
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3.3 量子隧穿效应

量子隧穿效应是量子世界有别于经典世界的一个典型效应。它不光是

很多量子现象的重要物理机制，同时也在量子技术上非常重要。这一节我

们将主要以一维运动为例讨论量子隧穿效应。首先，我们将用波动力学的

半经典近似证明存在非0的量子隧穿概率，并给出其近似公式。其次，我们

将用波动力学讨论一种重要的量子隧穿现象，那就是超导物理中的约瑟夫

森结。

3.3.1 量子隧穿效应的半经典推导

前面我们通过取坐标表象，推导了一维薛定谔波动方程。这是一个

关于波函数如何随着时间演化的方程。但是，有很多时候，我们更关心

的是一个有确定能量的量子态(称之为定态)，这时候，波函数就可以写

成ψ(x, t) = e−iEt/~ψ(x), 代入时间演化的薛定谔波动方程，我们就可以得到

波函数的时间无关部分ψ(x)所满足的方程[
− ~2

2m

∂2

∂x2
+ V (x)

]
ψ(x) = Eψ(x). (3.63)

这就是我们在第一章中介绍过的定态薛定谔方程，使得这个方程有非0解

的E就是定态的能量，相应的ψ(x)就是定态波函数。

给定一个如图(3.7)所示的势能曲线，假设粒子最初处在中间的势阱之

内，假设粒子的能量E不太高。那么，如果是一个经典的粒子，我们知道

它必定会被约束在势阱的[a, b]区间之内，如图(3.7)所示。 但是，如果这个

粒子是一个量子的粒子，那情况就可能有很大的不同，因为根据波动力

学，微观粒子同时是波，如图(3.8)所示。在势阱之内，微观粒子的动量p大

于0，相应的波矢量k = p/~也大于0，因此这个波当然是振荡的。但是作为

波，虽然它会被两边的势垒反射，但在势垒之外依然有可能有透射波，如

图(3.8)所示。而这就意味着，微观粒子有一定的概率隧穿到势阱外面去。

真的会有这种隧穿效应吗？一般来说，这需要通过求解一维定态薛定谔方

程(3.63)才能知道。

WKB近近近似似似

对于求解一维定态薛定谔方程(3.63), 物理学家Wentzel, Kramers以

及Brillouin发展了一种重要的半经典近似方法，常常称之为WKB近似。这
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图 3.7: 经典粒子在势阱中运动。

图 3.8: 量子粒子有一定的概率隧穿到势阱外面去。

一近似仅在势能V (x)变化得很缓慢时才成立。

首先，我们做一个变换，令

ψ(x) = eiS(x)/~, (3.64)

由于波函数通常不只是一个相位因子，因此一般来说，S(x)当然是一个

复函数。将这个变换代入定态薛定谔方程(3.63), 我们就能得到 1
2m

(
dS
dx

)2 −
i~ 1

2m
d2S
dx2

+V (x) = E,整理一下，引入经典动量函数p(x) =
√

2m(E − V (x))，

则有 (
dS

dx

)2

= p2(x) + i~
d2S

dx2
. (3.65)
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下面，我们假定

~
∣∣d2S
dx2

∣∣≪ ∣∣dS
dx

∣∣2. (3.66)

因此，我们可以将方程(3.65)中的~d2S
dx2
项当成一个微扰小量来处理，形式上

即是将~当成一个小量1，然后将我们要求解的S(x)按照~的级数进行展开。
在~的0阶近似上，我们可以忽略方程(3.65)中的~d2S

dx2
，从而得到

dS0

dx
= ±p(x). (3.67)

进一步，将这个0阶近似结果代入方程(3.65)的右边，我们又可以得到直

到~的一阶展开为止的结果S1(x)，为

dS1

dx
= ±p(x) + i~

1

2

d log p

dx
. (3.68)

或者也可以将这个结果等价地写成S1(x) = ±
∫ x

p(x)dx+ i~1
2
log p(x) + C1，

代入ψ(x) = eiS/~即有

ψ(x) = C
1√
p(x)

e±i
∫ x p(x)dx/~. (3.69)

