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第二章 量子力学的基本原理

陈陈陈童童童

本章将会深入地探讨量子力学最基本最核心的原理，同时也会讲述量

子力学的基本语言。这些原理和语言都是普遍适用的，它适用于单粒子体

系、多粒子体系，适用于原子分子，也适用于许许多多原子分子构成的一

整块材料，适用于量子计算机和量子通信，适用于量子场、甚至也适用于

整个宇宙！

本章的第一节我们也讨论了量子比特、量子货币、量子不可克隆定理、

和薛定谔的猫等等内容，当然，我们主要是想借这些内容阐明量子力学的

基本原理。本章的第二节会比较抽象一些，是从算符的角度概括量子力学

的原理，搭建量子力学的基本理论框架。第三节将探讨量子力学的核心本

质之一，量子纠缠。我们将解释为什么量子纠缠不能实现超光速信息传递，

我们还将简要讨论量子纠缠在量子通信中的重要应用，并且会说服大家，

为什么爱因斯坦错了。在本章的补充材料中，我们将回顾历史，讨论海森

堡是如何想到矩阵和矩阵相乘的，并进而把海森堡的思想和量子力学的基

本原理联系起来。
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第二章 量子力学的基本原理 4

2.1 量子比特与薛定谔的猫

2.1.1 态叠加原理

物理系统的量子状态可以由波函数来描述，对于一个微观粒子来说，

波函数就是形如ψ(x, t)的一个复函数。玻恩告诉我们，在量子力学里我们

只能讨论概率，波函数的模方|ψ(x)|2就给出微观粒子在x处出现的概率密
度。波函数包含了量子系统的所有信息，但是我们不能直接测量波函数，

我们能直接测量的是诸如波函数模方这样的概率。

在经典物理里面我们有时候也使用概率，但在那里我们之所以使用概

率都是因为我们没有掌握足够的信息，比如由于我们没有收集到所有大气

分子的运动信息，我们就无法准确地计算明天的天气情况，因此我们才说

明天下雨的概率是多少多少，但只要我们足够努力，原则上我们可以收集

到所有大气分子的信息。在经典物理里，原则上我们能够掌握所有信息，

并进而用这些信息确定地计算出诸如明天是否会下雨这样的问题。但是量

子力学的概率是根本不同的，它是量子力学本身的内在性质，或者说是我

们的世界本身的内在性质，也就是说，即使你知道所有的信息，也就是知

道系统的波函数，你也只能计算概率，因为我们的世界本身就是如此，就

是不确定的。何况，在量子力学里面，对于系统的一个任意状态，我们实

际上常常无法通过测量收集到关于这个状态的所有信息，量子力学本身限

制了我们的信息提取能力。

量子力学的规律是普适的，不仅仅微观粒子可以用一个波函数来描写，

整个宇宙都能用一个波函数来描写，我们可以称之为宇宙波函数，著名物

理学家霍金的重要工作之一就是研究这个宇宙波函数。当然，宇宙波函数

比单个微观粒子的波函数ψ(x, t)要复杂好多，它大概是下面那样的，

Ψ[a(t), hij(x), Ai(x), ψe(x), ψq(x), ....] (2.1)

其中a(t)是宇宙的膨胀因子，hij(x, t)是引力波，Ai(x)是电磁场，ψe(x)是电

子场，ψq(x)代表夸克场，此外还需要写上胶子场等等，总之要把一切基本

粒子的场都作为宇宙波函数Ψ的自变量包括进来。

但是不管多么复杂，所有的波函数都满足态叠加原理，可以说态叠

加原理是量子力学里面最基本的原理。根据态叠加原理，波函数ψ和波函

数cψ(c是一个任意的非零复数)描写的是同一个量子态。更重要的是，根据

态叠加原理，如果ψ1是系统的一个可能态，ψ2也是系统的一个可能态，那
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么它们的任意线性叠加也将是一个可能态，即ψ = c1ψ1 + c2ψ2(c1, c2是两个

任意的复数)也是一个可能态。

由于这个线性叠加原理，一个量子系统所有可能态的集合就构成了一

个多维线性空间，而一个量子态ψ就是这个线性空间里的一个矢量，常常

也记作|ψ⟩。|ψ⟩这样的记号和波函数是一一对应的，但是，相比于波函数
的描述，|ψ⟩这样的量子态记号有许多优点：首先，它是通用的，无论是对
于单粒子，还是多粒子，甚至是整个宇宙，我们都可以用一样的这种记号

来表示其量子力学状态。其次，它是抽象的，它抽象地对应于量子态，而

与具体怎么定量描述这个量子态无关。而波函数是一个具体的函数，它只

是对量子态的一种具体描述方式，而后面我们将会看到，一个量子态可以

有无穷多种相互等价的具体描述方式。比如，对于单个微观粒子而言，符

号ψ(x)总是一个数值，而|ψ⟩不是用来表示这个函数值，而是用来代表函数
映射本身，因此它不是一个复数，而是一个抽象的记号，当然，对于单个

微观粒子而言，这个记号和具体的函数ψ(x)是一一对应的。这样的记号称

作狄拉克记号，不管是微观粒子的波函数还是更复杂的宇宙波函数，它们

所描述的量子态都可以用同样的狄拉克记号来表示。用狄拉克记号，量子

态的线性叠加就可以写成如下形式，

|ψ⟩ = c1|ψ1⟩+ c2|ψ2⟩. (2.2)

作为线性空间里的矢量，人们完全可以按照线性代数里的方法取一个

合适的矢量基，然后在这个矢量基中将态矢量|ψ⟩展开成分量形式，并把它
的所有分量排列成一个列矢量，所以，如果你觉得|ψ⟩这样的记号过于抽
象，你也完全可以将它想象成一个普通的列矢量，这两者是可以相互对应

的。你可能想到，线性代数里除了有列矢量，还有行矢量，|ψ⟩可以看作列
矢量，那么行矢量是什么呢？很简单，行矢量就是列矢量的转置，但是，

由于我们考虑的线性空间不是一个实线性空间，而是复线性空间，所以在

量子力学里我们要多加上一个复数共轭(为什么要加复数共轭的原因我们稍

后会解释)，将行矢量规定为列矢量的共轭转置，也就是先将一个列矢量

的每一个分量取复数共轭，然后再将结果转置，|ψ⟩的共轭转置就记作⟨ψ|，
即

⟨ψ| = |ψ⟩†, (2.3)

记号†就表示共轭转置，也叫厄米共轭。因此在量子力学里，一个量子态如
果用列矢量来表示，我们就用|ψ⟩这样的记号，如果用行矢量来表示我们就
用⟨ψ|这样的记号。
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我们知道，一个行矢量乘以一个列矢量就会得到一个数。所以在量

子力学里，由任意两个量子态|ψ⟩, |ϕ⟩, 我们都可以计算出一个复数，记
作⟨ϕ|ψ⟩, 它就是先将|ϕ⟩态表示成行矢量⟨ϕ|，然后再将行矢量⟨ϕ|乘以列矢
量|ψ⟩, ⟨ϕ|ψ⟩就表示这个乘积。你已经想到了，由刚才的两个量子态，我
们还可以计算出另一个复数⟨ψ|ϕ⟩, 这两个复数是什么关系呢？很显然，
⟨ψ|ϕ⟩就是⟨ϕ|ψ⟩的共轭转置，即⟨ϕ|ψ⟩† = |ψ⟩† · ⟨ϕ|† = ⟨ψ|ϕ⟩。这里请回想一
下转置的规则(AB)T = BTAT , 而复数共轭的规则是普通的，因此共轭转置

的规则就是(AB)† = B†A†。当然，一个复数的共轭转置其实就是它的复共

轭（复数的转置还是它本身），因此我们有

⟨ϕ|ψ⟩∗ = ⟨ψ|ϕ⟩. (2.4)

当然狄拉克记号和波函数是一一对应的，你可能想知道⟨ϕ|ψ⟩用波函数
的形式来写是什么，对于单个微观粒子的情形，结果如下

⟨ϕ|ψ⟩ =
∫
dxϕ∗(x)ψ(x). (2.5)

为了帮助你理解这个结果和我们上一段说的有什么联系，我们不妨

将ψ(x)记为ψx，将ϕ(x)记为ϕx, 并且将积分写成求和(定积分的定义本来

就是求和以后取极限)，这样一来上面这个结果就可以重写成

⟨ϕ|ψ⟩ =
∑
x

ϕ∗xψx, (2.6)

你想一下，这是不是行矢量乘以列矢量的标准形式（当然，别忘了对行矢

量我们多了一个复数共轭）？ψx就是列矢量|ψ⟩的第x个分量嘛！
特别的，我们考虑|ψ⟩与它自身的乘积，即⟨ψ|ψ⟩, 对于单个微观粒子情

形，按照公式(2.5), 它就是

⟨ψ|ψ⟩ =
∫
dxψ∗(x)ψ(x) =

∫
dx|ψ(x)|2, (2.7)

玻恩告诉我们，这就是处在|ψ⟩态上的粒子在空间各点出现的概率的总和，
通常要求这个总概率等于1，称之为量子态的归一化。现在我们就能理解为

什么在定义行矢量的时候要多加一个复数共轭了，因为只有这样⟨ψ|ψ⟩才是
概率嘛，尤其是，只有这样⟨ψ|ψ⟩才会是一个正实数嘛，即对于任意|ψ⟩

⟨ψ|ψ⟩ ≥ 0, (2.8)
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式中等于0仅当|ψ⟩本身为0时才可能。⟨ψ|ψ⟩也称作态矢量|ψ⟩模长的平方，
因此归一化的态矢量就是模长为1的态矢量，即满足

⟨ψ|ψ⟩ = 1. (2.9)

由于|ψ⟩和c|ψ⟩描述的是同一个量子态，因此态矢量的模长没有绝对的物理
意义，这就是为什么我们可以将它们归一化的原因。

在数学上⟨ϕ|ψ⟩有一个专门的名称，它叫作态矢量|ψ⟩和态矢量|ϕ⟩的内
积，因为它其实就是我们熟悉的三维空间矢量内积(点乘)的推广。和通常

两个三维空间的单位矢量的内积大小反映的是这两个矢量在方向上的靠近

程度一样，两个模长为1的态矢量的内积反映的其实是这两个态矢量之间

的相似程度。特别的，两个完全不相似的态矢量的内积必定为零，这时候

我们称这两个态矢量正交。很显然，这里的正交概念也是普通的三维空间

矢量正交概念的一个推广。数学家常常把一个定义了内积的线性空间称作

希尔伯特空间。因此很明显，态叠加原理以及上面几段的定义告诉我们，

一个量子系统所有可能量子态的集合构成了一个希尔伯特空间，常常记

作H。

2.1.2 量子比特与量子力学原理

你可能听说过量子比特，量子比特就是量子信息的基本单位，是量子

计算机技术的基础。经典信息的单位是比特，一个比特就是或者为0或者

为1的两种可能取值，实现一个经典比特需要两个不同的状态，比如0用某

个系统的低电压状态来表示，1则用高电压状态来表示。一个量子比特则

是一个量子系统，它可以说是最简单的量子力学系统，它有两个完全不

同的量子态，其中一个叫|0⟩态，另一个叫|1⟩态。量子比特有多种实现方
式，比方说我们可以把一个两能级量子系统的低能级称作|0⟩态，高能级称
作|1⟩态。再比方说，我们知道电子有自旋，电子自旋角动量的z分量Sz只

有两个不同的量子化取值±~/2，这对应于电子的两个不同自旋状态，
Sz = ~/2时我们就说电子处在自旋向上态，记为| ↑⟩，相反Sz = −~/2时我
们就说电子处在自旋向下态，记作| ↓⟩。我们可以把一个电子的自旋量子态
当作一个量子比特，自旋向下态| ↓⟩称作|0⟩态，自旋向上态| ↑⟩称作|1⟩态。
当然，我们也可以把一个光子的两个不同偏振态分别当作|0⟩态和|1⟩态，比
如|0⟩对应x方向偏振的偏振态|x⟩，|1⟩对应y方向偏振的偏振态|y⟩。

量量量子子子态态态的的的区区区分分分性性性
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总之，实现量子比特|0⟩态和|1⟩态的方式很多。但是所有这些实现方式
必须满足一个共同的要求，那就是|0⟩态和|1⟩必须可以确定地区分。比方
说，光子的两个偏振态|x⟩和|y⟩就可以确定地区分，如果有两个光子，一
个处在|x⟩态，另一个处在|y⟩态，那你只要取一个偏振化方向为x方向的偏
振片(即这个偏振片会让x方向偏振的偏振光顺利通过，而完全吸收偏振方

向与x垂直的y方向偏振的偏振光)，然后分别让这两个光子通向这个偏振

片，则能通过的光子就一定处于|x⟩态，通不过的光子就一定处于|y⟩，这
样你就能以100%的把握将这两个态区分开来，这就是可以确定地区分的含

义。相反，光子沿着45度角方向偏振的偏振态(我们记为|+⟩)和|x⟩偏振态之
间就不可以确定地相互区分，这是因为，|x⟩偏振态的光子当然一定能通过
偏振化方向为x方向的偏振片，但是|+⟩偏振的光子也有一定的概率(按照

马吕斯定律，这个概率是cos2(π/4))通过这个偏振化方向为x方向的偏振片，

因此，假设你只有一个光子只能做一次实验，如果你观测到光子通过了偏

振片，你就无从判断你的光子原来是处在|+⟩态还是处在|x⟩态, 因此你就不

能100%地将这两个量子态区分开来。类似的，光子沿着135度角方向偏振

的偏振态(我们记为|−⟩)和|x⟩, |y⟩之间也都不可以确定地相互区分。当然，
由于135度角和45度角成正交关系，所以|+⟩和|−⟩这两个偏振态是可以确定
地区分的。

量子态的区分性是量子力学的一个很本质的性质，它在前沿的量子信

息科学中有很重要的应用。比方说，有人提出可以利用这种区分性制作量

子货币。通常货币的一个重大缺陷是人们总可以制造假币，即使电子货币

也有假币。但是，量子货币绝对无法造假。

所谓的量子货币，是指的这样一种货币，每一张量子货币上都有一个

编码，和一个确定偏振态的光子，比方说，这个偏振态可以是|x⟩, |y⟩, |+⟩, |−⟩
这四个偏振态中的某一个，我们不妨假设这四个偏振态有相同的概率被选

用。量子货币上的编码和相应的光子偏振态之间是相对应的，可以用来检

验光子属于四个偏振态中的哪一个。但是，编码和偏振态之间的对应关系

只有银行的系统知道，是绝对不公开的。比方说，如果光子的偏振态是|x⟩，
就编码为00，如果是|y⟩就编码为01，而如果光子的偏振态是|+⟩，就编码
为10，如果是|−⟩，就编码为11。对于真币，银行的系统看到编码的第一位

是0，就知道偏振态一定是|x⟩,|y⟩中的某一个，由于这两个偏振态可以确定
地区分，所以具体是哪一个，银行的系统可以简单地通过使用一个偏振化

方向为x方向的偏振片来确定，然后再把确定的结果和编码的第二位进行

比较。类似的，看到编码的第一位为1，银行的系统就知道光子的偏振态
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是|+⟩, |−⟩中的某一个，通过使用一个偏振化方向为45度角方向的偏振片，

银行就能进一步确定偏振态到底是哪一个。总之，对于真币，根据量子货

币上的编码，银行的系统就能确定地检验它上面的光子的偏振态。但是，

如果编码和光子偏振态的对应关系出错，那光子能通过银行的检测系统的

概率就小于1，比方说，在编码第一位，|+⟩, |−⟩态错误地对应到了0，那根

据马吕斯定律，这时候光子通过银行检测系统的偏振化方向为x方向的偏

振片的概率就是cos2(π/4) < 1。

伪造者想要伪造量子货币就必须复制光子的偏振态，为此他就得先知

道他想伪造的这张真币上的光子的偏振态，因此就必须测量这个光子的量

子态。伪造者当然也可以看到货币上的编码，他们甚至可能知道光子的偏

振态是|x⟩, |y⟩, |+⟩, |−⟩中的某一个，但是，他们不知道编码和偏振态之间
的对应关系(这个信息是不公开的，量子货币本身也没有这个信息，所以伪

造者无从知道)。因此在测量光子的偏振态的时候，他就不知道是该使用偏

振化方向为x方向的偏振片还是使用偏振化方向为45度角方向的偏振片，他

就只能瞎蒙。比方说，他使用了偏振化方向为x方向的偏振片来测量光子的

偏振态，由于光子处在四个偏振态上的概率均等，因此被测量的这张量子

货币上的光子有可能通过伪造者的这个偏振片，也有可能通不过，如果光

子通过了，伪造者就知道货币上的光子不可能处在|y⟩态，但是由于|+⟩态
和|−⟩态都不能与|x⟩态确定地区分，所以剩下的三个偏振态|x⟩, |+⟩, |−⟩都
有可能通过伪造者的偏振片，因此伪造者无从判断货币上的光子到底处在

哪个偏振态，他只能从剩下的这三个态中瞎蒙一个，当然他有可能蒙对，

但他蒙对的概率p一定小于1（实际上，在我们分析的这个例子中p = 3/4）。

对于伪造者测量的光子没有通过偏振片的情况，分析也是类似的。总之，

由于这四个偏振态之间有一定的不可区分性，伪造者就不可能确定地知道

光子到底处在哪个偏振态，他一定要靠蒙，而他蒙对的概率p一定小于1，

即p < 1。

由于仅在伪造者蒙对的时候，他复制的假币上的编码和光子偏振态之

间的对应才可能完全正确，才能100%地通过银行的检测，因此很显然，伪

造者伪造的这张假币能通过银行检测的概率一定小于p。看起来这个概率

好像也不算小，但是，到此为止我们仅仅分析了量子货币上只有一个光子

的情形。现在，假设货币上有N个光子(货币上对应的编码当然也要扩大成

一个2N位的二进制数，每两位对应一个光子)，那很显然，伪造者伪造的

假币能通过银行检测的概率就一定小于pN。但是，p < 1，因此只要N足够

大，pN就会无限接近于零，也就是说，只要量子货币上的光子数目够多，
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假币能通过银行检测的概率就可以忽略不计。因此，量子货币无法造假！

以上只讨论了光子偏振态的可区分性。同样的，电子的自旋向上

态| ↑⟩和自旋向下态| ↓⟩也可以确定地区分，因为如果一个电子处于这两
个态中的某一个，你就可以通过测量它z方向的自旋Sz的值来区分它到底

处在哪个态，如果测到Sz = ~/2, 那它就处在| ↑⟩态，如果测到Sz = −~/2，
那它就处在| ↓⟩态。一般地，如果一个量子系统的某一个物理性质（物理
量）有两个不同的取值λ0和λ1, 则这个物理性质的值为λ0的量子态(不妨记

作|0⟩态)，和物理性质的值为λ1的量子态(不妨记作|1⟩态), 这两个量子态就

必定是两个可以确定地区分的量子态。因为我们可以通过测量这个物理

性质的值来100%地将这两个状态区分开来。这个结果当然可以推广到更

一般的量子系统，如果一个量子系统的某一个物理性质(物理量)有多个

不同的取值，记为λi, i = 1, 2, 3..., 则这些不同取值对应的量子态, 分别记

为|i⟩, i = 1, 2, 3...., 相互必定都可以确定地区分。

那么，在数学上，两个量子态|ψ1⟩和|ψ2⟩可以确定地区分的充要条件是
什么呢？很简单，充要条件就是这两个量子态要正交，即⟨ψ1|ψ2⟩ = 0。这

是因为量子态的内积反映的是两个量子态的相似程度，可以确定地区分的

两个量子态必定是完全不相似的，因此也就必定正交。

从上面的分析中，我们可以得到一个重要的推论，即一个量子系统的

某一个物理性质（物理量）A不同取值的量子态|i⟩, i = 1, 2, 3...必定是两两

正交的，即满足

⟨i|j⟩ = 0, i ̸= j. (2.10)

特别的，量子比特的|0⟩态和|1⟩态必定是相互正交的。通常我们还要求它们
都是归一的，因此就有

⟨0|0⟩ = ⟨1|1⟩ = 1, ⟨0|1⟩ = ⟨1|0⟩ = 0. (2.11)

测测测量量量与与与量量量子子子态态态塌塌塌缩缩缩

但是量子比特和经典比特的不同之处就在于，经典比特要么取0，要

么取1，二者必居其一，但是对于量子比特来说，由于|0⟩和|1⟩都是它的可
能态，则根据态叠加原理，|0⟩和|1⟩的任意线性叠加也是这个量子比特的一
个可能量子态，也就是说，任意形如下式的量子态|ψ⟩都是量子比特的可能
态，

|ψ⟩ = c0|0⟩+ c1|1⟩. (2.12)
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当系数c0和c1都不等于零时，我们就称这样的|ψ⟩态为|0⟩态和|1⟩态的相干叠
加态。问题是，如果量子比特处在一个相干叠加态|ψ⟩，我们想问，它到
底是取0呢？还是取1呢？ (如果是用电子自旋态来实现量子比特，那么这