现在，假设我们把空间坐标x解析延拓成x复平面，从而波函数ψ(x)变

成这个复平面上的解析函数。p(x) = 0的经典转向点就变成解析函

数p(x) =
√
2m(E − V (x))的支点，而如图(3.8)所示的两个经典转向点之间

的区间[a, b]就变成解析函数p(x)在复平面上的一条割线。我们可以考虑围

道积分 1
2π

∮
C
p(x)dx, 其中围道C紧紧贴着割线[a, b]的上下沿，如图(3.9)所

示。 在经典物理的层次上，我们当然可以直接计算这个围道积分，在割线

的下沿我们取p(x) =
√

2m(E − V (x))，注意到多值函数每穿过割线一次都

要改变多值支，从而在割线的上沿就应该取p(x) = −
√

2m(E − V (x))，因

此最终的积分结果即是 1
2π

∮
C
p(x)dx = 1

π

∫ b
a

√
2m(E − V (x))dx。但是现在，

我们可以进一步考察在考虑到量子修正以后的半经典近似上，这个积分是

多少。为此我们需要利用WKB近似的结果(3.68)(对于式中的±p(x)，和上
面一样，在割线下沿取正号，上沿取负号), 并取ψ(x) = eiS1/~, 从而就可以

得到，

1

2π

∮
C

p(x)dx = ~
1

2πi

∮
C

dψ

ψ
− i~

1

2

1

2π

∮
C

d log p. (3.70)

1严格来说，这一说法有点问题，因为~是一个有量纲的量，有量纲量的大小并没有绝
对意义，因为它和单位的选取有关。因此当我们这样处理的时候其实是说，~相对于问题
中涉及的同量纲物理量而言非常小。
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图 3.9: Bohr-Sommerfeld量子化条件。

由于ψ(x)是x复平面上的解析函数，它在x复平面上会有一些零点，尤

其是在[a, b]这条实线段上会有一些如图(3.9)所示零点(注意ψ(x)在这条实线

段上不会有极点，因为这时候它是薛定谔方程的波函数，而波函数必定是

有限的)，复变函数的知识告诉我们，围道积分 1
2πi

∮
C
dψ
ψ
的结果就是解析函

数ψ(x)在围道C之内的零点数目，从而也就是ψ(x)在[a, b]这条实线段上的

零点数目，或者说是波函数的节点数，不妨假设为n(值得注意的是，考虑

到量子修正以后，[a, b]这条实线段就不是波函数ψ(x)的割线了，而是量子

化为一些分立的零点了)。另一方面，由于a和b都是p(x)的支点，[a, b]这条

实线段是p(x)的割线，因此围绕着C转一圈，p(x)的相位必定改变2π，也即

是说，必有
∮
C
d log p = 2πi。将这些结果代入(3.70)式，就有

1

2π

∮
C

p(x)dx =

(
n+

1

2

)
~. (3.71)

这就是在量子物理发展史上曾经很著名的Bohr-Sommerfeld量子化条件。熟

悉分析力学的读者会知道(3.71)式左边的式子很容易一般化为分析力学里

的作用变量(它和角变量是一对正则变量，可以看成是轨道角动量的推广。

参见朗道《力学》第七章)，因此Bohr-Sommerfeld量子化条件是对玻尔氢

原子模型第三条假设(轨道角动量量子化假设)的推广。

对于Bohr-Sommerfeld量子化条件还有一种物理解释，即将
∮
C
p(x)dx看

成是粒子在经典相空间(即x− p所构成的两维空间)的封闭轨迹线2之内所包

围的面积。把这个面积分成若干格，每格的面积为(2π~)，进而(3.71)告诉

我们，我们将共得到n格，而n就是粒子第n能级波函数的节点数。另一方

面，由于波函数每增加一个节点，就相应于势阱之内出现一个新的束缚态，

因此n也就是能量不超过E的量子态的总数目。从而也就是说，在半经典近

2注意，在经典物理层次上，粒子在如图(3.8)所示的[a, b]区间作周期运动，从而相轨迹

是封闭的。
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似下，相空间每一个面积为2π~的相格刚好对应一个量子态。从而相空间
体积元∆x∆p之内的量子态数目为