就是在问，在相干叠加态上，自旋Sz的值是~/2还是−~/2？−~/2就记为0，

~/2就记为1) 如果你说取0，那么根据|0⟩态的定义，量子比特就不能处在叠
加态|ψ⟩，而是应该处在|0⟩态，因为|0⟩态的定义就是量子比特取0时对应的

态，所以这个答案肯定是不对的。同样，回答取1也是不对的。你可能会

说，既不是0，也不是1，而是有一定的概率取0，也有一定的概率取1。但

问题是，我们现在只有一个量子比特，而不是好多个相同的量子比特，而

且这个量子比特的量子态还是确定的|ψ⟩，因此这里其实并没有使用概率的
余地。如果按照我们的直观想法，每一个确定状态的量子比特总会有一个

确定的值，但问题是，刚刚我们已经分析过了，如果这个状态是一个相干

叠加态，那这个值既不能是0，也不能是1。但问题是，量子比特的值就只

有0和1这两种可能性(在自旋态实现中即是Sz的值只有~/2和−~/2两种可能
性)，因此你也不能回答说取1/2或者诸如此类的其它值。

哪个答案都不对，那问题到底出在哪呢？只可能是我们的问题本身错

了，或者说我们的直观想法错了！处在确定的叠加态|ψ⟩上的量子比特没有
确定的取值，甚至我们也不能说它有一定的概率取0一定的概率取1，而是

它的取值根本无从确定，讨论它是没有意义的。有时候我们也说在相干叠

加态上的量子比特的值是不确定的，这里所谓的不确定实际就是说问这个

问题没有意义。

这就是最难理解的地方，我们在日常经典世界里形成的直观是，一个

比特总会有一个值，不管我们看没看它，作没作测量，它总会取一个值。

但就是这个直觉误导了我们，物理学是一门测量的科学，当我们说一个物

理量取某个值时，这个值一定是指测量的时候会得到的值。严格来说，离

开测量来讨论物理量的值是没有意义的。那为什么经典比特总有一个确定

的值？即使我们没有测量。回答是，经典比特是处在一个经典环境之中，

即使我们没有直接对它进行测量，但其实经典比特所处环境中的空气分子

等等东西都起到了测量它的作用。如果你把经典比特的所有环境都屏蔽掉，

那它其实就会变成一个量子比特。

总之，量子比特到底取什么值这一问题，只有在我们测量量子比特的

时候才有意义，任何这样的值一定是指的测量值。现在，假设量子比特

处在一个相干叠加态|ψ⟩, |ψ⟩由公式(2.12)给出，我们来测量它到底取什么，

我们会测到什么值呢？答案是，0或者1，这也就是说，可能在某次测量实
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验中我们会得到0，但如果我们用相同状态的量子比特重复测量，我们也可

能得到1。是得到0还是得到1，是完全随机的，是概率性的。注意，在量子

力学里，概率是和测量密切联系在一起的，没有测量就无所谓概率，而只

有确定的量子态。

现在，假设在某次测量实验中，对于一个原来处在|ψ⟩态的量子比特，
我们测到它的值是0，那么根据|0⟩态的定义，测量完成以后这个量子比特
就不可能还是处在|ψ⟩态，由于这时已经确定了它的值是0，那测量以后它

就一定处在|0⟩态上。这也就是说，测量过程必然会干扰被测对象，在我们
讨论的这个例子中就是使这个量子比特从原来的|ψ⟩态坍缩到了|0⟩态。同
样的，如果我们测到的值是1，那测量完成以后量子比特就将塌缩到|1⟩态。
由于测到0还是测到1完全是随机的，所以测量引起的量子态的塌缩也是随

机的，可能坍缩到|0⟩，也可能塌缩到|1⟩。(这里请读者回想一下第一章中

我们在“双缝干涉实验再讨论”这一小节中的讨论以及这一小节最后的总

结)

在量子力学中，某个物理量的取值确定的态通常叫做这个物理量的

本征态，相应的物理量的值称之为本征值。比如在量子比特的自旋态实

现中, | ↑⟩态和| ↓⟩态就是自旋Sz的两个本征态，因为它们都有确定的Sz值，

分别为+~/2和−~/2, 在量子比特的这一物理实现中，所谓测量量子比特
的值其实就是测量物理量Sz的值。比方说，假定记某个量子系统的某个

物理量A的第i个本征态为|i⟩, i = 1, 2, 3, ...(即是说当系统处于|i⟩态时，物理
量A有确定取值λi)。假定系统处在物理量A的某个相干叠加态|ψ⟩，它可以
写成

|ψ⟩ =
∑
i

ci|i⟩, (2.13)

式中ci为复叠加系数。那么根据我们前面对量子比特的讨论可以知道，系

统在|ψ⟩态上其物理量A的值无法确定，没有定义！而且，量子力学的逻
辑自恰性要求，如果对物理量A进行测量，假设测量开始之前系统处在这

个多个不同本征态的相干叠加态|ψ⟩，如果我们测得了这个物理量的某个
值λi，那测量完成之后这个系统的量子态一定会变成与这个值相应的本征

态|i⟩（而不再是处在原来的相干叠加态|ψ⟩）。通常我们称这个过程为测量
引起的量子态的塌缩，但这种说法完全是出于物理学家们的用语习惯，在

实际中，任何测量都不是瞬时的，而需要一个过程，因此其实并没有量子

态的突变。研究量子态的塌缩这一过程如何进行往往并不容易，当前主流

的观点叫做退相干，后面我们会简单解释退相干的基本思想。
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测量会造成态的塌缩实际上就是量子货币最主要的缺陷，因为即使

是一张真的量子货币，只要有人(比方说伪造者)去测量它的光子的偏振态

了，那这测量就可能对光子的量子态造成干扰，比方说使得它从|+⟩态塌缩
到|x⟩态，那这张真币也无法通过银行的检测了，因此真币被别人测量以后
也有可能被银行当成假币。所以，量子货币只是一个理论构想，它可以帮

助我们领悟量子力学的奇妙，但却不一定能实用。

回到我们的量子比特。你可能会想，是不是量子比特的所有量子态都

一定能写成公式(2.12)这样的形式呢？量子比特有没有可能处在某个不能写

成形如(2.12)式的量子态呢？答案是没有，因为对于处在任何量子态|ψ⟩的
量子比特，你都可以去测量它的值，而量子比特只有两个可能值，要么你

测到0，要么你测到1，测到0那|ψ⟩就塌缩到|0⟩, 测到1那|ψ⟩就塌缩到|1⟩，只
要你去测量，任何|ψ⟩都必然要塌缩到|0⟩态和|1⟩态中的某一个，因此量子
比特的任何量子态|ψ⟩都必然是|0⟩, |1⟩的线性叠加。物理学家常常把这称为
量子比特的{|0⟩, |1⟩}态的完备性。很显然，完备性的概念也可以推广到任
何量子系统的任何物理量的本征态集合。

测测测量量量概概概率率率的的的玻玻玻恩恩恩规规规则则则

我们已经说了，对于|ψ⟩ = c0|0⟩ + c1|1⟩态的量子比特，你去测量它的
值，有可能你会得到0，也有可能你会得到1，得到0还是得到1完全是随机

的。一个重要的问题是，测量得到0的概率是多少？得到1的概率又是多少？

量子力学的基本原理说，对于归一化的|ψ⟩，测量得到0的概率p0是|c0|2，测
量得到1的概率p1是|c1|2。而量子态|ψ⟩的归一化说的就是概率总和等于1

p0 + p1 = |c0|2 + |c1|2 = 1. (2.14)

利用前面的|0⟩, |1⟩的正交归一性(2.11), 我们很容易得到⟨0|ψ⟩ = ⟨0|
(
c0|0⟩ +

c1|1⟩
)
= c0⟨0|0⟩+ c1⟨0|1⟩ = c0, 类似的⟨1|ψ⟩ = c1，因此概率p0和p1就可以写

成，

p0 = |⟨0|ψ⟩|2, p1 = |⟨1|ψ⟩|2. (2.15)

由此我们就可以知道，如果p0和p1都不等于0，那|0⟩态和|ψ⟩态就不可能是
同一个量子态，也不可能正交，反过来也一样。

这就告诉我们，不正交的两个不同量子态一定不可以确定地区分。以

上面的|0⟩态和|ψ⟩态为例，假设一个量子比特处在|0⟩态和|ψ⟩态中的某一
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个，而且这两个态不同并且也不正交，那由上面的公式(2.15)就可以知道，

p0不等于0(当然也不等于1)，因此当你测量这个量子比特的值并且得到0的

时候(注意你只有一个量子比特)，你就无从判断你的量子比特原来是处

在|0⟩态还是|ψ⟩态，因为|ψ⟩也有p0的概率测得0。你可能会说：没关系，虽

然我只有一个量子比特，但是我可以把测量过程重复多遍，然后看统计结

果。但在量子力学中，这是不可能的，因为测量会干扰原来的量子态，会

导致态的塌缩，也就是说，无论原来的量子比特是处在|0⟩态还是|ψ⟩态，你
只要测到0，它就一定塌缩到|0⟩态了，以后再重复做测量就没有意义了。总
之，你没有100%的把握将|0⟩态和|ψ⟩态区分开来。这就说明了不正交的两
个量子态一定不能确定地区分，即不能100%地区分，因此这也就证明了为

什么我们前面说，正交是两个量子态可以确定地区分的充要条件。

公式(2.15)是量子力学的核心结论之一，有时候人们也称之为玻恩规

则(因为它和玻恩的波函数的统计解释密切相关)，它当然是被实验验证了

的。实际上，光学里的马吕斯定律就验证了这个结果。由于光的偏振方向

也是普通三维空间里的矢量，所以沿θ角方向偏振的光子，其偏振态|θ⟩可
以写成，|θ⟩ = cos θ|x⟩ + sin θ|y⟩。公式(2.15)告诉我们，一个沿θ方向偏振

的光子通过偏振化方向为x方向的偏振片的概率为cos2 θ，而这正是马吕斯

定律。当然，光子除了有线偏振态，还有其它的偏振态，比方说圆偏振态，

圆偏振态可以写成| 	⟩ =
√

1
2
(|x⟩+ i|y⟩)和| �⟩ =

√
1
2
(|x⟩ − i|y⟩)，分别对

应左旋光和右旋光。应用公式(2.15)，人们很容易算出它们通过x方向的偏

振片的概率。公式(2.15)当然可以推广，比方说，一个左旋光子通过一个偏

振化方向为θ方向的偏振片的概率就是|⟨θ| 	⟩|2。
类似的，假定某个量子系统处在某个|ψ⟩态(当然，我们默认|ψ⟩已经归

一化了)，假定|ψ⟩是某个物理量A的叠加态，它可以写成

|ψ⟩ =
∑
i

ψi|i⟩, (2.16)

式中ψi为复叠加系数，|i⟩是物理量A的第i个本征态(即是说当系统处于|i⟩态
时，物理量A有确定取值λi)。假定所有这些本征态|i⟩都已经归一化了，则
由于这些本征态两两正交(2.10)，我们很容易有

⟨i|ψ⟩ = ψi. (2.17)

而测量系统在|ψ⟩态上物理量A的值，得到某个λi的概率pi就是

pi = |⟨i|ψ⟩|2. (2.18)
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很显然，这个式子是公式(2.15)的直接推广。而且，我们可以证明⟨ψ|ψ⟩ =∑
i pi (这是由于⟨ψ|ψ⟩ = ⟨ψ|

(∑
i ψi|i⟩

)
=
∑

i ψi⟨ψ|i⟩ =
∑

i ψi⟨i|ψ⟩∗ =∑
i |ψi|2 =

∑
i pi)，所以量子态的归一化⟨ψ|ψ⟩ = 1其实就是要求测量的

总概率等于1。

不不不确确确定定定原原原理理理

下面，我们对量子比特的电子自旋态实现稍微展开一点讨论。在这种

实现中，量子比特的|0⟩态对应电子的自旋向下态| ↓⟩, |1⟩态对应电子的自旋
向上态| ↑⟩。按照我们之前的讨论，电子在| ↑⟩态，其自旋z分量Sz有确定的

值~/2, 而在| ↓⟩态，Sz为−~/2，但是在下面的| →⟩态和| ←⟩态，Sz的值没

有定义无从确定，

| →⟩ =
√

1

2
(| ↑⟩+ | ↓⟩) , | ←⟩ =

√
1

2
(| ↑⟩ − | ↓⟩) . (2.19)

如果对| →⟩态或| ←⟩态的电子的Sz进行测量，则我们有1/2的概率得到~/2,
也有1/2的概率得到−~/2, 总之，即使进行测量，| →⟩态和| ←⟩态的Sz也

是不确定的。但是，可以证明| →⟩态的自旋x分量Sx的值却是确定的，它

是~/2，类似的，| ←⟩态的Sx为−~/2，因此这两个态都是物理量Sx的本征

态。反过来，由于

| ↑⟩ =
√

1

2
(| →⟩+ | ←⟩), | ↓⟩ =

√
1

2
(| →⟩ − | ←⟩), (2.20)

所以对于Sx来说，| ↑⟩态和| ↓⟩态反而是相干叠加态，因此它们的Sx反而是

不确定的。这也就是说，电子自旋的z分量Sz和x分量Sx不能同时确定！这

与经典物理完全不同，在经典物理中，物体角动量的x分量和z分量当然同

时有确定的值，在经典物理中，当我们说一个物体的角动量是多少多少的

时候，我们实际上就同时给出了它的x分量和z分量。但我们已经看到了，

在量子力学中，这通常是办不到的。类似的，在量子力学中，粒子的坐标

和动量也不能同时确定。人们通常把这样的结果叫做量子力学的不确定原

理，它是量子力学区别于经典力学的一个核心本质。

根据不确定原理，在量子力学中，人们不能谈论类似于电子自旋Sx, Sz

同时取~/2的概率p(Sx = ~/2, Sz = ~/2)这样的量。注意，我们不是说p(Sx =

~/2, Sz = ~/2) = 0，而是说讨论这个量是没有意义的，在量子力学

中，它根本无法定义！因为Sx和Sz同时取值就意味着这两者可以同时
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确定，而这是不可能的，根据我们前面的讨论，当Sx取确定值时，电

子必定处在Sz的叠加态(公式(2.19))，因此Sz的值没有定义，除非你测

量Sz，但只要你测量成功，原来的态就塌缩了到Sz的本征态了，而Sz的

本征态反而是Sx的叠加态(公式(2.20))，因此这时候Sx的值反而就没有

定义了。总之，Sx和Sz的值是不可能同时有定义的。因此，在量子力

学中，p(Sx, Sz)这样的量是没有意义的，它无法定义，不能讨论！但是，

p(Sz = ~/2|Sx = ~/2)这样的条件概率却是定义良好的，根据条件概率的标
准含义，p(Sz = ~/2|Sx = ~/2)表示已知电子自旋Sx为~/2时(因此这时候电

子必定处在| →⟩态)测得电子自旋Sz取值为~/2的概率，根据(2.19)式，结果

就是1/2, 即p(Sz = ~/2|Sx = ~/2) = 1/2。这就是量子力学的概率与经典概

率的本质区别，在经典概率里面，p(Sx, Sz)和p(Sz|Sx)总是同时有定义的，

实际上，经典概率的公理告诉我们p(Sx, Sz) = p(Sz|Sx)p(Sx)，但在量子力

学里这样的公理是不成立的。当然，如果你考察的都是一些经典事件，而

不是量子物理量取值的概率，那经典概率当然就是完全适用的。

根据完备性，电子自旋的任意一个量子态一定可以写成|ψ⟩ = c↓| ↓
⟩+c↑| ↑⟩的形式。但是，由公式(2.20)我们可以知道，|ψ⟩也可以重写成|ψ⟩ =
c←| ←⟩+ c→| →⟩的形式。所以，一个态可以表示成不同物理量的本征态的
不同叠加，量子态的表示形式不是唯一的。在数学上，这种现象我们在线

性代数里早就熟悉了，从数学角度来看，{| ↓⟩, | ↑⟩} 不过是电子自旋态的
希尔伯特空间这样一个线性空间里的一组矢量基，而{| ←⟩, | →⟩}则是另一
组矢量基，线性空间里的任意一个矢量|ψ⟩当然可以在不同的矢量基下进行
展开。从一组矢量基变换到另一组矢量基的变换过程，物理学家常常称之

为表象变换。

关于一个量子比特，我们就讨论到这里，我们讨论一个量子比特主要

是想用它来讲清楚量子力学的基本原理。因此上面的所有核心结论都可以

推广到一般情况。

2.1.3 多个量子比特

但是，量子计算机当然不只一个量子比特，多个量子比特该怎么处理

呢？以两个量子比特为例，很显然，这时候量子比特的值有四种可能性00、

01、10、11，分别对应|00⟩态、|01⟩态、|10⟩态和|11⟩态，有时候人们也把这
些态写成|00⟩ = |0⟩1|0⟩2这样的形式，表示是1、2两个量子比特的量子态乘

起来。态叠加原理告诉我们，对于两个量子比特的量子系统，其任意量子
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态|ψ⟩可以写成

|ψ⟩ = c00|00⟩+ c01|01⟩+ c10|10⟩+ c11|11⟩, (2.21)

所有这样的量子态的集合就构成了两量子比特系统的希尔伯特空间H22。

因此，一个量子比特的希尔伯特空间有两个基矢量|0⟩和|1⟩, 而两个量子
比特的系统的希尔伯特空间有四个基矢量，所以记作H22，表示它是一

个22 = 4维的线性空间。类似这样的结论很容易推广到n个量子比特，这时

候系统的可能值就是从x = 000...00到x = 111...11的所有n位二进制数，而

系统的任意一个量子态|ψ⟩必定可以写成

|ψ⟩ =
111...11∑

x=000...00

ψx|x⟩. (2.22)

这里我们已经改用ψx来表示叠加系数了。当然，所有的基矢量|x⟩(注意，这
里|x⟩不是表示x方向的偏振态)都是归一化的，而且不同的基矢量之间是两

两正交的(因为它们都可以确定地区分)，因此我们容易得到ψx = ⟨x|ψ⟩，而
测量这个n量子比特系统的值(在所谓的计算基下)得到一个n位2进制数x的

概率px为

px = |⟨x|ψ⟩|2. (2.23)

如果我们离开量子比特系统，回到单个微观粒子系统，那么上一段中

的ψx就可以对应到单个微观粒子的波函数ψ(x)，而|x⟩就对应于单个微观粒
子处于x位置的量子态，因此我们刚才的结果就可以重写成

ψ(x) = ⟨x|ψ⟩, (2.24)

这就是波函数和狄拉克记号之间的精确联系。而根据公式(2.18), |⟨x|ψ⟩|2 =
|ψ(x)|2就是当微观粒子处在|ψ⟩态时我们在x位置上测到它的概率(即测得它

的位置物理量是x的概率)，当然由于这时候x是连续变量，所以更准确的说

法是概率密度，而这就是玻恩对波函数的统计解释。因此，玻恩的统计解

释其实是关于量子态的测量原理的一个特殊情况。

回到我们的n个量子比特的系统。公式(2.22)告诉我们，这一系统的希

尔伯特空间有2n个基矢量，因此是2n维线性空间，通常记作H2n。总之，量

子计算机的希尔伯特空间总是有限维的。但是，通常的微观粒子，比方说

氢原子，由于有无穷多个能级，因此它的希尔伯特空间往往是无穷维的。
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这实际上就是模拟量和数字量之间的区别，模拟量由于可以连续取值，所

以是无穷多的，而数字量只可能有限多。但是，我们处理任何问题其实都

只需要达到一定的精度即可，因此在精度范围之内我们总可以将模拟量数

字化。同样的道理，在一定的精度范围之内我们也可以用量子计算机来处

理任何微观粒子系统，比方说对于氢原子，很多时候我们其实可以忽略主

量子数n → ∞的高能级，这时候我们处理的实际上就是一个有限维的量子
系统。而且，基本物理定律也告诉我们，我们对空间和时间的测量也有一

个最小的精度，即普朗克长度和普朗克时间，因此没准我们的世界本来就

是“数字化”的，也许我们的世界本来就是一台量子计算机。当然，这些

都还只是人们的猜测，有可能对，但错的可能性也同样大。

我们已经看到，n个量子比特能构建一个2n维的希尔伯特空间H2n , 也

就是一个2n维的复线性空间，其中的每一个态矢量对应2n个复的叠加系数。

因此，如果用经典计算机来模拟这样的系统的话，由于每一个复系数都需

要若干个经典比特才能刻画，因此总共需要的经典比特数将是2n的某个倍

数，也就是说，是随着n指数增长的。这也就是说，只要量子比特的数目够

多(也不需要太多，100左右足够)，则相应的量子系统就无法用经典计算机

来模拟了(毕竟2100可是个天文数字)。但是，对于未来的量子计算机来说，

100个量子比特当然将会是家常便饭，这也就是量子计算机比经典计算机强

大的一个基本原因。

量子态的希尔伯特空间是一个抽象的空间，它和我们生存的时空没有

关系(而且它很可能比时空还要更基本)。这个看起来平凡的论断有时候能

导出一些神奇的结论，比如说按照这个量子力学的逻辑，在我们的宇宙大

爆炸产生时间和空间之前，在时间的概念可能还不成立的时候，宇宙的量

子态应该就已经存在了，你可以把它记作|U⟩, 但是|U⟩是什么却还没有人真
正搞明白。

再举一个和我们关系更密切而且实验上早就实现了的神奇例子。这个

例子只涉及到两个量子比特，我们知道，按照态叠加原理，下面的量子

态|Φ+⟩是两量子比特系统的一个可能态，

|Φ+⟩ = 1√
2
(|00⟩+ |11⟩) . (2.25)

|Φ+⟩态的神奇之处就在于，它是一个整体，它不能因式分解成第一个量子
比特的某个态|ϕ1⟩和第二个量子比特的某个态|ϕ2⟩的乘积|ϕ1⟩|ϕ2⟩这样的形
式(读者不妨试着分解一下)。由于量子态和时空没有直接关系，这也即是