∆x∆p

2π~
. (3.72)

这是用单个运动自由度所得出来的结果，将这个结果推广到任意的s个自由

度(记相应的正则坐标为qi, i = 1, 2, ..., s，正则动量为pi, i = 1, 2, ..., s)，则

相空间体积元内的量子态数就应该是

∆N =
∆q1...∆qs∆p1...∆ps

(2π~)s
. (3.73)

最后，利用S(x)的0阶近似，并注意到 dp
dx

= d
dx
[
√

2m(E − V (x))] =

−dV
dx

m
p
, 我们可以将近似条件(3.66)重写为∣∣∣λdV

dx
/Ek

∣∣∣≪ 4π. (3.74)

式中λ为粒子的德布罗意波长，Ek = p2/(2m)为粒子的动能，因此这个条件

说的无非是，在一个德布罗意波长的尺寸上势能的变化量要远小于动能。

特别的，这个近似条件告诉我们，在p(x) = 0的经典转向点，即图(3.8)中所

示的a、b、c点，我们的WKB近似解(3.69)是不成立的。所以真正用WKB近

似来求解一维问题的时候，我们要分区域分别应用WKB近似解(3.69)，然

后在经典转向点附近将不同区域的解拼接起来。

量量量子子子隧隧隧穿穿穿的的的WKB近近近似似似

到此为止我们还没有看到WKB近似任何神奇的地方，看起来它只不

过略微修正了一下德布罗意波。这是因为，我们心中默认了E > V (x)。

然而真正神奇的是，作为一种数学方法，并没有任何理由限制我们将上

面的推导限制于E > V (x)的区域，同样的推导也完全适用于E < V (x)的

在经典物理上不被允许的区域。只不过这时候p(x) =
√
2m(E − V (x)) =

−i
√
2m(V (x)− E)是一个纯虚数3，因此相应的WKB近似解(3.69)是指数

3注意，这并不意味着粒子的动量可以是虚数，因为严格来说我们这一节所引入

的p(x)函数并不是测量粒子动量所得到的值，测量粒子动量所得的值当然要是动量算符的

本征值，是一个数，而不是一个函数。当然，当E > V (x)时我们可以将p(x)理解为经典

动量，而E < V (x)时，可以将h/|p(x)|看成是隧穿距离，而p(x)本身则并没有很清楚的物

理解释。
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衰减或者指数增长的，

ψ(x) = C
1√
p(x)

e±
∫ x
√

2m(V (x)−E)dx/~. (3.75)

因此，根据WKB近似，我们可以大致理解图(3.8)中所示的波函数解。

首先，在势阱之内的[a, b]区间，E > V (x)，从而WKB波函数(3.69)是指数

振荡的。其次，在势垒区，比如图(3.8)中的[b, c]区间，E < V (x)，粒子的

确会被势垒反射，但是，根据我们上一段的分析，[b, c]区间的波函数并不

是0，而是可以有一个非0的指数衰减的WKB波函数(3.75) (指数增长解显

然不符合物理要求)。最后出了势垒区，比方说在图(3.8)中的[c,+∞)区间,

波函数再次开始增荡，代表隧穿到势垒之外的粒子。

因此，根据WKB近似的分析我们可以知道，在量子力学的层次上，即

使粒子的能量并不足够大，它也有一定的概率隧穿过势垒，从而挣脱势

阱的束缚跑到外面去。以图(3.8)中所示的情形为例，我们可以定义粒子

从[a, b]区间隧穿到[c,+∞)区间的概率幅T为波函数在外内两个经典转向点

的比值，也即是在c点测到粒子的概率幅比上在b点测到粒子的概率幅，即

T = ψ(c)/ψ(b). (3.76)

根据波函数的连续性，我们可以在[b, c]势垒区求解这个比值。严格求解当

然会比较复杂，但是我们可以设想在[b+ ϵ, c− ϵ]的区域近似地使用WKB近

似，从而根据(3.75)(取指数衰减解)，我们就有

T ≈ T0e
− 1

~
∫ c
b dx

√
2m(V (x)−E). (3.77)

或者说，隧穿概率D = |T |2近似为

D ≈ |T0|2e−
2
~
∫ c
b dx

√
2m(V (x)−E). (3.78)

从这个结果可以看到，势垒越高隧穿的概率越小，势垒越厚，隧穿的概率

也越小。

伽莫夫最早用量子隧穿效应解释了α粒子衰变。伽莫夫将放射性原子

核看成一个口袋，这个口袋里面束缚了一些α粒子，但是，由于量子隧穿

效应，口袋中的α粒子有一定的概率能穿过“口袋壁”的势垒跑到原子核

外面去，这就是α粒子衰变。

1981年，IBM公司的宾尼希(G. Binnig)和罗勒(H. Rohrer)发明了基

于量子隧穿效应的扫描隧穿显微镜(scanning tunneling microscope, 简
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称STM), 它使得科学家可以直接观察和定位单个原子，甚至可以精确

操纵原子，从而极大地推动了纳米科技的发展。

当然，作为一种有别于经典物理的典型量子效应，量子隧穿效应起作

用的地方远远不止这些，下面我们将介绍量子隧穿效应在超导物理的约瑟

夫森结中如何起作用。

3.3.2 约瑟夫森结(Josephson junction)

假设我们取两块超导体，中间通过一个绝缘体薄层将两者联结起

来，绝缘层的厚度大概在1nm量级，如图(3.10)所示。 这就构成了一个

图 3.10: 约瑟夫森结。

约瑟夫森结，结两边的超导体我们分别标记为1、2。我们可以将绝缘

层看成是一个势垒，但是，只要绝缘层足够薄，那么对于库珀对而言，

它完全有可能通过量子隧穿效应从超导体1隧穿到超导体2，也有可能

从超导体2隧穿到超导体1。不妨分别记超导体1、2内的库珀对波函数

为ψ1 =
√
ρ1e

iθ1和ψ2 =
√
ρ2e

iθ2，可以设想，如果ψ1与ψ2完全相同，那么

从1隧穿到2的库珀对与从2隧穿到1的库珀对将会刚好平衡，从而结上并没

有超导电流流过。

但是，如果结两边库珀对的相位不同，那1到2的隧穿和2到1的隧穿

就可能不能完全平衡，从而在结上产生一个非0的隧穿超导电流Je。由

于Je = eNJ(N为材料中库珀对的总数目，e为库珀对的电荷)，因此这也就

是说，这时候单个库珀对在结上可能有非0的概率流密度。同时，根据局域

概率守恒，流过结的超导概率流密度J必定来源于左右两边的超导体，因

此，为了维持结上的超导电流，我们需要把两个超导区域1和2联接起来形
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成一个闭合回路。

由于超导体内部没有电流，所以如果将如图(3.10)所示的两个超导区

域1和2看成是两个沿着x轴放置的超导圆柱体的话，那超导电流当然分布

在圆柱体的表面并沿着x轴方向流动。但是，超导电流在超导区域上具体如

何分布并不是我们这里关心的重点，由于我们主要关心电流沿x轴的流动，

所以为了简化问题，我们不妨将整个约瑟夫森结看成是沿着x轴的一条线，

这条线的左边是超导线，中间是很短的一段绝缘线，右边又是超导线。作

这样的一维简化以后，电流密度和电流强度当然就是一回事了。

我们不妨记约瑟夫森结左边的超导概率流密度为J1, 右边的概率流密

度为J2。根据对(3.38)式的讨论，库珀对在约瑟夫森结左边运动时，能量

为 m
2ρ21

J2
1，而在结右边运动时，能量为

m
2ρ22

J2
2，但是，由于库珀对可以通过

量子隧穿效应从1跑到2或者从2跑到1，而库珀对隧穿前后的能量应该是守

恒的，从而 m
2ρ21

J2
1 = m

2ρ22
J2
2, 我们不妨将这个能量记为ε。在实际应用中，约

瑟夫森结两边总是会取同一种超导材料，从而实际上ρ1 = ρ2 = ρ，是一

个常数。而且当超导电流达到稳恒时，对于一维电流流动，稳恒电流条件

告诉我们，结两边的超导电流密度以及结上的电流密度必定都相等，从

而J1 = J2 = J, 因此隧穿前后，库珀对的能量守恒条件总能满足，相应的

能量可以写作ε = m
2ρ2

J2。下面我们要做的就是找到流过结的电流密度J的

基本规律。

为此，假设绝缘层的势垒为V (x)，V (x) > ε，且绝缘区为从x =

−a到x = a这样一个厚度为2a的薄层内，如图(3.10)所示。我们记κ(x) =√
2m(V (x)− ε), 则根据一维定态薛定谔方程的WKB近似(3.75)，绝缘区的