说，这两个量子比特即使一个在南昌，另一个远在天边，它们也还是一个
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整体，它们整体性地处在|Φ+⟩态中，而不是南昌的量子比特处在某个|ϕ1⟩，
天边的量子比特处在某个|ϕ2⟩。而在量子力学中，类似这样的量子态有很
多，它们叫做量子纠缠态。量子纠缠态不但在量子信息和量子计算机技术

中处于核心地位，而且近年来人们发现，时空本身可能就起源于量子纠

缠。

2.1.4 量子不可克隆定理与幺正性

科幻小说里经常有这样的情节：一个人进入一个透明的玻璃罩里面，

然后出现一束“光”，它从头到脚缓缓地扫过这个人全身。同时，在一个

遥远的星球也有一个类似的玻璃罩子，当地球上的这个人被扫描以后，遥

远星球的这个玻璃罩子里面也出现一束“光”，随着这束光从下扫向上，

玻璃罩里面先是出现一双脚，接着是身子，最后是脑袋...最后出现了一个

和地球上的那个人一模一样的人，地球上的这个人被复制到这颗遥远的星

球了！

这可能吗？我问的是，基本物理原理允许这样的事情吗？回答是，如

果是复制，也就是说，最后有两个一模一样的人，那这事不可能。但如果

是传送，也就是说，从头到尾只有一个人，只不过这个人从地球传送到了

遥远的星球，那这是可能的。我们这里将仅仅解释前一种情况为什么不可

能，至于后一种情况为什么可能我们将在后面的小节中进一步讨论。

有人说，复制为什么就不可能呢？我把这个人的每一个细胞、每一个

分子甚至每一个原子的所有信息都测量出来，然后按照这些信息在遥远的

星球上把这个人复制一份，这在原理上有什么不可能的呢。但是别忘了，

量子力学有一个不确定原理，它限制了你的测量能够收集到的信息，比方

说你不能同时确定一个电子两个不同分量的自旋，你也不能同时确定一个

原子的位置和动量。测量会导致态的塌缩，我们永远也无法通过测量得到

关于这个人的量子态的完整信息。

那你可能会想，不测量行不行呢？量子力学对测量能够收集的信息有

基本的限制，但如果不用测量呢？如果有一个量子演化过程在不经过测量

的情况下就把这个人的量子态|ψ⟩演化到了|ψ⟩|ψ⟩，那这不就成功地复制这
个人的量子态了吗？

然而，这也是不可能的。简单的解释是，因为量子力学所满足的最基

本的原理态叠加原理是一个线性叠加原理，而从|ψ⟩到|ψ⟩|ψ⟩相当于把|ψ⟩做
了一个平方，而平方是一个非线性操作，因此是和态叠加原理相矛盾的，
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因此不可能。这个简单的解释实际上就构成了量子不可克隆定理的实质。

下面我们以两个量子比特的系统为例来将这个解释精确化。

设想有两个量子比特，一个原来处在|ψ⟩ = c0|0⟩ + c1|1⟩态，另一个原
来处在|0⟩态，所谓的一个复制操作C，即是这个两量子比特系统的一个演
化过程，它使得

|ψ, 0⟩ → C(|ψ, 0⟩) = |ψ, ψ⟩ = |ψ⟩|ψ⟩. (2.26)

即在复制演化之下，第一个量子比特的量子态要复制到第二个量子比特

上。由于|ψ⟩是任意的，因此如果存在这样的C, 那就必然有C(|00⟩) = |00⟩ =
|0⟩|0⟩, C(|10⟩) = |11⟩ = |1⟩|1⟩。另一方面，态叠加原理要求系统的任何
演化都要保持线性叠加性，因此C当然也要保持线性叠加性，但这就意味
着C(|ψ, 0⟩) = c0C(|00⟩) + c1C(|10⟩) = c0|00⟩ + c1|11⟩。而克隆方程要求的
是C(|ψ, 0⟩) = |ψ⟩|ψ⟩ = c20|00⟩+c0c1(|01⟩+ |10⟩)+c21|11⟩。显然，除非c0, c1中
一个系数取0另一个系数取1，否则克隆方程一定是无法成立的。这也就是

说，克隆任意未知量子态是不可能的！但是当然，我们可以将|0⟩态和|1⟩态
这两个正交态分别克隆一份。正交态可以克隆实际上就是我们可以把一份

文件这样的经典信息克隆一份的根本原因，因为所谓的经典信息其实就是

损失了量子相干叠加性的量子信息，经典信息当然可以确定地区分，因此

用量子态来描述的话，这些信息当然就是正交的。

实际上，我们也可以由不正交的两个量子态一定不可确定地区分这一

结论导出量子不可克隆定理。因为假如任意量子态都可以克隆的话，对于

一个量子比特，我们就可以考虑它的这样两个量子态，一个是|0⟩态，另一
个是|0⟩态和|1⟩态的相干叠加态|ψ⟩，这两个态当然是不正交的，实际上由
公式(2.15)可以知道, 0 ̸= p0 = |⟨0|ψ⟩|2 < 1。如果量子不可克隆定理不成立

的话，我们就可以把|ψ⟩和|0⟩都克隆任意多份，也就是说我们可以制造下面
两个态

|0⟩ = |0⟩|0⟩...|0⟩, |Ψ⟩ = |ψ⟩|ψ⟩...|ψ⟩, (2.27)

式中的省略号表示N份连乘。如此一来，|⟨0|Ψ⟩|2 = |⟨0|ψ⟩|2N = pN0 。由

于p0 < 1，因此只要N足够大，|⟨0|Ψ⟩|2就可以无限接近于0，因此在N →
∞的极限下，|0⟩就和|Ψ⟩正交，因此这两个态就可以确定地区分。但是，
|0⟩和|Ψ⟩不过是|0⟩和|ψ⟩的复制，因此这就意味着我们可以通过确定地区
分|0⟩和|Ψ⟩来100%地将|0⟩和|ψ⟩区分开来，而这就与不正交的两个量子态不
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可确定地区分相矛盾。因此，只要不正交的两个量子态不可确定地区分，

那么量子不可克隆定理就必须成立。

幺幺幺正正正性性性

前面我们提到，量子态的时间演化一定要保持线性叠加原理(态叠加原

理)。实际上，这是量子力学基本原理施加给量子态演化的限制之一，量子

态的演化必须满足的另一条限制是，任意两个可以确定地区分的量子态在

演化之下必须始终保持可以确定地区分。由于可确定地区分的充要条件是

两个量子态正交，所以这实际上就是要求，任意两个相互正交的量子态在

时间演化下要保持正交。当然，由于一个态和它自身的内积是总概率，在

物理上应该始终归一化为1。因此概况起来说，第二条限制实际上是，量子

态的演化应该始终保持态的正交归一性。

满足这两个要求的量子态演化就叫做幺正演化，而这一性质就叫做量

子力学的幺正性。其实，之所以量子态的演化要满足薛定谔方程，就是因

为薛定谔方程是满足幺正性的。下面我们就来证明这一点。

先让我们回想一下，对于单粒子情形，所谓的薛定谔方程就是形

如i~∂tψ(x, t) = Hψ(x, t)这样的波动方程，H就是所谓的哈密顿算符。这当

然是波函数表达下的写法，如果用更一般性的狄拉克记号，那么薛定谔方

程就可以写成

i~∂t|ψ(t)⟩ = H|ψ⟩. (2.28)

前文已经说过，所谓的态矢量|ψ⟩，其实可以简单地想象为一个列矢量，而
哈密顿算符是乘在这个列矢量前面的，所以应该想象为一个矩阵。实际上，

这个矩阵是一个厄米矩阵，即满足H† = H。很显然，薛定谔方程(2.28)是

一个线性方程，所以当然是满足态叠加原理的。另一方面，假如我们将方

程(2.28)两边进行共轭转置，我们就可以得到

−i~∂t⟨ϕ(t)| = ⟨ϕ|H, (2.29)

这里我们已经将|ψ⟩换成了|ϕ⟩, 这个等式的右边显然是一个行矢量乘以矩
阵H。由方程(2.28)和方程(2.29)，我们很容易有

i~∂t (⟨ϕ(t)|ψ(t)⟩) = i~ (∂t⟨ϕ(t)|) |ψ(t)⟩+ i~⟨ϕ(t)|∂t(|ψ(t)⟩) (2.30)

= −⟨ϕ|H|ψ⟩+ ⟨ϕ|H|ψ⟩ = 0. (2.31)
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这就意味着两个态的内积⟨ϕ|ψ⟩在时间演化之下是不变的，如果将这两个态
取成正交的两个态，那这个结果就意味着薛定谔方程是保持正交性的。而

如果将|ϕ⟩取成和|ψ⟩一样，那内积不变的这个结果也叫做总概率守恒，因
为这时候⟨ψ|ψ⟩就是粒子在全空间出现的总概率。这就完成了我们对幺正性
的证明。回顾这个证明过程，我们会发现薛定谔方程里出现的虚数单位i有

实质性的作用，如果没有这个i，那薛定谔方程是无法满足幺正性的。

2.1.5 薛定谔的猫

至此，我们已经讨论了所有量子力学最基本最核心的原理。你可能觉

得这些原理虽然不容易理解，但却并非不可接受，毕竟我们通常总是觉得

量子力学原理是适用于微观世界的，和我们的宏观世界没有什么关系，因

此即使它奇怪一点也没有什么不可接受的。但是，本文一开始就已经说过

了，量子力学并非仅适用于微观世界，不，作为最基本的物理学规律，它

甚至适用于全宇宙，更不要说我们日常的宏观世界了。

为了反映量子力学原理在宏观世界中有多么不可思议，薛定谔提出了

一个著名的思想实验，那就是物理学四大神兽之一的薛定谔的猫。这只著

名的神兽大致是这么一回事：在一个与世隔绝的密闭盒子里放一只猫，一

个放射性的原子，这个原子衰变的概率为1/2。再放一个粒子探测器，一把

锤子，一瓶剧毒的气体。如果原子衰变了，那衰变放出来的粒子就会被粒

子探测器探测到，然后粒子探测器就会发出信号让锤子掉下来，砸破毒气

瓶子，毒气就会跑出来将猫毒死。用量子力学的语言来说即是，这时候猫

会处在|Dead⟩态。但是，如果原子没有衰变，那刚才描述的一切都不会发
生，猫将活得好好的，也就是说，它将处于|Live⟩态。但问题是，原子衰变
是一个量子力学过程，而这个原子只有1/2的概率衰变，因此实际上盒子里

的放射性原子是处在衰变和不衰变的叠加态。因此盒子里的猫也将处于死

和活的叠加态，可以表示为

|Cat⟩ = 1√
2
(|Dead⟩+ |Live⟩) . (2.32)

人们当然可以把|Dead⟩态和|Live⟩态对应到量子比特的|0⟩态和|1⟩态，
这样薛定谔的这只猫就是一个宏观的量子比特。根据我们对量子比特的讨

论，叠加态|Dead⟩ + |Live⟩的猫既不是死，也不是活。实际上，根据我们
对量子比特的讨论，在我们没有打开盒子看(看就是一种测量)的时候，猫

的死活是没有意义的，这只处在叠加态的猫超越了生死！这里已经发生我
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图 2.1: The Schrodinger’s Cat. 图片来源：thelifeofpsi.com

们很难接受的事情了，因为猫完全是一个宏观物体，是我们日常很熟悉的

生命，因此根据我们日常的经验，猫要么是死了，要么就是活着，不可能

有什么超越生死的猫，根据我们日常生活的经验，生死的概念对于猫总是

成立的，生死不可能没有意义。

更奇怪的是，根据我们前面对量子比特的讨论。当我们打开盒子往里

看的时候，猫的量子态就塌缩了，我们有1/2的概率看到一只活猫，同样也

有1/2的概率看到一只死猫。请注意，根据我们前面的讨论，猫的死活完全

是我们看的结果。的确，我们要么看到猫死了，要么看到猫活着，只要我

们打开盒子看了，那么猫就或者是死或者是活，再没有第三种可能性。但，

只要我们不看，那猫就没有死活，生死的概念就没有意义。爱因斯坦完全

接受不了这个，他说：难道我们不看月亮，月亮就不存在吗？对，我们不

看猫，猫就没有死活吗？

这些都令人很难以接受，不可思议！那，这是不是说明量子力学对于

猫这样的宏观物体不适用呢？不是的，虽然我们还没有实现让一只猫处在

相干叠加态，但是，让一个宏观物体(比方说一个宏观的场)处在相干叠加

态，甚至让一个生命体(细菌)处于相干叠加态，都是实验室中已经实现了

的事情。从这个意义上来说，薛定谔的猫今天已经不再是一个思想实验了，

而是实验室中真正的实验。而实验的结果是发现，量子力学同样适用于宏

观客体，薛定谔的猫和前面我们讨论过的量子比特满足一样的量子力学规

律。不看猫，猫就是没有死活超越了生死，猫的死活的确就是因为我们打

开盒子看了！作为一个物理性质的两种不同取值，生死是两种可以确定区
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分的状态，但是一只保持了量子相干性的猫可以超越生死。

那为什么我们日常生活中的猫不是这样呢？为什么我们日常生活中的

猫不能保持量子相干叠加性呢？这就涉及到薛定谔的猫的一个隐含假设，

他假设一个与世隔绝的盒子，这里所谓的与世隔绝，就是与一切环境隔绝，

也就是说，外界的一切，光声热电，全都不能透过这个盒子，自然界的四

大相互作用力全都不能透过这个盒子。极端一点来说，这需要把这个盒子

孤立在宇宙之外。然而，我们日常生活中的猫总是处在环境之中的，作为

一种宏观物体，猫有大量的原子分子，这些原子分子和整个环境有非常复

杂的相互作用。因此虽然量子力学同样适用于日常生活中的猫，但这时候

猫的量子态和环境的量子态纠缠在一起了，它们形成了一个整体的量子态，

而猫原来的量子态的信息现在就会由这个整体来承载。而我们无法将整个

环境(甚至整个宇宙)的量子信息都收集起来，当我们忽视环境的信息，而

仅仅关心猫的时候，我们实际上就忽视掉了猫和环境的整体的大部分信息，

因此也就无法重现猫原来的量子态了，我们将丢失掉原来猫态的相干叠加

信息。这时候，我们就会发现猫的量子相干性消失了，猫要么是生，要么

是死，而不能是生和死的量子叠加。这样的一只猫就变成了我们通常所熟

悉的，满足经典物理学定律的猫。这样一个从量子到经典的过程就叫做退

相干，正是退相干使得我们的宏观世界由量子力学描写的世界变成了一个

由经典物理描写的世界。

这也说明了为什么微观世界常常需要量子力学规律，而不能使用经典

物理规律。原因就在于，微观物体的德布罗意波长相对比较长，它常常超

过我们关心的微观尺寸，这样一来在这样的微观尺寸之内系统就能保持量

子相干性，因此就必须用量子力学来描述。但即使这样，退相干在我们对

电子自旋这样的量子系统作测量的时候也同样要起作用。实际上，当我们

测量一个量子系统的时候，我们的测量仪器就是量子系统所处环境的一部

分，测量过程就是使得量子系统由相干叠加态退相干，进而坍缩到本征态

的过程。

这也就是量子计算机为什么这么难实现的基本原因，因为为了造出一

台实用的量子计算机，我们就必须在一个很大的尺寸上保持量子相干性。

而尺寸越大，量子比特的数目越多，它和环境的耦合就越复杂，量子态的

信息就越容易泄露到环境中去，因此系统也就越容易退相干。制造量子计

算机其实就是要千方百计地对抗退相干，让整个量子计算机处在某种薛

定谔的猫态。极端简化地说，造量子计算机就相当是要造出一只薛定谔的

猫。
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2.1.6 习题

1. 对于一个量子比特，请将量子态|ψ⟩ = |0⟩ + eiα|1⟩和量子态|ϕ⟩ =
eiβ|0⟩+ 2|1⟩分别归一化(式中α, β)为两个实数，然后请计算内积⟨ϕ|ψ⟩。

2. 对于一个量子比特，请验证量子态|+⟩ = 1√
2

(
|0⟩ + |1⟩

)
、|−⟩ =

1√
2

(
|0⟩ − |1⟩

)
正交归一。

3. 当电子处在量子态|ψ⟩ = 2| ↑⟩ + eiα| ↓⟩上时，请问测到它的Sz =

−~/2的概率是多少？

2.2 算符与物理量

2.2.1 基础态

我们已经知道：某物理量有确定取值的量子态称之为这个物理量的本

征态，相应的物理量的值称之为本征值。由于可以根据物理量值的不同将

本征态确定地区分开来，所以任何一个物理量的两个不同本征值的本征态

必定正交。但是，当系统处在不同本征态的叠加态上时，其相应物理量的

值是无从确定的，这时候如果不进行测量，这个物理量的值就没有定义。

在量子力学中，不是所有物理量的值都可以同时确定，比如电子

自旋的x分量Sx和z分量Sz就不能同时确定。但是，我们可以根据所有可

以同时确定的物理量的值的不同，来形成一组可以确定地区分的量子

态，记作{|i⟩, i = 1, 2, 3....}(|i⟩只是一个记号，表示第i个态，当然你也可
以改成|ψi⟩之类的记号)。比方说，对于一个三维微观粒子，这组态可以

是{|x, y, z⟩}，它表示粒子处在位置x = (x, y, z)的量子态，相应的可以用来

区分这组物理态的物理量就是粒子的三个坐标分量X,Y, Z。也即是说，在

这组量子态{|i⟩, i = 1, 2, 3....}中，任何两个不同态总有某些物理量的值是不
同的，因此这组态中的任何两个都可以确定地区分，也即是满足正交归一

性，

⟨i|j⟩ = δij, (2.33)

这里δij的定义是，当i, j相等时取1，当i, j不同时取0。

对于系统的任何一个量子态|ψ⟩，我们的任何一次测量总能得到这组物
理量的某一组值，而这组值唯一地对应某一个本征态|i⟩，因此，任何量子
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态|ψ⟩必然都可以写成{|i⟩, i = 1, 2, 3....}的某个线性叠加，

|ψ⟩ =
∑
i

ψi|i⟩, (2.34)

这里ψi表示叠加系数。这个结果称之为{|i⟩, i = 1, 2, 3....}的完备性。同时满
足正交归一性和完备性的一组态矢量就称之为希尔伯特空间的一组正交矢

量基，相应的基矢量称作基础态。另外，从正交归一公式(2.33)我们容易得

到(2.34)式中的叠加系数ψi总是可以表示成

ψi = ⟨i|ψ⟩. (2.35)

由于ψi就是列矢量|ψ⟩在矢量基{|i⟩, i = 1, 2, 3....}中的第i个分量，因此公
式(2.35)告诉我们，任意态矢量|ψ⟩在基{|i⟩, i = 1, 2, 3....}中的第i个分量都
可以方便地由⟨i|ψ⟩求出，反过来，知道了所有的分量⟨i|ψ⟩，那态矢量本身
也就确定了。

量子力学的基本原理告诉我们，假如在本征态|i⟩上某个物理量O的本
征值为λi，则测量|ψ⟩态的系统，得到物理量O的值为λi的概率pi等于

pi = |⟨i|ψ⟩|2. (2.36)

而一旦我们测到了λi，原来的量子态就必然塌缩到相应的本征态|i⟩。

2.2.2 线性算符

这一小节我们来讨论一下希尔伯特空间上的线性算符，之所以只考虑

线性算符，是因为态叠加原理告诉我们，希尔伯特空间是一个线性空间，

在线性空间上最自然的算符就是线性算符。这一节的内容完全是数学，是

为了后面的量子力学应用作准备的。

所谓希尔伯特空间上的一个线性算符A, 就是某个对量子态的操作，这

个操作把任意一个量子态|ψ⟩变换成某个新的量子态|ϕ⟩，记作A|ψ⟩ = |ϕ⟩。
而且这个操作应该保持态矢量之间的线性叠加关系。可见，线性算符其实

就是通常线性代数里的线性变换。你也可以将算符A想象成某个“设备”，

经过这个“设备”的作用以后系统的量子态就从|ψ⟩变成了|ϕ⟩。不妨举一个
线性算符的例子，比方说给定两个量子态|u⟩, |v⟩，我们可以构造一个线性
算符T，它的定义如下，

T = |u⟩⟨v|. (2.37)
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注意，这里列矢量|u⟩是在左边，行矢量⟨v|在右边，我们是用列矢量乘以
行矢量，所以这个T可以想象成一个矩阵。正如线性代数里线性变换和

矩阵是一一对应的一样，在量子力学里，算符和矩阵也基本上是同一回

事。T为什么是一个算符呢？原因在于，任给一个态矢量|ψ⟩，我们可以定
义T在|ψ⟩上的作用为

T |ψ⟩ = |u⟩⟨v|ψ⟩. (2.38)

注意这里⟨v|ψ⟩是一个数，所以等式(2.38)的右边其实就是一个正比于|u⟩的
态矢量，因此T的确将|ψ⟩变换到了另一个态矢量，它的确是一个算符。而
且由于两个态矢量的内积对于右边的列矢量来说是线性的，所以很容易验

证T的确保持了态矢量的线性叠加关系，因此是一个线性算符。

实际上，有一个数学定理(奇异值分解定理)说，希尔伯特空间的任何

一个线性算符A必定能写成如下形式

A =
∑
i

λi|ui⟩⟨vi|. (2.39)

这里λi ̸= 0，{|ui⟩, i = 1, 2, 3...}和{|vi⟩, i = 1, 2, 3...}分别从属于希尔伯特空
间上的两组正交归一矢量基。复数λi通常称作线性算符A的奇异值。从这

里也能看出来，希尔伯特空间的线性算符总是能分解成列矢量乘以行矢量

的形式，因此任何这样的算符都能想象成是一个矩阵。后面我们会进一步

给出算符和矩阵之间的更精确的联系。为了方便读者参考，在本文的附录

中，我们给出了奇异值分解定理的数学证明。

由于A|ψ⟩结果仍然是一个态矢量，因此我们可以将它和另一个态矢
量|ϕ⟩作内积，得到如下表达式

⟨ϕ|A|ψ⟩. (2.40)

这个表达式当然是一个数，实际上它可以看成是行矢量⟨ϕ|乘以矩阵A然后
再乘以列矢量|ψ⟩, 其结果当然是一个复数。现在我们将这个表达式进行
共轭转置，所谓共轭转置就是首先将一切都复数共轭，然后再转置，因

此共轭转置的规则和转置的规则是类似的，都满足(AB)† = B†A†，†就表
示共轭转置，有时候也叫厄米共轭。利用共轭转置的规则，

(
⟨ϕ|A|ψ⟩

)†
=

|ψ⟩†A†⟨ϕ|† = ⟨ψ|A†|ϕ⟩，因此⟨ϕ|A|ψ⟩共轭转置以后就是⟨ψ|A†|ϕ⟩。但是由
于⟨ϕ|A|ψ⟩是一个复数，而一个复数的共轭转置当然其实就只是复共轭，因
此我们就有

⟨ϕ|A|ψ⟩∗ = ⟨ψ|A†|ϕ⟩. (2.41)
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这里出现的算符A的共轭转置A†就叫做算符A的厄米共轭算符。公式(2.41)有

时候也被看作是厄米共轭算符的定义式。如果我们将算符A写成奇异值分

解的形式(2.39), 那我们也很容易利用共轭转置的规则得到A†的奇异值分解

A† =
∑
i

λ∗i |vi⟩⟨ui|. (2.42)

两个线性算符当然可以相加，算符也可以相乘。由于算符可以想

象为矩阵，所以线性算符的加法与乘法就可以理解为矩阵的加法与乘

法。比方说，假设有两个线性算符，T1, T2，T1 = |u1⟩⟨v1|, T2 = |u2⟩⟨v2|,
那么T1T2 = |u1⟩⟨v1|u2⟩⟨v2| = ⟨v1|u2⟩|u1⟩⟨v2|(我们利用了乘法结合律，且
在最后一个等号中我们把复数⟨v1|u2⟩提到了式子的前面), 结果显然也

是一个线性算符。还是这两个算符，但如果你要算的是T2T1，则结果就

是T2T1 = |u2⟩⟨v2|u1⟩⟨v1| = ⟨v2|u1⟩|u2⟩⟨v1|。很显然，一般来说T2T1 ̸= T1T2，

也即是说，算符的乘法通常是不满足交换律的。这其实是由于算符可以当

作矩阵来理解，而矩阵的乘法一般来说当然是不可交换的。

如果希尔伯特空间的某个线性算符的集合包含恒等算符(即将任何态矢

量都变换到它本身的恒等操作)以及它的常数倍，而且这个集合在算符加

法、乘法、以及厄米共轭之下是封闭的，那这个线性算符的集合就定义了

一个算符代数，数学家也称之为冯诺依曼代数。比如说单个量子比特系统

的冯诺依曼代数可以由算符c · 1(表示给任何态矢量乘上复数c)以及下面两
个算符Z和X生成，

Z|0⟩ = |0⟩,Z|1⟩ = −|1⟩,X|0⟩ = |1⟩,X|1⟩ = |0⟩. (2.43)

这里{|0⟩, |1⟩}组成了量子比特的矢量基，由于线性算符总是保持线性叠加，
所以线性算符在任意态上的作用都可以由其在基矢量上的作用决定，正因

为如此，给出一个线性算符对所有基矢量的作用其实也就决定了这个线性

算符本身。很容易验证，量子比特的Z和X算符有一些很显著的性质，比如

满足Z2 = X2 = 1,ZX + XZ = 0。

如果一个态矢量|un⟩满足如下方程

A|un⟩ = λn|un⟩, (2.44)

则|un⟩就称之为算符A的一个本征态，相应的λn就称之为算符A的本征值，
而这个方程就称作算符A的本征方程。算符A很可能有多个本征态，因此我

们加上下标n以示区分，|un⟩就叫做A的第n个本征态，λn就叫做A的第n个
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本征值。这里的本征态和本征值当然是一个数学概念，但我们前面说过的

物理量的本征态和本征值的说法其实就是从这里来的，因为在量子力学中，

物理量和算符是密切相关的，至于为什么是这样，我们后文会给予解释。

有两类算符对于量子力学尤其重要。第一类就是所谓的幺正算符，常

常记作U , 它满足

UU † = U †U = 1, (2.45)

这里的1表示恒等操作，也叫做单位算符。将幺正算符作用在量子态上也

叫作对量子态进行幺正变换。比方说我们有一个幺正算符U , 还有两个

任意的量子态|ψ⟩和|ϕ⟩, 那么|ψ′⟩ = U |ψ⟩就是|ψ⟩幺正变换以后的结果，同
样|ϕ′⟩ = U |ϕ⟩是|ϕ⟩幺正变换的结果。幺正变换有一个很重要的性质，那就
是变换以后的两个态的内积⟨ϕ′|ψ′⟩和变换之前是一样的，即

⟨ϕ′|ψ′⟩ = ⟨ϕ|ψ⟩. (2.46)

利用|ψ′⟩ = U |ψ⟩和⟨ϕ′| = ⟨ϕ|U †(即将等式|ϕ′⟩ = U |ϕ⟩两边分别共轭转置)，

以及幺正算符的定义(2.45)，人们很容易证明这一结果。这也就是说，希尔

伯特空间的内积在幺正变换下总是不变的。

幺正算符的定义(2.45)实际上告诉我们算符U是可逆的，U †就是它的

逆算符，即U−1 = U †。因此如果将上面的证明反过来，假设希尔伯特空

间的内积在某个可逆算符U的变换下保持不变，那刚才的证明过程就会反

过来告诉我们U †U = 1。由于U可逆，因此我们将这个等式两边从右方乘

以U−1就得到，U † = U−1, 但我们又可以将刚得到的等式从左方乘以U，从

而进一步得到UU † = 1。也就是说，U †U = 1和UU † = 1同时成立。按照幺

正算符的定义，这就反过来证明了任何这样的保持希尔伯特空间内积不变

的可逆变换一定是一个幺正变换。

另一类重要的算符就是所谓的厄米算符，也就是满足A† = A的算符。

根据(2.41)厄米算符满足

⟨ϕ|A|ψ⟩∗ = ⟨ψ|A|ϕ⟩. (2.47)

厄米算符有一些很重要的特性，首先，厄米算符的本征值一定是实数，其

次，厄米算符不同本征值的本征态一定正交。为了证明这两个性质，我们

记厄米算符A的第i个本征态为|i⟩，相应的本征值记为λi。因此，

λj⟨i|j⟩ = ⟨i|A|j⟩ = ⟨j|A†|i⟩∗ = ⟨j|A|i⟩∗ = λ∗i ⟨j|i⟩∗ = λ∗i ⟨i|j⟩, (2.48)
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这里第一个等号和第四个等号是利用本征态的定义，即A|i⟩ = λi|i⟩，第二
个等号是利用方程(2.41)。推导过程(2.48)告诉我们λj⟨i|j⟩ = λ∗i ⟨i|j⟩, 取i =
j，就可以知道λ∗i = λi, 因此厄米算符的本征值必为实数，由此我们进一步

得到，(λj − λi)⟨i|j⟩ = 0, 因此当λi ̸= λj时，必有⟨i|j⟩ = 0, 即相应的两个

本征态必定正交。这其实就已经完成了我们需要的证明。但有一个问题是，

如果某两个本征态|i⟩, |j⟩有相同的本征值，即如果λi = λj，这时候怎么办，

这时候我们就不能证明这两个态正交了。这种情况，我们就叫做这两个本

征态简并，如果只有|i⟩, |j⟩两个本征态相简并，我们就叫做本征值λi有二重
简并(当然，如果有N个本征态都简并，我们就叫做N重简并)。碰到这种二

重简并的情况，我们注意到

A(c1|i⟩+ c2|j⟩) = c1A|i⟩+ c2A|j⟩ = λic1|i⟩+ λjc2|j⟩ = λi(c1|i⟩+ c2|j⟩),(2.49)

最后一个等号我们用到了简并条件λi = λj。这个推导过程告诉我们，如

果|i⟩, |j⟩简并，则它们的任意线性组合将依然是算符A的本征值为λi的本征
态，也就是说，{|i⟩, |j⟩}实际上张成了一个两维的线性子空间，这个子空
间里的任何态矢量都是A的本征值为λi的本征态，这样一个线性子空间就

称之为简并子空间。而在一个两维的线性子空间(可以将这样的两维矢量空

间想象成一个两维平面) 上我们总是可以重新选择两个相互正交的基矢量，

我们可以将这两个正交的基矢量重新定义为新的{|i⟩, |j⟩}态。类似的操作
当然也可以推广到多重简并的情况。因此，这也就是说，碰到本征态简并

的情况，我们总是可以对这些简并的本征态进行重新选择，使得重新选择

以后的本征态正交。因此，对于厄米算符，我们总是可以选取一组两两正

交的本征态，加上归一化条件，就有

⟨i|j⟩ = δij. (2.50)

对于在量子力学中出现的厄米算符，由于它们总是可以作用在希尔伯特空

间的任意态上，因此这组正交归一的本征态的线性叠加一定能构造出希尔

伯特空间里的任何态矢量，也就是说，它们是完备的。同时满足正交归一

性和完备性，这就意味着厄米算符的这一组本征态{|i⟩, i = 1, 2, 3....} 可以
构成整个希尔伯特空间的一组正交矢量基。

有时候，我们所考察的厄米算符A可能依赖于一个连续的控制参数µ，

记作A(µ)，这时候本征值λi也将是µ的函数，记为λi(µ)，相应的本征态|i⟩当
然也将依赖于µ，不妨重新记为|ui(µ)⟩。随着控制参数µ的连续变化，本征
态矢量|ui(µ)⟩将在希尔伯特空间中连续变化。但是，按照我们在上一段中
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的证明，如果两个本征态|ui(µ)⟩, |uj(µ)⟩有不同的本征值，那么它们一定正
交，也就是说，虽然在控制参数µ的调节之下，这两个本征态都将在希尔伯

特空间中连续变化，但是无论怎么变，它们将始终保持正交。什么时候它

们才可能变得不再正交呢？上一段的分析告诉我们，仅当在某个参数µc上，

λi(µc) = λj(µc)时，也就是这两个态变成简并时，这种情况才可能发生。可

见，从不简并到简并往往会带来系统性质的改变，这在量子相变的分析中

是有用的。

最简单的厄米算符是什么呢？当然是单位算符，或者说恒等算符，我

们记作1(读者很容易根据上下文确定任何公式中的1是代表数字1，还是代

表单位算符)。单位算符有一个非常有用的分解定理(常常也称之为基础态

的封闭性关系)，即

1 =
∑
i

|i⟩⟨i|, (2.51)

式中{|i⟩, i = 1, 2, 3....}是希尔伯特空间的一组正交归一矢量基。这个定理
可以看作是奇异值分解定理的特例，但是，由于它在量子力学中极其有用，

所以我们给出一个单独的推导。首先，由公式(2.34)和公式(2.35)可以知道，

任意一个态矢量|ψ⟩都可以分解成|ψ⟩ =
∑

i⟨i|ψ⟩|i⟩，很显然这个表达式可以
重写成

|ψ⟩ =
∑
i

|i⟩⟨i|ψ⟩ =
(∑

i

|i⟩⟨i|
)
|ψ⟩, (2.52)

上面所有的步骤都是行矢量、列矢量、以及矩阵的乘法规则，特别是用到

了乘法结合律。公式(2.52)最右边的
∑

i |i⟩⟨i|显然是一个算符，公式(2.52)告

诉我们，这个算符作用在任意态矢量|ψ⟩上都等于|ψ⟩本身，按照定义，这
样的算符当然就是单位算符，这样我们就得到了重要结果(2.51)。

下面我们就用公式(2.51)来推导出一些有意思的结论。首先，我们用

它来推导厄米算符的谱分解定理(这个名称是数学家的叫法)。我们从厄米

算符A的本征方程A|i⟩ = λi|i⟩出发，将这个方程左右两边从右方乘以行矢
量⟨i|就得到，A|i⟩⟨i| = λi|i⟩⟨i|，两边对i求和，就有A

∑
i |i⟩⟨i| =

∑
i λi|i⟩⟨i|,

前面说了，厄米算符的本征态可以取成希尔伯特空间的一组正交归一基矢

量，因此我们可以利用单位算符的分解定理(2.51)，进而得到

A =
∑
i

λi|i⟩⟨i|. (2.53)
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这就是厄米算符的谱分解定理，本征值集合{λi, i = 1, 2, 3....}又称为厄米算
符A的谱，很显然，这个定理其实也是奇异值分解定理的特例。

如果希尔伯特空间的基矢量是连续的，那公式(2.51)中的对i求和当

然就应该改写成某个积分。比方说，微观粒子的位置为确定的x值的状

态|x⟩的集合就可以构成单粒子希尔伯特空间的一组正交基，因此与公
式(2.35)相应的，我们有

ψ(x) = ⟨x|ψ⟩. (2.54)

而与公式(2.51)相应的则有 ∫
dx|x⟩⟨x| = 1. (2.55)

|x⟩也称作位置本征态，因为|x⟩态的粒子有确定的位置坐标x。不同坐标
的|x⟩态由于可以根据粒子坐标取值的不同而可以确定地区分，因此它们是
相互正交的，数学上我们可以将这个正交归一化关系写成⟨x|y⟩ = δ(x− y)，
用δ函数而不用克隆内克符号δij的原因当然是因为x, y现在是连续变量。同

样，微观粒子动量确定的态|p⟩的集合也构成了单粒子希尔伯特空间的一组
正交基，因此 ∫

dp|p⟩⟨p| = 1. (2.56)

由上面这三个式子我们就有

ψ(x) = ⟨x|ψ⟩ = ⟨x|
∫
dp|p⟩⟨p|ψ⟩ =

∫
dp⟨x|p⟩⟨p|ψ⟩, (2.57)

其中第二个等号就是在行矢量⟨x|和列矢量|ψ⟩的中间插入一个单位矩阵(单

位算符)1。类似于(2.54), ⟨p|ψ⟩就是动量空间波函数，我们记作ψ(p) (当然

从数学语言的角度来看，这一记号是不合法的，因为动量空间波函数和坐

标空间波函数当然不是同一个函数，因此不应该用同一个函数记号ψ, 我

们这里都用ψ是为了强调它们是同一个量子态的不同表示，但是当然要记

住ψ(p)和ψ(x)不仅仅是自变量符号不同，它们还应该理解成两个不同的函

数)。另外，按照公式(2.54)，⟨x|p⟩当然就应该是动量为p的粒子的波函数，
德布罗意告诉我们这个波函数是平面波 1

(2π~)
1
2
eipx/~, 因此我们有

⟨x|p⟩ = 1

(2π~) 1
2

eipx/~. (2.58)
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将(2.58)代入刚才得到的(2.57)，就有

ψ(x) =

∫
dp

1

(2π~) 1
2

eipx/~ψ(p), (2.59)

这就是傅里叶变换。类似的，我们也容易得到傅里叶逆变换，

ψ(p) = ⟨p|ψ⟩ =
∫
dx⟨p|x⟩⟨x|ψ⟩ =

∫
dx⟨p|x⟩ψ(x), (2.60)

再代入⟨p|x⟩ = ⟨x|p⟩∗ = 1

(2π~)
1
2
e−ipx/~就得到傅里叶逆变换的公式。所以傅里

叶变换我们也不需要记了，只需要记住单位算符的分解定理就可以了。当

然，我们这里只处理了一维空间，但你也很容易将上面的推导推广到三维

空间。

关于单位算符的分解定理及其应用我们暂时就谈到这里，后面我们还

会不断地用到这个定理。

以上我们只考虑了希尔伯特空间上的线性算符，这是因为我们设想在

经过这些算符所代表的操作之后，量子态之间的线性叠加关系应该得以保

持。但实际上，在量子力学中也出现了所谓的反线性算符，那就是时间反

演算符，以及尤其是量子场论中会出现的CPT算符，但它们都是所谓的反

线性反幺正算符，是作为量子系统的某种对称变换而出现的(分别对应时

间反演不变性以及CPT不变性)，并不是作用在量子态上的一个通常操作，

也就是说，不能设想通过某个“设备”来实现这样的算符，因此它们暂时

和我们关系不大，我们将忽视它们。

2.2.3 为什么物理量用厄米算符表示

任何物理量或者说可观测量，它的取值当然是一个实数，但是我们也

说过，在量子力学中，不能谈论处系统处在叠加态上时相应物理量的值，

因为这时候这个物理量的值是没有定义的，而当某个物理量有确定取值时，

系统必定处于这个物理量的某个本征态。这就说明，在量子力学中，物理

量本身不可能像在经典物理中那样用一个实数值的量来表示，因为否则这

个物理量的值就总是有定义的，它就总是有确定取值。实际上，人们发现，

在量子力学中，物理量本身应该用厄米算符来表示。那这是为什么呢？

原因在于，首先，根据量子力学的基本原理，某个物理量有不同确定

取值的量子态之间，由于可以根据这个物理量取值的不同来确定地区分，

因此这些态必定是两两正交的。而厄米算符刚好有类似的性质，根据我们
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在前面的数学证明，厄米算符不同本征值的本征态必定是相互正交的。而

且，厄米算符的本征值当然只在本征态上有定义，如果系统处在某个厄米

算符本征态的叠加态上，那当然就谈不上本征值，而厄米算符本身是一个

算符而不是一个实数，因此也就是说，这时候厄米算符的值是没有定义。

这些都刚好吻合物理量所必须遵循的基本原理。这就使得我们想到，可以

把物理量的本征态当作某个厄米算符的本征态，把物理量的值当成某个厄

米算符的本征值，也就是说，把物理量用厄米算符来表示！而且，我们前

面也证明过，厄米算符的本征值刚好是实数，因此完全可以当成物理量的

值，如果厄米算符的本征值可以是复数的话，那将物理量表示成厄米算符

就不可能成立了，因为任何物理量的值当然都不可能是复数，毕竟复数纯

粹是数学构想，是没有测量意义的。

不光如此，我们还可以进一步计算一下系统在任意|ψ⟩态时某物理
量A的期望值A。假设这个物理量的可能取值为{λi, i = 1, 2, 3...}(前面我们
已经定义过，这些值叫做物理量的本征值), 假定测量|ψ⟩态的系统得到λi值
的概率为pi, 则很显然，A的期望值等于A =

∑
i λipi。而根据前面的公

式(2.36), pi = |⟨i|ψ⟩|2，因此我们有

A =
∑
i

λi|⟨i|ψ⟩|2 =
∑
i

⟨ψ|i⟩λi⟨i|ψ⟩, (2.61)

式中最后一个等号我们利用了⟨ψ|i⟩ = ⟨i|ψ⟩∗。观察一下这个结果最右边的
等式，我们就会发现最后出现了一个

∑
i |i⟩λi⟨i|, 而根据前面我们证明的厄

米算符的谱分解定理，这刚好是一个厄米算符，这个厄米算符的本征值正

是{λi, i = 1, 2, 3...}，本征态正是{|i⟩, i = 1, 2, 3...}，因此它正是我们上一
段猜想的与物理量A对应的厄米算符，我们不妨还是用同样的符号A来表

示它。这样一来，刚才的推导结果就告诉我们，物理量A在|ψ⟩态上的期望
值A可以表示成

A = ⟨ψ|A|ψ⟩, (2.62)

等式右边的A正是我们猜想的与物理量A对应的厄米算符。由于|ψ⟩是任意
的，而且结论(2.62)对于任何物理量都成立，它告诉我们，对于任何物理

量，其在任意量子态上的期望值都可以通过一个相应的厄米算符计算出来。

这就已经足以证明我们上一段建立起来的物理量与厄米算符之间的联系成

立了！

有了物理量与厄米算符之间的这个联系以后，剩下的问题就是找到这

些厄米算符了。在实际应用中，我们往往是根据各种物理直观和物理推理
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过程写出某个物理量相应的厄米算符，然后再根据这个厄米算符的本征方