波函数必定为WKB指数衰减解和指数增长解的线性组合，因此，我们总是

可以将绝缘区的WKB波函数写成

ψ(x) = Ae−
1
~
∫ x
−a κ(x)dx +Be−

1
~
∫ a
x κ(x)dx. (3.79)

记d = e−
1
~
∫ a
−a κ(x)dx, 则有ψ(−a) = A + Bd, ψ(a) = Ad + B。另外，由

于ψ(−a)在超导体1内，从而ψ(−a) = √
ρ1e

iθ1，同样ψ(+a) =
√
ρ2e

iθ2(当然，

正如我们上面说过的，实际上ρ2 = ρ1)。进而我们可以解得

A =

√
ρ1e

iθ1 − d
√
ρ2e

iθ2

1− d2
, B =

√
ρ2e

iθ2 − d
√
ρ1e

iθ1

1− d2
. (3.80)

将绝缘区的WKB波函数(3.79)代入概率流密度的表达式(3.34), 就可以
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得到

J = ex
κ(x)

m
(−i)(A∗B −B∗A)d = 2ex

κ(x)

m
Im(A∗B)d

= ex
2d

1− d2
κ(x)

m

√
ρ1ρ2 sin(θ2 − θ1)

= JC sin(θ2 − θ1). (3.81)

式中JC = ex
2d

1−d2
κ(x)
m

√
ρ1ρ2，ex为x方向的单位矢量。可见，穿过约瑟夫森

结的超导电流取决于结两边的相位差，只要两边有相位差，通常就有电流

通过。如果不只有相位差，还有矢量势穿过约瑟夫森结，那么根据规范不

变性(3.51), 可将相位差推广为，

∆θA = θ2 − θ1 −
e

~

∫ a

−a
A · dl. (3.82)

这时候穿过结的超导概率流密度就应该是

J = JC sin(∆θA). (3.83)

但是，如果我们不只是把两个超导区域1和2联接起来形成闭合回路。

而是更一般地，将两个超导区域分别联至电池的两端，从而给结两边加上

一个电压U(U可以为0)，那么情况将发生什么变化呢？当然，正如我们将

要看到的，这样一来，库珀对就不再能维持在能量确定的定态了，穿过结

的超导概率流密度也将随着时间演化。不过，可以论证，(3.83)式依然成

立。

但是，有了电压以后，相位差∆θA将随着时间演化。这是因为，首

先，对于任何波函数为ψ =
√
ρeiθ的超导体，如果它的外电势为ϕ(从而势

能V = eϕ), 则由(3.38)式可知，

−~∂tθ = ε+ eϕ, (3.84)

式中ε就是前面的 m
2ρ2

J2。进而我们就可以知道，对于约瑟夫森结，设结两

边的电势分别为ϕ1和ϕ2，则

∂t(∆θA) =
(
∂tθ2 − ∂tθ1

)
− e

~

∫ a

−a
∂tA · dl

= − e

~
(
ϕ2 − ϕ1

)
− e

~

∫ a

−a
∂tA · dl

=
2π

Φ0

∫ a

−a
(−∇ϕ− ∂tA) · dl

=
2π

Φ0

∫ a

−a
E · dl = 2π

Φ0

U. (3.85)
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我们可以将结果(3.83)和结果(3.85)概括在一起，并把概率流密度替换

成通过结的电流强度，从而就有基本方程组

I = IC sin(∆θA), U =
Φ0

2π
∂t(∆θA). (3.86)

这组方程就是所谓的Josephson关系式。从这组方程可以看到，如果结两

端的电压U = 0，那么一般来说流过结的电流强度并不为0！而可以是

从−IC到IC之间的任何值。在0电压之下可以有有限的电流，当然就意味

着0电阻，这正是超导的特性之一。相反，如果给Josephson结两边加一个

有限的直流电压U0，那么根据(3.86)式，将有(∆θA) = (∆θA)0 +
2πU0

Φ0
t。进

而，I = IC sin
(
(∆θA)0 +

2πU0

Φ0
t
)
，从而穿过结的超导电流将以角频率2πU0

Φ0
快

速振荡(因为磁通量子Φ0很小)，从而平均来说，结上的超导电流反而为0。

当然，这种电流的快速振荡一定会辐射电磁波，实际上这种电磁辐射就来

源于库珀对从Josephson结的一边隧穿到另一边时，由于电势能的落差而辐

射出来的光子。

值得说明的是，Josephson结在超导量子计算中有很重要的应用，它可

以用来实现超导量子比特，我们在后面的章节中还会回到这个问题。

3.3.3 习题

1.沿着x轴运动的一维线性谐振子的势能为V (x) = 1
2
mω2x2，式中m是

谐振子的质量，ω是线性谐振子的角频率。请用Bohr-Sommerfeld量子化条

件导出一维线性谐振子的量子化能级，为En = (n+ 1
2
)~ω。

2.对于薛定谔波动方程i~ ∂
∂t
ψ(x, t) =

[
− ~2

2m
∇2 + V (x)

]
ψ(x, t), 假设

令ψ(x, t) =
√
ρ(x, t)eiS(x,t)/~，式中S(x, t)为一个实函数，ρ(x, t)为概率密

度。请证明，在~ → 0的极限下，S(x, t)满足经典力学的哈密顿-雅可比方

程，即满足

∂S

∂t
+

1

2m

(
∇S
)2

+ V (x) = 0. (3.87)

因此这就证明了，经典力学可以作为量子力学在~ → 0时的极限。
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3.4 自旋1/2的带电粒子

3.4.1 泡利算符

前面我们已经研究了磁场中的一个带电粒子，比如说电子，的薛定谔

波动方程。但是斯特恩-格拉赫实验已经告诉我们了，电子还有一个内禀自

由度，即自旋，电子的自旋会产生一个自旋磁矩，当电子处在磁场中的时

候，这个自旋磁矩就会和磁场相耦合。为了反映电子自旋这个内禀自由度，

除了位置和动量以外，人们还需要额外引入了一个新的基本物理量，即电

子的自旋角动量。电子的自旋角动量纯粹是一个量子力学的物理量，它并

没有经典对应，因此它只能用算符来描述，我们记为S = (Sx, Sy, Sz)，S的

三个分量我们记作Si, i = 1, 2, 3分别对应Sx, Sy, Sz。电子的自旋只有两个取

值±~/2, 这意味着自旋算符的每一个分量都只有±~/2的本征值。
等价的，人们也常用泡利算符σ⃗来描述电子的自旋，它和自旋算符的

关系是

S =
~
2
σ⃗. (3.88)

在第二章中我们已经证明，泡利算符的三个分量是两两反对易的，比如

说σxσy = −σyσx。另外，泡利算符每一个分量的平方都等于1，即σ2
x =

σ2
y = σ2

z = 1。不光如此，泡利算符还满足σxσyσz = i。实际上，我们可以

将泡利算符的这些性质归纳为如下这个式子

σiσj = δij + iϵijkσk, (3.89)

这里，我们应用了爱因斯坦求和约定，因此在公式(3.89)中我们要对k指标

进行求和，从1加到3。后面我们将对所有将要出现的公式都使用这样的求

和约定。当然，也请大家注意公式(3.89)中出现了两个含义不同的i，不同

于作为指标的i，作为系数出现的那个是表示虚数单位i。

而泡利算符有一个很巧妙的应用，那就是可以用来将诸如
√
a2x + a2y + a2z

这样的开方表达出来(这里ax, ay, az是矢量a的三个分量)。我们先把这个答

案写出来，然后再来证明它√
a2x + a2y + a2z = axσx + ayσy + azσz. (3.90)