程，求出物理量的本征态和本征值(现在物理量的本征态与本征值与相应厄

米算符的本征态和本征值已经是一回事了)，然后将这些本征值与测量所得

的物理量的值进行比较，如果两者吻合得很好，那我们就知道我们根据物

理直观所写出来的这个厄米算符已经正确地表示出这个物理量了，如果吻

合得不好，我们就在厄米算符中加上一些项或者减去一些项以使得最后的

结果更加吻合，当然如果一开始差得太远的话我们甚至需要完全重写这个

厄米算符。当然，我们往往还需要解释我们加上的这些项代表什么物理含

义，我们减去某些项的物理理由又是什么。但是，不管怎么样，从本质上

来说，写出一个物理量所对应的厄米算符本质上是一个不断猜测然后再实

验验证的过程。此外还有一种情况也很常见，尤其在理论物理学中是最常

见的做法，那就是有时候我们可以根据一些基本的物理原理导出一个物理

量的厄米算符表示。

关于这一如何寻找一个物理量所对应的厄米算符的基本逻辑，最清楚

的演示莫过于我们如何找到一个系统的哈密顿算符(即与能量相对应的厄米

算符)。但这里我们不妨以角动量算符的历史演化为例来加以说明。对于角

动量算符，人们先是根据经典力学的基本原理导出J⃗ = x⃗× p⃗，再根据量子
力学的量子化规则得出与x⃗和p⃗对应的位置算符和动量算符，进而也就得到

了角动量算符。但是后来我们发现这不能解释斯特恩-盖拉赫实验，因此我

们又引入了电子自旋的概念，因此电子的自旋量子态以及相应的自旋算符

最初就是猜测的，是为了解释实验。同时，由于自旋-轨道耦合，我们发现

在原子物理中，轨道角动量和自旋角动量分别都不守恒，仅当我们把自旋

角动量算符加进角动量算符的表达式以后，原子的总角动量才总是符合角

动量守恒的，这里既有物理原理的引导也有根据实验数据而来的猜测。只

到最后，狄拉克才从相对论量子力学的基本原理出发推导出了电子的自旋

算符，同时也发现自旋角动量算符自动和轨道角动量算符加在一起构成了

总角动量算符。但即使是狄拉克从相对论和量子力学的基本原理出发得到

的方程，也还是需要实验检验的。

2.2.4 不确定原理与算符

前面我们已经说过，在量子力学中，并非所有物理量都可以同时有

确定值，比方说，电子自旋角动量的两个不同分量就不能同时有确定值，

再比方说位置坐标和相应的动量也不能同时取确定值。以电子自旋的x分
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量Sx和z分量Sz为例，这两者不能同时确定的原因在于，Sx的本征态其实

是Sz的相干叠加态，因此Sx有确定值的时候，Sz的值没有定义，当然也

就不确定，反过来也一样，Sz的本征态其实是Sx的叠加态，因此Sz有确定

值的时候，Sx的值也没有定义，总之，Sx和Sz这两者不能同时有确定值。

类似的，利用德布罗意告诉我们的平面波波函数，微观粒子的动量本征

态|p⟩可以写成

|p⟩ =
∫
dx|x⟩⟨x|p⟩ =

∫
dx

1

(2π~) 1
2

eipx/~|x⟩, (2.63)

可见它是位置本征态|x⟩的相干叠加态，因此粒子动量有确定值的时候其位
置坐标的值不确定。反过来，位置本征态|x⟩也可以写成动量本征态|p⟩的叠
加态，

|x⟩ =
∫
dp|p⟩⟨p|x⟩ =

∫
dp

1

(2π~) 1
2

e−ipx/~|p⟩, (2.64)

因此，当微观粒子位置坐标有确定值的时候，其动量也是不确定的。总之，

微观粒子的位置坐标和其动量不能同时确定。

由此可见，如果两个物理量的值总是可以同时测定(请注意总是这个

词)，那就意味着，不管系统处在任何量子态，每次测量时所塌缩到的量子

态必然同时是这两个物理量的本征态，由于我们假设对任何量子态进行测

量总能同时得到这两个物理量的某个值，因此这也意味着这些共同的本征

态必然可以张成希尔伯特空间的一组矢量基(即任何量子态都可以写成这组

共同本征态的线性叠加)，因此，如果两个物理量的值总是可以同时测定，

那就意味着它们必然有一组共同的本征态矢量基。但是，我们已经看到，

物理量是用厄米算符来表示的，那么从厄米算符的角度来看，两个物理量

的值总是可以同时测定的充要条件是什么呢？答案很简单，是这两个算符

的乘积要可以交换顺序，简称这两个算符可对易。

我们首先证明必要性。即假设两个物理量A,B的值总是可以同时测定，

也就是说它们有共同的本征态矢量基(不妨记作{|i⟩, i = 1, 2, 3...}，并记A的
相应本征值为αi，B的相应本征值为βi)，证明相应的厄米算符A和B必定可

对易，即AB = BA或者说AB − BA = 0。证明很容易，首先由于{|i⟩, i =
1, 2, 3...}是希尔伯特空间的矢量基，因此任何量子态|ψ⟩都必定可以写
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成|ψ⟩ =
∑

i ci|i⟩的形式，如此一来就有

(AB −BA)|ψ⟩ =
∑
i

ci(AB −BA)|i⟩

=
∑
i

ci(βiA|i⟩ − αiB|i⟩) =
∑
i

ci(βiαi − αiβi)|i⟩ = 0. (2.65)

即(AB − BA)在任意态上的作用都等于零，因此即有AB − BA = 0。这就

完成了必要性的证明。

下面证明充分性(充分性的证明略微有一点复杂，并且纯粹是一个数

学定理，读者第一遍读的时候可以先略过)。即要证明如果两个物理量

的厄米算符满足AB = BA，则它们必有一组共同的本征态矢量基。首

先，我们前文已经说过，对于量子力学中考察的厄米算符而言，其本征

态必定可以取作希尔伯特空间的正交矢量基。所以真正需要证明的是，

我们总是可以把这些本征态取成这两个算符共同的本征态。为此我们假

设{|i⟩, i = 1, 2, 3...}为算符A的一组本征态，本征值分别为αi(注意，αi可以

有简并)，则由于

A(B|i⟩) = AB|i⟩ = BA|i⟩ = αiB|i⟩, (2.66)

因此我们可以知道B|i⟩必然也是算符A的本征值为αi的本征态。如果算

符A的αi这个本征值对应的本征态没有简并，那就必然有B|i⟩依然正比
于|i⟩这个态，假如把比例系数记为βi，从而也就有B|i⟩ = βi|i⟩, 这也就是
说|i⟩同时也是算符B的本征态。因此在这种情况下|i⟩就已经是A,B共同的
本征态了。

但是，如果算符A的本征值为αi的本征态有简并，那这时候由(2.66)式

我们就不能得出B|i⟩正比于|i⟩的结论了。比方说假设有二重简并(多重简并

的证明是类似的)，也即是说有某个αj = αi，从而相应的|j⟩态和|i⟩态有相
同的本征值αi。这就和我们前面证明总是可以将厄米算符的本征态取成正

交的时候碰到的简并情况是一样的。|i⟩和|j⟩简并的一个显然结果是，它们
的任意线性叠加c1|i⟩+ c2|j⟩都将是A的本征态，本征值都是αi，因此这就张

成了一个两维的简并子空间，我们可以把这个简并子空间记为Hαi
。那这

时候我们由(2.66)式就只能得出B|i⟩一定是这个两维的简并子空间里的某个
态矢量。不仅如此，由于

A[B(c1|i⟩+ c2|j⟩)] = B(c1A|i⟩+ c2A|j⟩)
= B(c1αi|i⟩+ c2αj|j⟩) = αi[B(c1|i⟩+ c2|j⟩)], (2.67)
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这里最后一个等号我们利用了简并条件αj = αi。这个推导过程(2.67)就告

诉我们，[B(c1|i⟩ + c2|j⟩)]依然是A的某个本征值为αi的本征态，这也就是

说，B作用在简并子空间Hαi
里的任意态上，结果都依然还是简并子空间

里的态。因此我们就总可以在这个两维的简并子空间Hαi
里求解算符B的

本征方程，从而得到B的两个本征态|i′⟩和|j′⟩。前文引入厄米算符本征态
时的相关证明告诉我们，无论这两个态对应的B本征值相同还是不同，我

们总是可以让它们正交，从而成为二维简并子空间Hαi
新的正交基(因此

原来的|i⟩和|j⟩也都可以反过来写成这两个新的基矢量的线性叠加)。由

于|i′⟩和|j′⟩都属于A的简并子空间Hαi
，所以它们当然同时也是A的本征态，

这样它们就是A和B共同的本征态。也就是说，碰到这种二重简并的情况，

我们只需要把原来的|i⟩, |j⟩态替换成新的|i′⟩和|j′⟩态就找到了这时候两个算
符的共同本征态。多重简并情形的推理和结论都是类似的。因此这就证明

了，A和B的共同本征态总是可以找到的。这样就完成了我们对充分性的证

明。

刚才的充分性证明告诉我们，如果两个算符可对易，那么它们相应的

物理量的值必可同时测定。这个命题的逆否命题就是，不可同时测定的两

个物理量，它们相应的算符必定不对易。由于电子自旋的Sx分量和Sz分量

不可同时测定，因此我们必有，算符Sx和Sz必定不对易，即

[Sx, Sz] ̸= 0. (2.68)

同样的，我们也必定有

[X,P ] ̸= 0. (2.69)

这里X表示微观粒子的位置算符，P表示微观粒子的动量算符，[A,B]称作

两个算符的对易子，它的定义是[A,B] = AB − BA。那么这两个例子中的
这些不等于零的对易子到底应该是多少呢？我们后面将继续讨论。

另外，必要性命题的逆否命题是，如果两个算符不对易，那么它们相

应物理量的值就不能总是可以同时测定。这里就出现了另一种可能性，即

算符A,B虽然对易子不等于零，但是可能偶尔可以同时测定。这时候就

说明，这两个算符必定存在某些共同的本征态，但这些本征态不足以构

成希尔伯特空间的矢量基。一个例子就是角动量算符，角动量算符的任

何两个分量都不可对易，但是对于特殊的角动量为0的量子态|J⃗2 = 0⟩而
言，它就是Jx, Jy, Jz的一个共同本征态，本征值都是0。因此如果系统处

在|J⃗2 = 0⟩态上，那我们就可以同时测得Jx, Jy, Jz的值都为0。当然，这
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时候，由于|J⃗2 = 0⟩是Jx, Jy, Jz的一个共同本征态，所以虽然[Jx, Jy] ̸= 0，

但是[Jx, Jy]|J⃗2 = 0⟩ = 0。反过来，如果某两个算符A,B, 它们的对易子

在任何态|ψ⟩上的期望值都不为0，即⟨ψ|[A,B]|ψ⟩ ̸= 0对所有的|ψ⟩都成立，
那A,B就不可能有任何共同的本征态，因此这时候A,B的值必定不可同时

测定。一个典型的例子就是位置算符和动量算符，即X,P，这两个算符的

对易子就是，[X,P ] = i~，即对易子是个常数，因此当然在任何态上的期
望值都不为0，因此我们就必然有，在任何情况下X和P都不可能同时测

定。当然，这个结论我们在本小节最开始的时候就已经知道了。

2.2.5 幺正演化与薛定谔方程

现在让我们来考虑量子态随时间的演化，态叠加原理作为量子力学最

为基本的原理，它当然应该在量子态的演化之下得以保持，因此如果我们

将系统从t1时刻到t2时刻的时间演化看是由t1时刻的量子态|ψ(t1)⟩到t2时刻
的量子态|ψ(t2)⟩的一个映射的话，这个映射应该是一个线性映射，也就是
说，要用线性算符来刻画，不妨将这个线性算符记为U(t2, t1)，称之为时间

演化算符，则

|ψ(t2)⟩ = U(t2, t1)|ψ(t1)⟩. (2.70)

但是，我们也可以让时间反演，让系统反过来从t2时刻演化到t1时刻，从而

有

|ψ(t1)⟩ = U(t1, t2)|ψ(t2)⟩. (2.71)

由这两个式子我们就有|ψ(t2)⟩ = U(t2, t1)U(t1, t2)|ψ(t2)⟩，以及|ψ(t1)⟩ =

U(t1, t2)U(t2, t1)|ψ(t1)⟩ 。而由于|ψ(t)⟩是希尔伯特空间的任意量子态，因此
这就意味着

U(t1, t2)U(t2, t1) = U(t2, t1)U(t1, t2) = 1. (2.72)

也就是说，时间演化算符U(t2, t1)必然是可逆的，U
−1(t2, t1) = U(t1, t2)。

另外在物理上，任意态|ψ⟩与其自身的内积代表总概率，概率守恒要求
它恒等于1。这就要求时间演化算符必须保持

⟨ψ(t2)|ψ(t2)⟩ = ⟨ψ(t1)|U †(t2, t1)U(t2, t1)|ψ(t1)⟩ = ⟨ψ(t1)|ψ(t1)⟩, (2.73)
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由于|ψ(t)⟩是任意的量子态，因此这一式子的后一个等号仅在下式得以满足
时才能成立，

U †(t2, t1)U(t2, t1) = 1. (2.74)

正如我们前面在线性算符这一节中已经证明过了的，这时候U(t2, t1)的可逆

性会进一步告诉我们，U(t2, t1)必然是一个幺正算符。这也就是说，量子态

随着时间的演化必然是一种幺正演化，当然它也必然保持希尔伯特空间任

意两个态的内积，这就是所谓的量子力学的幺正性。特别的，它告诉我们

任意两个相互正交的量子态在时间演化之下将会始终保持正交，由于正交

性是两个量子态可以确定地区分的充要条件，因此幺正性也告诉我们，任

意两个可以确定地区分的量子态在时间演化之下将会始终都可以确定地区

分。

很明显，如果时间演化算符中的t2 = t1 = t，也就是说t的量子态演化

到t时刻，那当然还是它本身，因此必然有U(t, t) = 1。进一步，如果我们

取t1和t2为两个相隔无穷小的时间，即t1 = t, t2 = t + dt，那么我们就可以

将时间演化算符作无穷小展开

U(t+ dt, t) = 1− i

~
Hdt. (2.75)

式中我们已经忽略了高阶无穷小量，式中的H当然也是一个算符，而引入

系数 i
~的目的我们后面可以看到(纯粹从数学的角度来说这么做是任意的)。

将这个无穷小展开式代入幺正性的方程(2.74)，我们就可以得到

1 = (1 +
i

~
H†dt)(1− i

~
Hdt) = 1 +

i

~
(H† −H)dt+ ... (2.76)

同样的，高阶无穷小量被忽略了，比较这个式子的最左边和最右边，我们

发现一阶无穷小部分必须等于零，从而

H† = H. (2.77)

也就是说，幺正性告诉我们，之前引入的算符H必定是一个厄米算符。

另一方面，由时间演化算符的定义，我们有

|ψ(t+ dt)⟩ = U(t+ dt, t)|ψ(t)⟩ (2.78)

=

(
1− i

~
Hdt

)
|ψ(t)⟩ = |ψ(t)⟩ − i

~
Hdt|ψ(t)⟩. (2.79)
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由于∂t|ψ(t)⟩ = (|ψ(t+ dt)⟩ − |ψ(t)⟩)/dt，因此由上面的结果就可以得到

i~∂t|ψ(t)⟩ = H|ψ(t)⟩. (2.80)

这就是薛定谔方程最一般的形式，而我们之前引入的厄米算符H就是哈

密顿算符。在最一般的情况下，哈密顿算符H可以是显含时间t的，但如

果H不显含t, 那我们就很容易验证|ψ(t)⟩ = exp(−iH(t − t0)/~)|ψ(t0)⟩是薛
定谔方程(2.80)在形式上的通解，将这个通解与时间演化算符的定义进行比

较，就可以知道这时候

U(t, t0) = exp

(
−iH

~
(t− t0)

)
. (2.81)

从时间演化算符的定义还能够导出它的一些一般性质，比方说U(t3, t1) =

U(t3, t2)U(t2, t1)，在数学上，这一乘法性质再加上幺正性就完全刻画了时

间演化算符的数学结构。

当然我们还需要确定哈密顿算符代表的是什么物理量。为此，我们注

意到德布罗意关系告诉我们，一个具有确定能量E的粒子其波函数对时间

的依赖关系为exp(−iEt/~), 将这个结果与哈密顿算符不显含时间情形下的
表达式|ψ(t)⟩ = exp(−iHt/~)|ψ(0)⟩进行比较，我们就可以知道，哈密顿算
符是与能量相对应的，是能量这个物理量的算符表示。

到此为止，我们就已经从量子力学的幺正性出发，证明了哈密顿算符

的存在性，并确定了它的物理含义是能量算符。下一个问题就是，给定一

个量子力学系统，我们怎么具体地写出它的哈密顿算符呢？哈密顿算符对

应能量是一个一般性的指引，也就是说，我们要把对系统能量有贡献的每

一项都包括在哈密顿算符里面。但有时候，我们也许不能预先确定哪些项

对系统能量有贡献，这时候就要用到我们在讨论如何构造物理量的厄米算

符的时候谈到的一般性原则了，也就是说，我们可以先猜测哪些项对能量

有贡献，然后写出相应的哈密顿算符，再求出这个哈密顿算符的本征值(当

然这就是系统能量的取值)，再将算出来的这些值和能量的实际测量值进

行比较，或者我们也可以根据写出来的这个哈密顿算符求出系统的时间演

化，进而算出在这种时间演化之下某些物理量的期望值随时间的变化，然

后再将之与实验进行比较。如此不断调整我们的猜测，直到理论和实验相

吻合。

2.2.6 算符的矩阵表示

到此为止我们所有的推导都是使用狄拉克符号和相应的线性算符来进
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行的。这样做的好处很明显，因为它们不光是所有的物理学家使用的通用

语言，更重要的是它们最容易说清楚量子力学的一般性理论结构。因此，

到此为止我们几乎所有的讨论都是普遍适用的，它适用于单个微观粒子，

也适用于多粒子体系，同样也适用于量子场，甚至适用于整个宇宙。但这

样的表述有时候也有它不方便的地方，那就是过于抽象了，我们是在比较

抽象的意义上讨论量子态和算符的，我们使用的狄拉克符号也是一种抽象

的记号，从某种意义上来说，我们前面所有涉及到狄拉克符号和算符的推

导实际上都是在做某种抽象代数的运算。当然，前面谈到态矢量|ψ⟩的时
候，我们常常让大家将它想象成列矢量，说到⟨ψ|的时候我们会让大家想象
列矢量|ψ⟩的厄米共轭，也就是一个行矢量，而谈到算符的时候，我们也总
是让大家将它想象成矩阵。但严格来说，这些都是不必要的，我们这么说

的时候其实是为了帮助大家理解这些抽象的东西的运算规则。

然而，在某种意义上，态矢量|ψ⟩和列矢量的确本质是一回事，算符和
矩阵也的确是一回事。更准确一点来说，列矢量是态矢量|ψ⟩在希尔伯特空
间的某个矢量基下的表示，同样，矩阵也是算符的具体表示。下面我们将

进一步建立这两者间的密切联系。

首先，我们可以写出任意一个算符A的定义方程，即A|ψ⟩ = |ϕ⟩。然后
我们在希尔伯特空间中任选一组正交归一的矢量基{|i⟩, i = 1, 2, 3...}。我
们把算符的定义方程和某个基矢量|j⟩做内积，从而就得到⟨j|A|ψ⟩ = ⟨j|ϕ⟩。
最后，我们在这个表达式的A和|ψ⟩之间插入一个单位算符1，并使用单位算

符1的分解定理，从而就可以得到∑
i

⟨j|A|i⟩⟨i|ψ⟩ = ⟨j|ϕ⟩. (2.82)

前面我们说过⟨i|ψ⟩就是态矢量|ψ⟩在矢量基{|i⟩, i = 1, 2, 3...}中的第i个分
量，同样⟨i|ϕ⟩是态矢量|ϕ⟩的第i个分量，这些分量都是数，因此我们当
然可以将它们分别排成一个列矢量ψ和ϕ (现在这两个符号表示的是通

常的列矢量，希望不会引起大家的混淆) ψ = (⟨1|ψ⟩, ⟨2|ψ⟩, ⟨3|ψ⟩, ...)T ,
ϕ = (⟨1|ϕ⟩, ⟨2|ϕ⟩, ⟨3|ϕ⟩, ...)T (由于我们这里写的是行矢量，所以加一个转
置符号T表示将之变成列矢量)。同时，我们引入一个矩阵Â, 它的第j行

第i列Âji定义成Âji = ⟨j|A|i⟩。现在，我们就可以看出来，方程(2.82)实际

上是一个标准的线性方程，Âψ = ϕ。类似的，你也很容易得到⟨ϕ|ψ⟩ =∑
i⟨ϕ|i⟩⟨i|ψ⟩ = ϕ†ψ。类似的，如果你有两个算符A和B, 它们的矩阵表示

分别为Â和B̂, 那么由于⟨k|AB|i⟩ =
∑

j⟨k|A|j⟩⟨j|B|i⟩ (请注意，等式右边
的表达式实际上就是矩阵Â和B̂的乘积)，因此你可以看到，两个算符的乘
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积AB将表示成两个矩阵的乘积ÂB̂，数学家常常称这样的过程为算符代数