证明实际上非常简单，人们直接将这个式子两边平方，然后利用泡利算符

两两反对易的性质以及平方等于1的性质就能得到结果。用矢量形式来说，
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证明上面这个式子其实就是要证明

a2 = (a · σ⃗)2. (3.91)

利用(a · σ⃗)2 = aiσiajσj = aiaj(δij + iϵijkak) = aiai就得到了证明，推导过程

中我们利用了方程(3.89), 并且利用了aiajϵijk = 0(其实就是(a× a)k = 0)。

由于自旋和空间变量是相互独立的自由度，所以泡利算符与位置算符，

泡利算符与动量算符，更一般的，泡利算符与任何只涉及位置和动量的算

符都是对易的。与这相关，有一个有用的公式我们后面会用到，即假设某

个矢量算符K只涉及位置和动量(因此与泡利算符对易)，那么

(σ⃗ ·K)2 = K2 + iσ⃗ · (K×K). (3.92)

利用泡利算符的代数关系式(3.89)人们容易证明这一结果。值得注意的是，

因为K是算符，它的不同分量之间一般来说不对易，因此K ×K ̸= 0(比方

说(K ×K)z = KxKy −KyKx一般来说就不为零)，当然，如果某个K的不

同分量相互对易，那K×K就和普通的矢量叉乘一样等于0了。

考虑到自旋以后，我们该怎么写磁场中的电子的哈密顿算符呢？最简

洁的一个写法是泡利给出来的，

H =
[σ⃗ · (P− eA)]2

2m
+ V (X). (3.93)

利用刚才我们得到的(3.91)式，人们容易证明，当磁场等于零时，即A =

0时，这个哈密顿算符就变成标准的不考虑自旋的非相对论粒子的哈密顿

算符。那么有磁场时这个结果对不对呢？这要看它能不能和实验相吻合，

我们将在下一小节进一步讨论这一点。另一个问题是，泡利为什么不再加

上σ⃗ · P这样的项呢？原因在于，这样的项不满足空间反演不变性。因为在
空间反演之下，P → −P, 但是自旋是一种角动量，而角动量是一种赝矢

量，也就是说，在空间反演之下σ⃗ → σ⃗, 因此σ⃗ ·P就不是空间反演不变的。

3.4.2 旋量波函数与自旋1/2薛定谔波动方程

考虑到电子的自旋以后，希尔伯特空间的矢量基就不能只取位置本征

态|x⟩了，还必须同时把自旋态包括进来。人们通常还选择自旋算符Sz的两
个本征态，即本征值为~/2的自旋向上态| ↑⟩ 以及本征值为−~/2的自旋向
下态| ↓⟩。因此完整的矢量基要选{|x, ↑⟩, |x, ↓⟩}这样的态构成，它们是位置
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算符和Sz的共同本征态。矢量基的完备性关系(3.4)现在就应该写成∫
dτ
(
|x, ↑⟩⟨x, ↑ |+ |x, ↓⟩⟨x, ↓ |

)
= 1, (3.94)

也就是说既要对向上向下自旋求和，也要对空间坐标进行积分, 式中dτ =

d3x。

如此一来，电子的任意一个态矢量|ψ⟩就应该展开成|ψ⟩ =
∫
dτ |x, ↑

⟩⟨x, ↑ |ψ⟩ +
∫
dτ |x, ↓⟩⟨x, ↓ |ψ⟩。引入波函数ψ↑(x) = ⟨x, ↑ |ψ⟩, 和波函

数ψ↓(x) = ⟨x, ↓ |ψ⟩，态矢量的展开就可以写成|ψ⟩ =
∫
dτψ↑(x)|x, ↑⟩ +∫

dτψ↓(x)|x, ↓⟩，这也就是说，在坐标表象中，电子的态矢量|ψ⟩应该用一
对波函数(ψ↑(x), ψ↓(x))来表示，我们把这一对波函数排成一个两分量旋

量Ψ(x), 称作旋量波函数，即

Ψ(x) =

(
ψ↑(x)

ψ↓(x)

)
. (3.95)

类似的，我们可以将电子的另一个任意态矢量|ϕ⟩所对应的旋量波函数记
为Φ(x), 那么完全类似于前面没有自旋的情形，我们将有

⟨ϕ|ψ⟩ =
∫
dτΦ†(x)Ψ(x). (3.96)

当然，由于取了坐标表象，所以这时候动量算符就应该表示成−i~∇。
又由于也取了自旋向上和自旋向下两个自旋基矢量，所以泡利算符σ⃗就要

表示成2× 2的厄米矩阵̂⃗σ, 这就是所谓的泡利矩阵，它们的具体形式可以由
下式给出，

σ̂x =

(
0 1

1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0

0 −1

)
. (3.97)

当然，泡利矩阵作为泡利算符的矩阵表示，它们同样也满足泡利算符的代

数关系(3.89)。一般地，我们可以把电子的任意一个抽象算符O表示成Ô,

一般来说Ô将既是一个微分算符，同时又是作用在二分量旋量上的2 × 2矩

阵。完全类似于没有自旋的情况，我们将有

⟨ϕ|O|ψ⟩ =
∫
dτΦ†(x)ÔΨ(x). (3.98)
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如此一来，根据泡利给出的哈密顿算符(3.93), 我们就可以把磁场中电

子的薛定谔方程写成

i~
∂

∂t
Ψ(x, t) =

[
− ~2

2m

(̂⃗σ · (∇− ie

~
A)

)2

+ V (x)

]
Ψ(x, t). (3.99)

下面我们就来检验一下(3.99)这个方程到底能不能解释实验所观测到

的事实。为此我们主要想把式中的
(̂⃗σ·(∇− ie

~A)
)2
再进一步计算出来。首先，

根据公式(3.92)，
(̂⃗σ ·(∇− ie

~A)
)2

= (∇− ie
~A)2+î⃗σ · [(∇− ie

~A)×(∇− ie
~A)]。

很显然∇×∇ = 0, A×A = 0，因此(∇− ie
~A)× (∇− ie

~A) = − ie
~ (∇×A+

A×∇)。注意∇×A是算符的相乘，因此∇×A = (∇×A)−A×∇，这里
的(∇×A)就是普通的旋度，因此就等于磁场强度B, 而等式右边第二项的

负号来自于矢量叉乘交换顺序会出一个负号。因此(∇− ie
~A)× (∇− ie

~A) =

− ie
~B。因此

(̂⃗σ · (∇ − ie
~A)

)2
= (∇ − ie

~A)2 + e
~B · ̂⃗σ，代入(3.99)就可以得

到，

i~
∂

∂t
Ψ(x, t) =

[
− ~2

2m
(∇− ie

~
A)2 − e~

2m
̂⃗σ ·B+ V (x)

]
Ψ(x, t). (3.100)

我们看到，多出来的这一项− e~
2m
̂⃗σ ·B 完全吻合实验中发现的电子自旋磁矩

和磁场的耦合，如果将这一项写成标准的−µ⃗S · B的形式，我们就会发现，
自旋磁矩µ⃗S = e~

2m
̂⃗σ = e

m
Ŝ，这正是完全正确的电子自旋磁矩的形式(当然我

们要注意到电子电荷e为负)，尤其是正确地得到了比通常的轨道角动量磁

矩公式多出来的2倍因子。由此可见，方程(3.99)与实验是吻合的。

3.4.3 习题

1.请证明(a · σ⃗)(b · σ⃗) = (a · b) + i(a× b) · σ⃗, 式中a、b为两个普通的矢

量，不是算符。

2.请证明ei
θ
2
(n·σ⃗) = cos θ

2
+ i(n · σ⃗) sin θ

2
，式中n为一个任意的单位矢量，

θ是一个角度。

3.我们已经知道了旋量波函数的概念。在数学上，旋量也可以定

义成这样的一个两分量的量ϕ = ( ϕ1ϕ2 )，它在绕n轴旋转θ角时按照ϕ →
exp

(
i θ
2
n · ̂⃗σ)ϕ的方式变化。现在，请证明由旋量ϕ构造出来的量ϕ†̂⃗σϕ是一个

通常的三维矢量，也即是说，在空间旋转之下，这个量像通常的矢量那样

变化。