的矩阵表示。

特别的，对于厄米算符A，由于它满足(2.47), 所以它在任意矢量

基{|i⟩, i = 1, 2, 3...}中的矩阵表示必然满足

⟨i|A|j⟩∗ = ⟨j|A|i⟩. (2.83)

也即是说，矩阵Â的共轭转置必然等于它本身Â† = Â，这样的矩阵称为厄

米矩阵。所以，厄米算符的表示矩阵必定为厄米矩阵。

前面的分析告诉我们，只要选定了一组矢量基，那么任何量子态都

可以在这个基中表示成一个列矢量，而任何算符都可以在这个基中表

示成一个矩阵。反过来，给出某组矢量基中某个量子态的列矢量，和

某个算符的矩阵，我们也可以唯一性地得到原来的抽象的态矢量和抽

象的算符。这是因为，只要给出了这些列矢量和矩阵，我们其实就有

诸如(2.82)式这样的方程，而利用单位算符1的分解定理，我们就能从这

个方程反过来得到，⟨j|A|ψ⟩ = ⟨j|ϕ⟩, 其中的|ψ⟩反过来由列矢量ψ给出，
即|ψ⟩ =

∑
i |i⟩⟨i|ψ⟩, 进一步我们又有|j⟩⟨j|A|ψ⟩ = |j⟩⟨j|ϕ⟩，将这个式子

两边分别对j进行求和，并再一次利用单位算符1的分解定理，我们就回

到了原来的算符方程A|ψ⟩ = |ϕ⟩, 而其中算符A现在反过来由矩阵Â给出，
即A =

∑
i,j |j⟩Âji⟨i|。由此可见，只要选定了一组矢量基，那么态矢量及其

列矢量表示，算符及其矩阵表示，实际上是完全等价的。列矢量和矩阵表

示的好处是方便于具体的计算，坏处是必须先选取一组矢量基。而抽象的

狄拉克符号和抽象的算符不依赖于矢量基的选取，因此往往在推导理论公

式的时候更加简洁方便。人们通常称算符A在矢量基{|i⟩, i = 1, 2, 3...}中的
表示矩阵Â为算符A在{|i⟩, i = 1, 2, 3...}表象中的矩阵表示。

值得强调的是，矢量基的选取是任意的，因此如果你换一组不同的矢

量基，那你将得到同一个态矢量的不同列矢量表示，同样，你也将得到同

一个算符的不同矩阵表示。利用单位算符1在不同矢量基之下的不同分解，

你很容易推导出这些不同表示之间的联系，人们有时候称这种联系为表象

变换。既然矢量基的选取可以是任意的，一个重要的问题将是，选取哪个

矢量基是最好的呢？回答是，这要看具体情况，在不同的情形中，选取不

同的矢量基有不同的方便之处。当然，有一些矢量基是人们常用的，下面

我们就举一个具体的例子。

电电电子子子自自自旋旋旋算算算符符符的的的矩矩矩阵阵阵表表表示示示
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斯特恩-格拉赫实验发现电子有一个内部的自由度，即自旋。实验发现

电子自旋状态要用量子力学来描述，在任何一个方向上，电子的自旋角动

量只可能有两个不同的取值，即±~/2。作为物理量，电子的自旋角动量当
然也要用厄米算符来表示，因此我们用Sx, Sy, Sz分别表示x, y, z三个分量的

自旋角动量算符。由于自旋的任何分量只有两个取值±~/2，这就告诉我们
算符Sx, Sy, Sz分别都只有这两个本征值。这也就是说算符S

2
x, S

2
y , S

2
z都只有

一个取值即~2/4, 这样的算符当然只能是常数算符，也就是说，

S2
x = S2

y = S2
z = ~2/4. (2.84)

另外，作为一种角动量，自旋算符也要满足角动量算符的一般代数关系，

这里我们直接给出这些代数关系，

[Sx, Sy] = i~Sz, [Sy, Sz] = i~Sx, [Sz, Sx] = i~Sy. (2.85)

为了数学上的方便，习惯上人们通常引入所谓的泡利算符σx, σy, σz，

它们的定义是Sx = (~/2)σx, Sy = (~/2)σy, Sz = (~/2)σz。因此，要将电子
自旋算符表示成矩阵，我们只需要等价地将泡利算符表示成矩阵就可以

了。泡利算符当然也是厄米算符，而且它们的定义告诉我们，其本征值总

是±1，从而方程(2.84)就可以重写成

σ2
x = σ2

y = σ2
z = 1. (2.86)

而方程(2.85)就将变成[σx, σy] = 2iσz, [σy, σz] = 2iσx, [σz, σx] = 2iσy。因此

就有σxσy + σyσx = (σx[σz, σx] + [σz, σx]σx)/(2i) = (σxσzσx − σ2
xσz + σzσ

2
x −

σxσzσx)/(2i) = 0，式中第一个等号我们利用了[σz, σx] = 2iσy，第二个等号

是直接从算符对易子的定义得来的，第三个等号利用了σ2
x = 1，因此我们

得到了σxσy + σyσx = 0。类似的推导告诉我们

σxσy + σyσx = 0, σyσz + σzσy = 0, σzσx + σxσz = 0. (2.87)

也就是说，这三个泡利算符是两两反交换的，或者说反对易的，所谓两个

算符反对易即是指AB = −BA。不光如此，而且由[σx, σy] = 2iσz我们还

有σxσy − σyσx = 2iσz, 由于σx和σy反对易，这其实就是

σxσy = iσz. (2.88)

我们注意到，泡利算符同时满足方程(2.86)和(2.87), 由这两个方程其实就

能推导出必有σxσy = ±iσz, 方程(2.88)只是在这两种可能性中选定了一种。
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同时满足类似这样的方程的抽象代数就叫Clifford代数，数学家已经系统地

研究过这类代数的矩阵表示了，下面我们将演示给大家这样的表示可以如

何进行。

下面的推导在数学上是完全严格的。它完全是从泡利算符的抽象代数

出发，也即是从方程(2.86)，(2.87)以及方程(2.88)出发，然后构造出一切。

尤其是，我们没有隐含地假设任何算符的本征态的存在性，我们是直接构

造出了这些本征态。

下面开始我们的推导。首先我们注意到σz可以由σx和σy的乘积给出，

所以我们的注意力将主要放在σx和σy上。我们定义两个新的算符σ和σ
†,

σ = (σx − iσy)/2, σ† = (σx + iσy)/2. (2.89)

则利用方程(2.86)和(2.87)，我们很容易得到

σ2 = σ†
2
= 0. (2.90)

而且，由于σ†σ = (σx + iσy)(σx − iσy)/4 = (σ2
x + σ2

y + iσyσx − iσxσy)/4 =

(1 + σz)/2, 这里最后一个等号我们利用了σx和σy的反对易以及σxσy = iσz,

类似的，我们也可以算得σσ† = (1− σz)/2，归纳一下即有

σ†σ = (1 + σz)/2, σσ
† = (1− σz)/2. (2.91)

由后一个式子我们可以得到0 = σσ†
2
= (σ† − σzσ†)/2(因为σ†

2
= 0), 即

σzσ
† = σ†. (2.92)

由于σ2 = 0，所以我们必定可以在电子的所有自旋量子态中找到某个

量子态，我们记作| ↓⟩, 它满足

σ| ↓⟩ = 0. (2.93)

这是因为，任取一个自旋量子态|ψ⟩，如果它满足σ|ψ⟩ = 0, 那这个|ψ⟩就
是我们要找的态，如果σ|ψ⟩ ̸= 0，那我们就可以令σ|ψ⟩ = |ϕ⟩, 这时候将
有σ|ϕ⟩ = σ2|ψ⟩ = 0(后一个等号是由于σ2 = 0), 因此|ϕ⟩就将是我们要找
的态。总之，满足方程(2.93)的量子态| ↓⟩总能找到。对于这个态我们必
有0 = ⟨↓ |σ†σ| ↓⟩ = ⟨↓ |(1 + σz)| ↓⟩/2, 即有⟨↓ |(1 + σz)| ↓⟩ = 0, 由于σz的本

征值为±1, 因此这个结果就告诉我们| ↓⟩必定是σz的本征值为−1的本征态，
即

σz| ↓⟩ = −| ↓⟩. (2.94)
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这就是为什么我们记这个态为自旋向下态的原因，因为σz在这个态上的本

征值为−1 这就意味着它是Sz的本征值为−~/2的本征态，我们称这样的量
子态为自旋向下态。

下面我们引入一个新的自旋量子态，我们记作| ↑⟩, 它的定义是

| ↑⟩ = σ†| ↓⟩. (2.95)

利用方程(2.92),我们容易得到σz| ↑⟩ = σzσ
†| ↓⟩ = σ†| ↓⟩ = | ↑⟩, 也就是说，

| ↑⟩必为σz的本征值为+1的本征态，即

σz| ↑⟩ = | ↑⟩. (2.96)

这就是我们为什么将这个态记作自旋向上态的基本原因，因为它作为σz的

本征值为+1的本征态就必然也是Sz的本征值为+~/2的本征态。
将方程(2.95)共轭转置，就有⟨↑ | = ⟨↓ |σ, 因此，⟨↑ | ↓⟩ = ⟨↓ |σ| ↓⟩ =

0(后一个等号是由于方程(2.93))，也即

⟨↑ | ↓⟩ = 0. (2.97)

因此自旋向上态和自旋向下态必定是两个正交的量子态，这正符合这两个

态可以确定地区分的物理要求。而且我们也可以算得⟨↑ | ↑⟩ = ⟨↓ |σσ†| ↓⟩ =
⟨↓ |(1− σz)/2| ↓⟩ = ⟨↓ | ↓⟩, 因此如果我们将最开始时选的| ↓⟩态归一化，那
由方程(2.95)定义的| ↑⟩也将自动是归一化的, 即

⟨↓ | ↓⟩ = ⟨↑ | ↑⟩ = 1. (2.98)

由于同时满足正交归一性，因此我们构造出来的{| ↓⟩, | ↑⟩}可以作为电子
自旋量子态的两个基矢量。从物理上来说，这两个基矢量当然应该是完备

的。但是，我们能够从泡利算符的代数出发从数学上证明这一点吗？回答

很简单，可以。比方说我们观察刚才的两个基矢量| ↓⟩, | ↑⟩ = σ†| ↓⟩, 我们
发现| ↑⟩是用σ†作用在| ↓⟩上得到的，那我们能用σ†再重复作用一次从而得
到第三个态吗？答案是不能，因为σ†

2
= 0, 因此σ†的重复作用只能得到0，

即

σ†| ↑⟩ = 0. (2.99)

那如果用σ作用在| ↑⟩上能得到新的态吗？答案是，也不能，因为σ| ↑⟩ =
σσ†| ↓⟩ = (1− σz)/2| ↓⟩ = | ↓⟩, 也即

σ| ↑⟩ = | ↓⟩. (2.100)
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因此我们就证明了电子自旋的基矢量{| ↓⟩, | ↑⟩}不能再进一步扩大，从而它
们就是完备的。因此它们就可以作为电子自旋态空间的矢量基。

以{| ↑⟩, | ↓⟩}为矢量基(现在要注意这两个基矢量的排列顺序)，我们就

能够分别计算出泡利算符σz, σ, σ
†在这个基中的表示矩阵σ̂z, σ̂, σ̂

†.

σ̂z =

(
⟨↑ |σz| ↑⟩ ⟨↑ |σz| ↓⟩
⟨↓ |σz| ↑⟩ ⟨↓ |σz| ↓⟩

)
=

(
1 0

0 −1

)
, (2.101)

σ̂ =

(
⟨↑ |σ| ↑⟩ ⟨↑ |σ| ↓⟩
⟨↓ |σ| ↑⟩ ⟨↓ |σ| ↓⟩

)
=

(
0 0

1 0

)
, (2.102)

σ̂† =

(
⟨↑ |σ†| ↑⟩ ⟨↑ |σ†| ↓⟩
⟨↓ |σ†| ↑⟩ ⟨↓ |σ†| ↓⟩

)
=

(
0 1

0 0

)
. (2.103)

在计算的过程中，我们需要使用方程(2.93)，(2.94)，(2.95)，(2.96)，(2.97)，

(2.98)，(2.99)，(2.100)，当然，这些方程中的每一个其实都很简单。

而由σ, σ†的定义式(2.89)，我们又可以进一步得到σx的表示矩阵σ̂x =

σ̂+ σ̂†以及σy的表示矩阵σ̂y = i(σ̂− σ̂†)。这三个矩阵σ̂x，σ̂y，σ̂z就是著名的
泡利矩阵，我们将它们归纳在下面，

σ̂x =

(
0 1

1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0

0 −1

)
. (2.104)

2.2.7 *一个数学附录

在这个附录中我们将给出希尔伯特空间线性算符奇异值分解定理的证

明，我们将假定所要考察的这个希尔伯特空间是有限维的，并且为了简单

起见，我们常常默认本征值非零的本征态没有简并，当然将我们的证明扩

展到有简并的情况并不是一件很难的事情。我们要证明的即是，希尔伯特

空间的任何线性算符A都可以写成如下形式

A =
∑
i

|ui⟩λi⟨vi|, (2.105)

其中λi ̸= 0，{|ui⟩, i = 1, 2, 3....}和{|vi⟩, i = 1, 2, 3....} 分别从属于希尔伯特
空间的两组正交归一的矢量基，因此有

⟨ui|uj⟩ = ⟨vi|vj⟩ = δij. (2.106)
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首先构造厄米算符A†A和AA†。设|vi⟩为A†A的本征态，相应的本征值
为ai，同样设|ui⟩为AA†的本征态，相应的本征值为bi。即,

A†A|vi⟩ = ai|vi⟩, AA†|ui⟩ = bi|ui⟩. (2.107)

作为厄米算符的本征态，{|ui⟩, i = 1, 2, 3....}和{|vi⟩, i = 1, 2, 3....}当然分别
都是正交归一的。

又由于(AA†)A|vi⟩ = A(A†A)|vi⟩ = aiA|vi⟩，可见A|vi⟩是AA†的一个本
征态, 不妨取

A|vi⟩ = λi|ui⟩. (2.108)

同样，由于(A†A)A†|ui⟩ = biA
†|ui⟩, 所以A†|ui⟩也是A†A的一个本征态。又

由于λiδji = λi⟨uj|ui⟩ = ⟨uj|A|vi⟩ = ⟨vi|A†|uj⟩∗，即⟨vi|A†|uj⟩ = λ∗i δji。可见

必有

A†|uj⟩ = λ∗j |vj⟩. (2.109)

由方程(2.108)和方程(2.109)可知，

A =
∑
i

|ui⟩λi⟨vi|, A† =
∑
i

|vi⟩λ∗i ⟨ui|. (2.110)

这就证明了奇异值分解定理。

上面最后一步的详细推理过程是这样的：由方程(2.108)和方程(2.109)可

知， |ui⟩和|vi⟩是一一对应的。进而可以得到A|vi⟩⟨vi| = λi|ui⟩⟨vi|，两边
对i求和，就得到A

∑
i |vi⟩⟨vi| =

∑
i λi|ui⟩⟨vi|，由于{|vi⟩, i = 1, 2, 3....} 是希

尔伯特空间的矢量基，因此
∑

i |vi⟩⟨vi| = 1，这样就得到了最终的结果。而

且由方程(2.108)和方程(2.109)也很容易知道ai = |λi|2 = bi。

一个细节的问题是，仔细观察我们的证明过程，你会发现过程中建立

起来的|ui⟩和|vi⟩之间的一一对应仅在ai = bi > 0(也就是λi ̸= 0)时才成立。

至于ai = 0的那些态，它和bj = 0的那些态之间其实并没有对应关系，而

是相互独立的，好在这并不影响我们最后的结论，只是需要我们在最后的

表达式中加上λi ̸= 0的限制，并将分别与ai = 0和bj = 0相应的那些本征态

排除在求和范围之外。这些与ai = 0对应的本征态(假设共有Na个，即Na重

简并)，以及与bj = 0对应的本征态(假设共有Nb个，即Nb重简并)，它们其

实是数学家很关心的东西，因为对于很大一类线性算符，数学家证明了一
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个著名的数学定理，它说，Na − Nb其实是一个拓扑不变量，这就是阿蒂

亚-辛格指标定理。

Na − Nb有某种拓扑不变性其实是不难理解的。所谓的拓扑不变性就

是指在连续变化下的某种不变性，也就是说，设想线性算符A依赖于某

些连续参数µ，当µ连续变化时，Na(µ) − Nb(µ)将保持不变。这里的原因

其实很简单，设想随着µ的连续变化，某个ai = 0的本征态|vi⟩变成了一
个ai ̸= 0的态，因此Na就减少了1。但是奇异值分解定理的证明过程告诉我

们, ai ̸= 0的本征态一定是和bi ̸= 0的本征态一一对应的，现在，ai ̸= 0的本

征态增加了一个，那这就必然意味着bi ̸= 0的本征态也同时新增了一个，这

个新增的态是从哪来的呢？必然是因为某个原来bi = 0的本征态|ui⟩随着参
数u的连续调节变成了bi ̸= 0。那这就意味着，Nb也同时减少了1。也就是

说，随着参数µ的连续调节，Na和Nb必然是同步减少的，同样，我们也可

以论证它们必然是同步增加的。既然Na和Nb总是同步的增加或者同步的减

少，那它们的差值Na(µ)−Nb(µ)就将保持不变。所以Na−Nb具有拓扑不变

性的直观论证并不难，难的是找到相应的拓扑不变量的表达式，并证明它

等于Na −Nb。阿蒂亚和辛格实际上是对一大类线性算符完成了这一困难的

工作。

回到我们的奇异值分解定理。如果算符A满足AA† = A†A(数学家称这

种算符为正规算符)，则由奇异值分解定理的证明过程可知, 这时候总可以

取|ui⟩ = |vi⟩, 因此|ui⟩也是A的本征态, 而A必然能够分解成

A =
∑
i

|ui⟩λi⟨ui|. (2.111)

如果把算符表示成矩阵，与正规算子对应的就叫作正规矩阵，正规算子的

分解定理实际上告诉我们，正规矩阵一定是可对角化的。反过来，如果一

个希尔伯特空间的线性算符可对角化，也就是能分解成如(2.111)这样的形

式，则由|ui⟩的正交归一性很容易验证这个算符必为正规算符。
特别的，幺正算符U就是一个正规算符, 而且由于U †U = UU † = 1, 所

以|λi|2 = 1，所以必有λn = eiθn。即幺正算符一定能分解成

U =
∑
n

eiθn |un⟩⟨un|. (2.112)

比方说时间演化算符U = e−iHt/~就可以分解成

e−iHt/~ =
∑
n

e−iEnt/~|En⟩⟨En|. (2.113)
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厄米算符也是正规算符，因此也必定能分解成形如
∑

i λi|ui⟩⟨ui|的形式，而
且这时候本征值λi必定是实数。

2.2.8 习题

1. 请证明施瓦兹(Schwarz)不等式，

⟨ψ|ψ⟩⟨ϕ|ϕ⟩ ≥ |⟨ϕ|ψ⟩|2.

提示：利用
(
⟨ψ|+ z∗⟨ϕ|

)
·
(
|ψ⟩+ z|ϕ⟩

)
≥ 0(z为任意复数)。

2. 对于任意一个厄米算符A和任意一个量子态|ψ⟩，我们可以定义厄
米算符∆A = A − A。(∆A)2在|ψ⟩态上的期望值(∆A)2 = A2 − A2

称为物理

量A的均方差。假设有两个厄米算符A,B，以及某个任意的量子态|ψ⟩，请
证明下面的不等式

(∆A)2 · (∆B)2 ≥ 1

4

∣∣[A,B]
∣∣2.

提示：首先，对量子态|ψ1⟩ = ∆A|ψ⟩、|ψ2⟩ = ∆B|ψ⟩用施瓦兹不等式。其
次，注意到∆A∆B = 1

2
[A,B] + 1

2
{∆A,∆B}，其中[A,B]† = −[A,B]为一个

反厄米算符，其期望值为纯虚数，而{∆A,∆B} = ∆A∆B +∆B∆A为厄米

算符，其期望值为实数。

3. 证明：任意2 × 2的厄米矩阵X都可以写称X = x0 · 1 + x1σ̂x +

x2σ̂y + x3σ̂z的形式，式中x0, x1, x2, x3是四个实数，并请证明X的行列式

为det(X) = x20 − x21 − x22 − x23。

4. 注意上一题的det(X)。如果将x0, x1, x2, x3理解为狭义相对论的四维

矢量的四个分量，那么det(X)刚好是这个四维矢量的“长度”平方。这意

味着，任何四维矢量都对应于一个2 × 2的厄米矩阵。狭义相对论的间隔

不变性告诉我们，任何四矢量的“长度”平方在洛伦兹变换下都是不变

的，请据此证明：任意洛伦兹变换都可以表示为一个行列式为1的2× 2复矩

阵(通常称这样的复矩阵的集合为SL(2,C))，并由此证明洛伦兹变换有6个

独立的实参数。

5. 请证明算符恒等式: (1), [A,BC] = [A,B]C+B[A,C]。(2), [A, [B,C]]+

[B, [C,A]] + [C, [A,B]] = 0。
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6. 有两个算符A,B，记它们的对易子[A,B] = C。如果[C,A] =

[C,B] = 0。请证明算符恒等式

eA+B = eAeBe−
1
2
[A,B].

7. 已知量子比特的两组正交归一矢量基{|0⟩, |1⟩}以及{|+⟩ = 1√
2

(
|0⟩ +

|1⟩
)
, |−⟩ = 1√

2

(
|0⟩ − |1⟩

)
}, 且已知算符F在{|0⟩, |1⟩}表象中的表示矩阵为

F =

(
0 1

1 0

)
. (2.114)

求算符F在表象{|+⟩, |−⟩}中的表示矩阵。

2.3 量子纠缠

我们来考察双电子系统的自旋量子态，由于态叠加原理，下面这个量

子态|ϕ+⟩显然是双电子系统的一个可能自旋态，

|ϕ+⟩ = 1√
2
(| ↑↑⟩+ | ↓↓⟩). (2.115)

这个量子态有一个特别的性质，即它不能因式分解成第一个电子的某个自

旋态|ϕ1⟩与第二个电子的某个自旋态|ϕ2⟩的乘积|ϕ1⟩|ϕ2⟩ = |ϕ1, ϕ2⟩这样的形
式。这就意味着处在|ϕ+⟩态上的两个电子共同形成了一个不可分解的整体，
而这个不可分割的整体与两个电子之间的距离没有关系，也即是说，即使

你将其中一个电子放在南昌，另一个放到天边，这两者遥遥相隔，但是它

们却依然处于同一个不可分解的整体之中。

现在，假设你沿着z轴测量南昌的这个电子的自旋，那你会得到两种可

能的结果，1/2的概率你将测到南昌的这个电子自旋向上↑, 1/2的可能性你
将测到它自旋向下↓。但是，奇妙的是，由于南昌的这个电子和天边的那
个电子形成了不可分解的整体|ϕ+⟩，因此当你测到南昌的电子自旋向上时
就意味着原来的|ϕ+⟩态塌缩到了| ↑↑⟩态，而这又意味着天边的电子立即处
在| ↑⟩态，同样的，当你测到南昌的电子自旋向下时，原来的|ϕ+⟩态就塌缩
到了| ↓↓⟩态，因此天边的电子立即就处在| ↓⟩态。总之，无论你测到南昌的
电子自旋向上还是自旋向下，两者的整体就塌缩了，相应的就立即决定了

天边电子的量子态。由于这种你在南昌的测量对天边电子的影响是立即的，

所以很多人会说：这意味着在量子力学里信息可以超光速传播，利用量子

纠缠态可以超光速地传递信息。情况果真如此吗？
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2.3.1 量子纠缠能实现超光速信息传递吗？

为了分析量子纠缠态能否实现超光速传递信息的问题，让我们假设某

个实验室中制备了N对电子，每一对都处在纠缠态|ϕ+⟩, 你和你的她分别
持有每一对电子中的一个，你待在南昌，而她去了天边，因此你们分享

着N个纠缠对，但是你们之间不能通信。在这种情况下，你能用你们之间

分享的纠缠对来给她瞬时传递信息吗？比方说，你和她约定，如果你们在

南昌养的那只猫死了，你就会对你的电子进行测量，而你的测量立即就会

影响她持有的另一个电子，因此看起来只要她接着对自己持有的那个电子

进行测量就能获知猫死的信息。情况真是这样的吗？

现在，假设南昌的猫死了，因此你沿着z轴测量了你们共享的N个纠缠

对中你所持有的那些电子，但是纠缠对的塌缩是随机的，因此你有1/2的可

能性测到某个电子自旋向上，1/2的可能性测到自旋向下，而你无法决定自

己的测量结果，因此完成测量之后，你的N个电子大约会有一半自旋向上，

另一半自旋向下，哪些自旋向上，哪些自旋向下是完全随机的。接着，她

也对自己的电子进行了测量，当然，你的测量立即影响到了她的电子，因

此所有你测到你的电子自旋向上的那些纠缠对，她也会测到自己的另一个

电子自旋向上，所有你测到自己的电子自旋向下的纠缠对，她也会测到自

己的另一个电子自旋向下。但问题是，你们之间不能通信，因此她无从得

知你的测量结果，也就是说，她不知道你测到的哪些电子自旋向上，哪些

电子自旋向下。对她来说，她唯一能知道的就是，她自己测量的结果是，

大约有一半的电子自旋向上，另一半的电子自旋向下，而且在她看来，哪

些电子自旋向上，哪些电子自旋向下是完全随机的。而根据纠缠态|ϕ+⟩塌
缩的随机性，即使你根本没有作任何测量，只有她一个人在天边对她的那

些电子进行测量，她也会得到完全类似的结论。也就是说，你的测量根本

就不能增加任何她从自己的测量中获取的信息，她甚至根本就无从判断你

有没有测量。因此她根本就无从得知你们的猫死了。

看来，你根本就无法利用纠缠对超光速地传递信息，甚至你根本就无

法利用这些纠缠对来传递信息。但是，你说且慢，以上只考虑了你沿着z轴

测量的情况，假设你有两种不同的测量选择，要么你沿z轴测量你的所有电

子，要么你沿着x轴测量你的电子，那能不能通过你的测量对她的即时影响

将你的这两种不同选择传递给她呢？如果能的话，那你就可以用你的不同

选择来代表猫的两种不同状态，从而就能将猫死了的信息超光速地传递给

她。
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为了下一步的分析，我们首先来看一下x方向的测量和z方向的测量有

什么不同。量子力学的基本原理告诉我们，如果我们沿着x轴测量电子的自

旋态，那么被测的电子就会塌缩到x方向上的两个自旋本征态| ↑x⟩和| ↓x⟩中
的某一个，这两个本征态和z方向本征态的关系是

| ↑⟩ = 1√
2
(| ↑x⟩+ | ↓x⟩), | ↓⟩ =

1√
2
(| ↑x⟩ − | ↓x⟩). (2.116)

当然，反过来也有

| ↑x⟩ =
1√
2
(| ↑⟩+ | ↓⟩), | ↓x⟩ =

1√
2
(| ↑⟩ − | ↓⟩). (2.117)

另外，由于| ↑↑⟩ = | ↑⟩| ↑⟩ = 1
2
(| ↑x⟩ + | ↓x⟩)(| ↑x⟩ + | ↓x⟩) = 1

2
(| ↑x⟩| ↑x

⟩+ | ↓x⟩| ↓x⟩+ | ↑x⟩| ↓x⟩+ | ↓x⟩| ↑x⟩) = 1
2
(| ↑x↑x⟩+ | ↓x↓x⟩+ | ↑x↓x⟩+ | ↓x↑x⟩)，

类似的| ↓↓⟩ = 1
2
(| ↑x↑x⟩ + | ↓x↓x⟩ − | ↑x↓x⟩ − | ↓x↑x⟩), 所以我们可以知道，

原来的纠缠态|ϕ+⟩也可以写成

|ϕ+⟩ = 1√
2
(| ↑x↑x⟩+ | ↓x↓x⟩). (2.118)

假设你有沿着z轴和沿着x轴两种测量选择，她也知道你有这两种选择，

并且你们约定，如果你沿着z轴测量，那就代表猫还活着，如果你沿x轴测

量那就代表猫死了。由于你们无法正常通信，所以你当然不能直接告诉她

你的测量选择是什么，她只能从她自己随后的测量结果中对你的测量方式

进行推断，那么她能推断出你的测量方式进而得知猫的死活吗？由于她无

法预先知道你的测量方式，所以她自己只能从两种不同测量方式中随机选

取一种，比如说，假设她总是选择沿着z轴测量她的电子(由于z轴和x轴对

于我们的纠缠态|ϕ+⟩完全对称，所以对于她选择沿x轴测量的所有分析将是
完全类似的)。当然，我们总是假定她的测量在你的测量完成之后进行，而

你有两种测量方式的选择，你沿着z轴测量她也沿着z轴测量的情况我们已

经分析过了，结论是，她将得到大约一半电子自旋向上，另一半电子自旋

向下的结论，并且哪些电子自旋向上哪些自旋向下对于她来说是完全随机

的。

现在假设你沿着x轴测量，之后她再沿着z轴进行测量，我们来看她是

否能得到不同的结果。由于纠缠态|ϕ+⟩也可以写成(2.118)的形式，所以你

沿着x轴的测量结果将是，大约有一半你所持有的电子会塌缩到| ↑x⟩态，
当然由于纠缠态的性质(2.118)，这时候她相应的另一个电子也会立即塌
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缩到| ↑x⟩态，同样，你另半数电子会塌缩到| ↓x⟩态, 这时候她的相应电

子也会立即塌缩到| ↓x⟩态，当然这种塌缩是完全随机的。因此在你的测
量完成以后，她所持有的每一个电子有1/2的概率处在| ↑x⟩态，1/2的概

率处在| ↓x⟩态，当然由于她还不知道你的测量方式，所以对于这个结果
她是并不知情的。她只是选择沿着z轴进行她的测量，由(2.117)式可以知

道，这时候如果她测的电子处在| ↑x⟩态，那她的测量将会使得这个电子
以1/2的可能性塌缩到| ↑⟩，还有1/2的可能性塌缩到| ↓⟩, 如果她测的电子处
在| ↓x⟩态，结论也是一样的，因此总的来说，对于她所持有的每一个电子，
她都有1/2的概率测到它自旋向上，1/2的概率测到它自旋向下。因此，当

她完成所有的测量以后，她同样发现，在她所持有的电子中，大约有一半

自旋向上，有一半自旋向下，而且这个结果是完全随机的。你已经看到了，

她所得到的这个结果和你沿着z轴进行测量时她所得到的结果完全一样。也

即是说，远在天边的她根本无从推断出你的测量方式，因此当然也就无法

得知猫的死活。因此，用这种方式同样无法实现信息的超光速传递。

那么这是不是意味着只要你不通过正常的通信直接告诉她你的测量方

式，她就根本无从得知呢? 能不能说明，量子纠缠态不仅无法超光速传递

信息，甚至根本就无法用来传递信息呢？答案是不能。因为以上的结论都

是在假定你和她之间无法进行通常的通信的情形下得到的。如果你们之间

能够进行通常的通信，那即使你不直接告诉她你的测量方式，她也有可能

推断出这个信息，即是说，如果你们之间能够正常通信，那你们之间共享

的量子纠缠对是能够用来传递信息的。我们来看一下这是怎么回事。

假设你们之间能够正常通信，那么即使你不直接告诉她你的测量方式，

你也还可以告诉她你的测量结果，也就是说，你也还可以告诉她你所测的

每一个电子自旋是沿着你测量轴的正方向，还是沿着你测量轴的反方向，

而她得知你的这些信息就能进一步推断出你是沿着z轴进行测量，还是沿

着x轴进行测量。不妨假设你沿着x轴进行测量，因此在你的测量完成之后

所有电子都塌缩到了某个x方向的本征态，这时候如果她也沿着x轴进行测

量，那么由于纠缠的性质，她会发现她所测的每一个电子结果都和你的测

量结果一样(指电子自旋是沿着测量轴还是反着测量轴的结果。注意，你已

经告诉她这个测量结果了)。但是，如果她是沿着z轴进行测量，这时候由

于她的电子已经处在x方向的某个本征态，而x方向的本征态塌缩到z方向

的本征态是完全随机的，所以她会发现她所测的电子到底是沿着测量轴的

正方向还是反方向，这与你告诉她的测量结果之间完全没有关联。所以，

通过这种将她的测量结果和你的测量结果相比较的方式，她就能推断出你
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的测量方式与她的是否一样，从而也就知道了你是沿着z轴测量，还是沿

着x轴进行测量。这样，关于你的测量方式的信息就成功传递给它了。

可见，利用你和她之间共享的量子纠缠对，你的确有可能向她传递额

外的信息。但，前提是，你们之间必须可以进行通常的经典的通信，她必

须先得到你用经典方式传递过来的信息，才能进一步获知你用纠缠对传递

过来的信息。而经典通信肯定是无法超光速的，因此量子纠缠对也无法用

来超光速地传递信息。

2.3.2 如何提取纠缠态中的信息

从现在开始，为了和量子信息的语言对接起来，假设我们利用电子

的自旋态来实现量子比特，自旋向上态| ↑⟩代表|0⟩态，自旋向下态| ↓⟩代
表|1⟩态。因此之前我们所讨论的两电子自旋的纠缠对|ϕ+⟩就可以重写成两
个量子比特的纠缠对|ϕ+⟩ = 1√

2
(|00⟩+ |11⟩)。但是两个量子比特的希尔伯特

空间是2× 2 = 4维的，它应该有4个正交归一的基矢量，假设我们将|ϕ+⟩选
作其中一个基矢量，那么其余三个基矢量可以怎么选择呢？事实上我们可

以将其余三个基矢量也选作纠缠态，

|ϕ±⟩ = 1√
2
(|00⟩ ± |11⟩), (2.119)

|ψ±⟩ = 1√
2
(|01⟩ ± |10⟩). (2.120)

很容易验证这4个态的确是正交归一的。为了纪念物理学家贝尔在量子纠缠

上所做的开创性工作(贝尔不等式)，人们通常称这四个态所构成的两量子

比特希尔伯特空间矢量基为贝尔基，有时候也称这些量子态为贝尔态。

现在，假定你和你远在天边的她是同一个导师的学生，你们的导师将

两比特的重要信息(这就有四种可能性)用这四个贝尔态来编码，每种可能

性对应一个贝尔态，并且导师将这个贝尔纠缠态中的第一个量子比特发给

了南昌的你，而将与之纠缠的另一个量子比特发给了远在天边的她。即是

说，如果你们想获知导师给出的具体是什么信息，你们就得确定共享的是

四个贝尔态中的哪一个。

你们如何能确定这一点呢？由于相隔遥远，所以你们首先想到的可能

就是各自独立地对手中的那个量子比特进行测量。但是，显然的是，只要

你们不相互通信，那你们就不可能从这种测量中获取任何信息，因为从这

四个贝尔态的表达式(2.120)可以知道，不管你们共享的是哪一个贝尔态，
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你的测量将总是以1/2的可能性得到0，以1/2的可能性得到1，结果完全是

随机的，你完全无法从中得知贝尔态的任何具体信息，当然她也一样。这

是贝尔态和通常的单个量子比特量子态的根本性不同，对于通常的量子比

特，如果你存进一比特的信息，比如将它存为|0⟩态，那你只要测量这个量
子比特的值，就一定能把这个信息读取出来。但是，现在你导师明明存进

了两个比特的信息，但你和她只要相互保持独立不进行沟通，就什么信息

也读取不出来。也即是说，信息是隐藏的，是存储在你们共享的纠缠对的

整体之中。

你可能会问，那这四个贝尔态到底如何区分呢？答案很简单，只要同

时测量算符Z1Z2和算符X1X2的值，这里写在算符上的下标表示这个算符

仅对相应的量子比特进行作用，下标1就表示这个算符仅作用在纠缠对的

第1个量子比特上，下标2就表示这个算符仅作用在纠缠对的第2个量子比特

上，Z算符其实就是泡利算符σz, 它的作用规则是Z|0⟩ = |0⟩, Z|1⟩ = −|1⟩,
X算符其实就是泡利算符σx, 它的作用规则是X|0⟩ = |1⟩, X|1⟩ = |0⟩，当
然，作用在不同量子比特上的算符是相互对易的。利用泡利算符的反对易

关系，人们很容易验证Z1Z2和X1X2是对易的，因此可以有共同的本征矢

量，实际上，贝尔基的四个量子态就是它们共同的本征矢量。从贝尔态的

表达式(2.120)可以很容易验证，Z1Z2的两个不同本征值可以用来区分四个

贝尔态是属于|ϕ⟩类型，还是属于|ψ⟩类型，而X1X2的本征值可以用来进一

步区分它们在这两个类型中的±号。但是，正如你已经看到的，要完成这
种区分，就需要对纠缠对中的两个量子比特进行联合测量，比如说，对算

符Z1Z2的值进行测量。注意，这和你测Z1，她同时测Z2有根本性的不同，

因为在联合测量中可以仅仅测得Z1Z2的值而不必同时知道Z1、Z2分别是多

少。实际上，要同时对X1X2和Z1Z2进行这种联合测量，就必须首先将你和

她分别持有的量子比特放到一起来。也即是说，只要你们依然分别持有纠

缠对中的一个量子比特，那就无法进行这样的联合测量，从而也就无法完

整地读出导师存储的两比特信息。

当然，你们依然可以通过交流各自的测量结果，从而获取部分信息，

比方说，你和她分别测量了Z1和Z2，并将结果进行了比较，由于Z1, Z2都

与Z1Z2对易，所以根据测量结果你们依然可以推断出你们共享的贝尔态是

属于|ϕ⟩类型还是|ψ⟩类型，但是，由于Z1, Z2都与X1X2反对易，因此你们

的测量必定会干扰X1X2的本征态信息，因此你们也就不可能进一步获知被

测贝尔态的±号。总之，通过这样的方式你们只能获知两比特信息中的1比

特。
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2.3.3 量子密集编码

到此为止，实际上我们还没有看到量子纠缠对有什么神奇的用处。实

际上，量子纠缠对能大幅度提高我们的通信能力，当然，代价是要额外消

耗掉纠缠对，因此在量子信息中，人们通常将量子纠缠态看成是一种会被

消耗的资源。下面就让我们来看一下这种资源的一种神奇应用。

还是假定你在南昌，你的她远在天边，假设你要发送两比特的经典信

息给她，如果用经典的方式，通过经典信道进行发送，那你得占用两比特

的信道。但是，如果你和她之间建立了量子信道，你就可以通过量子信道

发送量子比特，并且，假定你和她在前年就分别持有了某个量子纠缠对中

的一个量子比特，不妨假定这个纠缠对处在|ϕ+⟩态吧。如果你们有这些资
源，那么你只要占用一比特的量子信道，就能完成对两比特经典信息的发

送，这就是所谓的量子密集编码。

你如何做到这一点呢？首先，你们之间得事先约定好一种如何用四个

贝尔态对应两比特经典信息的编码方式。其次，你注意到可以对自己所持

有的量子比特进行四种不同的幺正变换，分别为恒等变换1，变换Z1, 变

换X1，以及变换Z1X1(利用泡利算符的性质，你很容易验证这四个算符的

幺正性)，变换的结果你也很容易算出来，

1|ϕ+⟩ = |ϕ+⟩, Z1|ϕ+⟩ = |ϕ−⟩, X1|ϕ+⟩ = |ψ+⟩, Z1X1|ϕ+⟩ = |ψ−⟩. (2.121)

然后你再根据你们事先约定好的编码方式，将你要发送的信息对应成四个

贝尔态中的某一个，并对你的量子比特进行相应的幺正变换。最后，完成

了合适的幺正变换以后，你将你手中的那个量子比特通过量子信道发送给

天边的她。她本来就持有纠缠对中的另一个量子比特，再接收到你的量子

比特以后就拥有整个纠缠对了。为了确定这个纠缠对是四个贝尔态中的哪

一个，她只需要同时进行Z1Z2和X1X2两种联合测量就可以了。再根据约定

好的编码方式她就能得知你所发送的信息。这样，你们就完成了仅用1比特

的量子信道就传送2比特的经典信息了。这就是量子密集编码的基本思想。

注意，虽然你们前年就共同持有了这对纠缠对，但那时候的纠缠对中完全

不含有你现在要发送的信息，你的信息发送的确是通过现在传送这一个量

子比特完成的。

2.3.4 量子隐形传态

量子纠缠对真正神奇的地方在于，只要有足够的量子纠缠对，那么原
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则上就可能做到将你超空间传送到一个遥远的星球。当然，这只是原则上，

实际上这个目标对于我们来说可能永远都遥不可及。但原则上并没有什么

物理定律禁止我们实现这种科幻场景。因为，今天在实验室里早就做到将

一个量子比特的量子态超空间传送到非常远的地方，这就是量子隐形传

态。

还是假设你在南昌，你的她远在天边，你们共同持有一对纠缠的量子

比特，不妨称你持有的那个为量子比特1，她持有的那个为量子比特2，这

两个量子比特处在纠缠态|ϕ+⟩12(式中我们加上了下标12，这是因为我们即

将引入第3个量子比特)。现在，假设你还有另一个量子比特3, 它处在某个

未知的状态|Ψ⟩3 = α|0⟩3 + β|1⟩3, 而你想把这第三个量子比特发送给天边的
她。你当然可以通过你们之间的量子信道直接进行发送，但你发送的量子

比特很有可能被别人拦截，从来带来不可预料的结果。当然，你真正要发

送的其实是第三个量子比特的量子态，因为它包含了某些你想发送给她的

重要未知信息。

那么你们有没有什么绝对安全的量子信息发送方法呢？有。答案就在

于充分利用你们之间共享的纠缠对|ϕ+⟩12。为了说清楚这一点，首先由贝
尔态的定义式(2.120), 我们很容易得到

|00⟩ =
1√
2
(|ϕ+⟩+ |ϕ−⟩), |11⟩ = 1√

2
(|ϕ+⟩ − |ϕ−⟩) (2.122)

|01⟩ =
1√
2
(|ψ+⟩+ |ψ−⟩), |10⟩ = 1√

2
(|ψ+⟩ − |ψ−⟩). (2.123)

其次，我们注意到整个系统的量子态可以重写成

|Ψ⟩3|ϕ+⟩12 = (α|0⟩3 + β|1⟩3)
1√
2
(|00⟩12 + |11⟩12)

=
1√
2
[α|00⟩31|0⟩2 + α|01⟩31|1⟩2 + β|10⟩31|0⟩2 + β|11⟩31|1⟩2]

=
1

2
[(α|0⟩2 + β|1⟩2)|ϕ+⟩31 + (α|0⟩2 − β|1⟩2)|ϕ−⟩31]

+
1

2
[(α|1⟩2 + β|0⟩2)|ψ+⟩31 + (α|1⟩2 − β|0⟩2)|ψ−⟩31], (2.124)

式中第三个等号我们利用了公式(2.123)，并且由贝尔态的正交归一性可以

知道，第三个等号右边的最终表达式中的4个态相互正交。因此, 你只需要

将你的第3个量子比特和你所持有的第1个量子比特放在一起，并同时对它

们进行Z3Z1和X3X1的联合测量，测量的结果是，第3个量子比特和第1个量
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子比特所构成的系统将会塌缩到它们相应的四个贝尔态中的某一个。然后，

你再把你的测量结果用经典的方式发送给天边的她，她如果得知你的结果

是|ϕ+⟩31，那就什么也不需要做，因为从式(2.124)可以知道，这时候她的

量子比特2的量子态已经变成α|0⟩2 + β|1⟩2 = |Ψ⟩2态了，如果她得知你的结
果是|ϕ−⟩31, 根据(2.124)式，那她就对她的量子比特进行Z2的幺正变换，由

于Z2(α|0⟩2 − β|1⟩2) = (α|0⟩2 + β|1⟩2) = |Ψ⟩2，因此变换以后她也将得到正
确的量子态，同样的，如果你的结果是|ψ+⟩31，那她就对自己的量子比特
进行X2的幺正变换，根据(2.124)式，结果也将是正确的量子态，而如果你

的结果是|ψ−⟩31，根据(2.124)式，那她就进行Z2X2的幺正变换，同样会得

到正确的量子态。总之，在得知你的测量结果以后，她总可以让自己的量

子比特变成|Ψ⟩2态。这样一来，你的第三个量子比特的未知量子态就成功
传送给她了。

这里有几点值得进一步讨论，第一，|Ψ⟩态的信息从来也没有在某个量
子信道中进行传送！ |Ψ⟩态的成功传送完全是超空间的，所以称之为隐形
传态。第二，你告知给她的测量结果中也完全不包含|Ψ⟩态的信息，否则根
据量子力学的基本原理，你的测量就已经对|Ψ⟩态造成了不可逆的扰动，那
此后她也就不可能得到|Ψ⟩态了。同时，正因为你发送给她的测量结果中
不包含任何|Ψ⟩态的信息，因此即使有人窃听了你们的通信，他也无法获
得|Ψ⟩态。第三，整个过程并没有违反量子不可克隆定理，这是因为，在你
进行你的测量之后，你就已经摧毁了第三个量子比特原来的态，因此天边

的她后来所做的并不是把你的量子比特3的态复制一份。第四，直到获知

你的测量结果之前，天边的她都还无法得到正确的|Ψ⟩, 并且由于你的测量
结果是完全随机的，因此从概率上来说，这时候她只能得到与|Ψ⟩不相关的
态。因此，这里也没有信息的超光速传递，因为你告诉她测量结果时采用

的经典通信方式当然是无法超光速的。

如果回顾我们上一节所讨论的量子密集编码和这一节讨论的量子隐形

传态，人们就会发现，这两个过程的实现都需要消耗纠缠对。这两个过程

无论哪一个，当它成功完成之后，原来由两个人共同持有的纠缠对就被消

耗掉了，因此对于你和你远在天边的她来说，你们共享的那些纠缠对是一

种稀缺资源。

2.3.5 GHZ态以及为什么爱因斯坦错了

以上我们只讨论了两个量子比特的纠缠，而且实际上我们还只讨论了
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两个量子比特的那些所谓最大纠缠态，也就是我们所说的贝尔态。人们自

然会想到，三个量子比特的纠缠会怎么样呢？这就是我们这一小节想要讨

论的问题。当然我们讨论三个量子比特的纠缠，不是因为它有多特殊，而

是因为借助于它人们可以了结量子力学发展史上的一段著名公案。

在量子力学刚刚发展起来的时候，爱因斯坦认为量子力学理论是不完

备的。因为他认为一个物理量的值总是存在的，或者说任何时候任何物理

量总会有一个确定的值，虽然可能因为种种原因你不能测到这个值，但它

总存在，爱因斯坦所谓的“即使你没有看月亮，月亮也存在”就是这个意

思，由此他指出量子力学里面物理量的值之所以不确定，之所以我们只能

测得物理量取值的一个概率分布，是因为我们还缺失了一些信息，爱因斯

坦称之为有一些隐变量，如果我们能进一步掌握这些缺失的信息，那量子

力学将和经典力学一样，没有任何不确定性。总之，爱因斯坦认为物理量

的值总是存在的，量子力学中的不确定性和概率的起源与我们日常概念中

的概率起源一样，都是因为我们缺失了一些信息，因此他强烈反对玻尔和

海森堡等人的不确定性和概率是世界的内在属性的观念，认为不确定性在

量子力学理论中的存在只不过反映了量子力学理论的不完备性，也即是说

量子力学理论没有把所有隐变量都包括进来。

那爱因斯坦的观点到底对不对呢？为此人们曾经长期争论不休，直到

物理学家贝尔从爱因斯坦的观念出发推导出了著名的贝尔不等式，贝尔说，

你只要用实验检验贝尔不等式是否成立，就能判定爱因斯坦到底对不对。

只要爱因斯坦对，那贝尔不等式就一定成立，相反，如果玻尔和海森堡等

人的观点对，那贝尔不等式就可以被破坏。后来的实验证明，爱因斯坦的

确错了，不过虽然爱因斯坦错了，但是他为了否定量子力学的完备性却提

出了今天非常重要的量子纠缠的概念。我们前面对量子纠缠的讨论，以及

贝尔的开创性工作都是在量子纠缠的概念上进一步发展而来的。下面我们

将要描述的，就是另外一个更为直接了当，比贝尔不等式更简单的可以用

于判定爱因斯坦是否正确的情形。

我们要讨论的就是由物理学家Greenberg, Horne, 以及Zeilinger提出来

并在实验上实现的一种特殊的三量子比特纠缠态，通常称作GHZ态。假设

我们把这三个量子比特分别标记为1、2、3，那么GHZ态可以写成

|GHZ⟩123 =
1√
2
(|000⟩123 + |111⟩123). (2.125)

利用泡利算符的作用规则，人们很容易验证|GHZ⟩123同时是下面三个相互
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对易的算符的本征值为1的本征态，这三个算符是

Z1Z2, Z2Z3, X1X2X3, (2.126)

利用泡利算符的反对易性，人们很容易验证这三个算符两两对易。现在我

们进一步引入泡利算符σy，在这里写作Y，根据泡利算符的乘法规则我们

有ZX = iY。由于Y1Y2X3 = −Z1X1Z2X2X3 = −(Z1Z2)(X1X2X3)(式中我

们已经利用了不同量子比特的算符相互对易的性质)，因此我们可以知道，

|GHZ⟩123也是Y1Y2X3的本征值为−1的本征态。类似的，我们可以得到，当
作用在|GHZ⟩123上时，下面的等式必定同时成立

Y1Y2X3 = −1, X1Y2Y3 = −1, Y1X2Y3 = −1, X1X2X3 = 1. (2.127)

下面，让我们来假设爱因斯坦的观点也成立，即任何情况下，每一个

物理量的值总是存在，我们将三个泡利算符的值分别记作v(X), v(Y ), v(Z),

当然由于泡利算符的平方等于1，所以它们的值只能取±1。请注意，作为
物理量的值，v(X), v(Y ), v(Z)都是普通的数，因此它们相互之间当然都相

互对易。如果v(X), v(Y ), v(Z)总是存在，虽然可能由于我们不了解隐变量，

缺失了信息，导致我们不能完全确定这些取值到底是多少，但按照爱因斯

坦的观点，它们总是存在的，总是有定义的。如此一来，根据(2.127), 对

于|GHZ⟩123态，我们就必定有

v(Y1)v(Y2)v(X3) = −1, v(X1)v(Y2)v(Y3) = −1, (2.128)

v(Y1)v(X2)v(Y3) = −1, v(X1)v(X2)v(X3) = 1. (2.129)

但是，对于普通的数来说，这些式子是自相矛盾的，因为将前三个式子乘

起来并利用(v(Y ))2 = 1，你很容易得到v(X1)v(X2)v(X3) = −1, 这和第四
个式子矛盾。

因此，这也就是说，要么量子力学是错的，从而(2.127)式不对，要么

爱因斯坦就是错的(也就是说我们不能假定v(X)这样的量总是存在)，两者

必居其一。到底谁错了呢？实验发现，爱因斯坦错了，(2.127)式是成立的。

因此，这就从实验上否定了物理量的取值必定存在的观点。也从侧面证明

了为什么在量子力学中物理量只能表示成算符，因为算符的值当然只在本

征态上有定义，对于叠加态，谈算符的取值是没有意义的，因为它根本就

不存在。



第二章 量子力学的基本原理 62

2.3.6 多体量子纠缠

以上我们只讨论了几个最为重要的两体(两个量子比特)和三体(三个量

子比特)量子纠缠态及其应用。但是读者可以想见，如果我们的系统是一个

多体量子系统，比方说量子计算机的多量子比特，再比方说凝聚态物理里

面的多体系统(多原子，多自旋等等)，那么量子纠缠就可能出现在多体之

间。可以说多体量子纠缠是整个量子计算和量子信息技术的核心，比如说，

在量子信息中，人们总是通过合适的量子编码将量子信息储存在许多量子

比特的纠缠态中，这时候由于量子纠缠态的整体性，即使存储信息的某些

量子比特出现差错，原来的量子信息也依然能从整体的量子纠缠中得到恢

复。不仅如此，近年来多体量子纠缠也被广泛应用于理论凝聚态甚至量子

引力的研究。但是，如何一般性地刻画多体之间的量子纠缠现在还是一个

没有完全解决的问题，凝聚态物理中常常采用所谓的张量网络来表示多体

的量子纠缠态。凝聚态物理学家关心多体量子纠缠的原因在于，近些年来

的研究发现，有一些量子多体系统的基态其实是一个量子纠缠态，甚至可

能是一个多体长程量子纠缠态，比方说分数量子霍尔效应的基态就是一个

这样的长程量子纠缠态。而处在这种长程量子纠缠态的多体系统常常会有

所谓的拓扑序，会处在某种拓扑相。这种长程量子纠缠和拓扑序近年来引

起了理论物理学家们的极大兴趣。总之，对量子纠缠的深入研究无疑将处

于整个物理学研究的核心。

2.4 补充材料：海森堡是怎么想到矩阵相乘的？

只要学习量子力学，你就知道物理量要用算符来表示，但通常的量子

力学书只是直接把这作为一个基本假设而不会告诉人们为什么？在历史上，

最早产生这个思想的，就是海森堡，是海森堡首先想到物理量要用一张数

据表来表示，而更为革命性的是，海森堡首先想到物理量的乘法是一种矩

阵乘法。当时的海森堡甚至不知道矩阵的数学概念，所以促使他想到矩阵

相乘的肯定不是数学，其背后隐含的是深刻的物理新思想，我们想要讨论

的就是这一思想。而矩阵和线性算符当然本质是一回事，物理量满足矩阵

乘法从而也就成了线性算符。那么海森堡想到矩阵和矩阵相乘的基本思路

是什么呢？理解海森堡的思路将有助于我们深入理解为什么物理量应该表

示成线性厄米算符。不仅如此，它更有助于我们深入把握量子力学的基本

原理。因此，在阐述完海森堡的原始思想以后，我们还会给出其原创性思
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想的现代版本，并以此建立起量子力学的基本原理。

不过，这里要说一下，我们不是要还原历史，所以当然会有些贡献在

历史上并非来自于海森堡或者不完全属于海森堡，有时候我们把一些结论

称作是海森堡的其实只是一种简化说法，想弄清楚历史事实的读者应该去

读量子力学发展史方面的专著。但这里要谈的最核心想法无疑是海森堡的，

而我们想讨论的，其实也只是海森堡的原创性物理思想。在物理学史上，

这样的思想常常会以各种面目出现，可谓影响深远(有时候甚至会超出量子

力学的范围)。比如说，超弦的M理论有一个版本就叫做矩阵理论(所以M理

论的这个M也表示Matrix)。再比如说，如果细细探究的话，人们可以在费

曼的量子力学路径积分表述中察觉到海森堡思想的某种变种(当然费曼有可

能是独立想到这一思想的)，其实，我们这里将要阐述的海森堡思想已经是

包含费曼贡献的版本了，至于海森堡在写出他的那些矩阵相乘的时候真正

想的是什么，那当然是人们不可能搞清楚的。

2.4.1 原子光谱的一些事实和玻尔的新观念

在玻尔提出他的原子模型之前，人们已经注意到原子光谱的一些惊人

事实，比方说呈现出分立的谱线，这是当时的经典物理学完全解释不了的。

而那时候人们还发现了原子光谱的另一个令人吃惊的规律，这个规律我们

今天已经很少提到，但它对于物理学的发展也许是极其重要的，这规律就

是里兹组合规则，这规则是说，人们总是可以合适地将原子光谱的每一条

分立谱线都对应到一个正整数对(m,n), 并且会发现相应的谱线频率ωmn满

足如下这条规则，

ωmn = ωml + ωln. (2.130)

也就是说，假设有一条谱线是ωln，另外还有一条谱线是ωml，那么这两条

谱线的组合ωml +ωln也必定是一条谱线，对应于整数对(m,n)。这一规律就

是所谓的里兹组合规则。如果人们进一步定义ωnm = −ωmn，那么就会发现

里兹组合规则对于所有的正整数指标都成立。

当然，在玻尔提出它的原子模型之后，人们就已经完全理解里兹组合

规则了，之所以有这样的规则成立，原因很简单，因为根据玻尔的定态跃

迁假设，原子从第m个定态跃迁到第n个定态，辐射(或者吸收)的光谱频率

为ωmn = (Em − En)/~，其中En就是第n个定态的能级，如此一来当然就有

里兹组合规则了。对里兹组合规则的解释很简单，那就是核外电子从n态跃
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迁到m态所放出的能量，等于它从n态跃迁到l态所放出的能量加上它从l态

跃迁到m态放出的能量。问题是，给定n态和m态，里兹组合规则中的l态可

以是任意的，里兹组合规则对l没有任何限制！

这就谈到了玻尔在研究原子光谱尤其是氢原子光谱问题时所引入的革

命性新观念了，这就是玻尔的定态概念，以及定态跃迁概念。对于当时的

海森堡来说，玻尔氢原子模型中所涉及到的核外电子轨道概念是没有道理

的，因为当时的海森堡在物理学哲学上深受玻尔的影响，他们坚持物理学

应该用可观测量建立起来，或者换句话说，他们认为物理学理论中所用到

的量应该都是可观测的，我们这里不是要探讨这一哲学有没有道理，但是

当时年轻的海森堡深信这一哲学，因此他觉得核外电子轨道的概念没有道

理，因为不可观测。对于原子物理来说，可观测的是什么呢，是光谱，是

谱线频率和谱线的强度。不是电子轨道，电子轨道不过是对太阳系模型的

一个类比，而不是原子物理的观测事实。因此海森堡觉得关键是要研究谱

线和谱线强度。

但是海森堡也知道，原子光谱的分立性就意味着，虽然核外电子轨道

的概念没有道理，但是玻尔的定态和定态跃迁假设必定是对的。没有定态

假设就无法解释原子稳定性的问题(因为否则原子就会不断发出电磁辐射从

而掉到原子核上去)，但是光有定态假设而没有定态跃迁假设就无法解释光

谱线的存在，更何况这两个假设放在一起，的确很好地解释了原子光谱的

分立性。

以上也许就是导致海森堡产生他的原创性新思想的一些基本事实，以

及他从玻尔那里继承的革命性新观念。当然，还有一个具体的物理学结

论对于海森堡验证他的想法非常重要，那就是通过普朗克对黑体辐射公

式的推导，海森堡知道，一个线性谐振子的能量是量子化的，并且量子化

为n~ω的形式，n就是线性谐振子的第n个能级。海森堡当然也知道，玻尔
的定态和定态跃迁概念不只是适用于氢原子，也同样适用于一个可以发出

电磁辐射的线性谐振子。其实，很可能在海森堡看来，定态和定态跃迁是

普适性的物理学观念。

2.4.2 海森堡的思路

前面说过，海森堡坚持原子物理应该回到可观测的量，也就是谱线频

率和谱线强度。玻尔的原子模型当然对谱线频率的解释很不错，尤其是完

全推导出了氢原子的所有光谱线，但是玻尔氢原子模型并没有涉及谱线的
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强度。因此海森堡想推进当时的物理学，那就要研究谱线的强度，核外电

子从m态跃迁到n态时所发出的这条谱线的强度当然取决于单位时间之内它

从m态自发跃迁到n态的概率Anm，而这是一个当时的物理学家已经提出来

了的物理量，只是当时还没有人会计算这个量，海森堡要做的，就是研究

如何计算出这个量。但是这个量涉及到原子和电磁场的相互作用，而当时

对电磁场的量子理论还只是知道一个光量子假设再加上爱因斯坦的受激辐

射理论，对于原子和电磁场如何相互作用的量子理论还一无所知，毕竟，

量子力学的正确理论还正有赖于海森堡目前正在进行的这一工作呢。因此

海森堡只能转而去看经典理论是如何计算电磁波辐射的，通过经典电动力

学我们知道，一个加速运动的电子会辐射电磁波，电动力学也推导出了其

辐射功率为

P =
e2

3πϵ0c3
ẍ2. (2.131)

但是，海森堡知道这个经典公式(2.131)肯定是不对的，不仅因为它的

表达式中涉及到了核外电子轨道x(t)这样一个在海森堡看来无法观测的

量，更重要的是，它和定态以及定态跃迁的概念是相矛盾的。当然，玻尔

引入定态和定态跃迁的原因之一本就是为了避免由于(2.131)这一经典公式

而导致的原子稳定性问题。因此海森堡首先要做的就是改造这个经典公

式(2.131)，使得它和定态以及定态跃迁的概念相容。

根据定态跃迁假设，核外电子只在从一个定态n跃迁到另一个定态m时

才辐射，注意，跃迁总是涉及到两个定态，n和m。因此海森堡想到，经典

意义上的x(t)是不可观测的，是没有意义的，取而代之的应该是一个类似

于[x]mne
iωmnt这样的涉及两个定态的量。其中海森堡将这个量对时间的依

赖因子写成eiωmnt的原因在于，通过普朗克对黑体辐射公式的推导，海森

堡知道，原子定态跃迁发出电磁辐射的过程可以看成是一种简谐振动，写

成指数形式而不是cos形式的原因可能是因为当时德布罗意引入物质波的

时候就是这样做的，更重要的原因是，后面我们会看到，当将两个物理量

相乘时，如果这两个量对时间的依赖因子是cos形式，那是不可能满足里

兹组合规则的，写成指数形式则很轻易就可以满足这一点。总之，海森堡

将[x]mne
iωmnt代入公式(2.131)就得到

P (n→ m) =
e2ω4

mn

3πϵ0c3
|[x]mn|2. (2.132)

注意，现在的这个新公式(2.132)不光用到了定态跃迁的概念，它和

定态假设也是相容的，由于ωnn = 0, 因此就有P (n → n) = 0，这当然与
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定态假设一致。经典的轨道x(t)不可观测，但是现在的[x]mn是可以观测

的，这是因为，从n态跃迁到m态的辐射功率等于单位时间辐射概率Amn乘

以辐射出来的光子能量~ωnm, 因此由(2.132)我们就可以得到Amn的表达

式，Amn ∝ |[x]mn|2。Amn当然可以直接观测，因此[x]mn(严格来说是其

模|[x]mn|)就可以观测。不仅如此，注意到eiωnmt = e−iωmnt = [eiωmnt]∗, 海森

堡还进一步规定

[x]nm = [x]∗mn. (2.133)

这样一来，对应经典物理里面的位置坐标，海森堡就引入了一个新的物理

量[x]nm。用我们今天的话来说，这个量是一个厄米矩阵，但除非我们能论

证它满足矩阵的乘法，否则我们说它是矩阵就并没有多大意义。更何况，

当时的海森堡根本不知道存在矩阵这样的数学概念，对他来说[x]nm不过是

一张有无穷行无穷列的数据表，将位置坐标这样的概念变成一张这样的数

据表，这本身就蕴含了最高的革命性。由于海森堡是在定态跃迁思想的指

引下引入[x]nm的，我们不妨称之为跃迁元。

当我们有了位置物理量[x]mne
iωmnt以后，将它对时间求导当然就得到

速度[v]mne
iωmnt = iωmn[x]mne

iωmnt,进而就有动量[p]mne
iωmnt = imeωmn[x]mne

iωmnt,

这里me表示电子质量，而且很容易验证

[p]∗nm = [p]mn. (2.134)

现在，动量也变成了一张跃迁元数据表。因此在海森堡想来，一切物理

量都应该变成跃迁元数据表，只有跃迁元才是可观测的。有了位置的跃

迁元数据表和动量的跃迁元数据表以后，原则上应该就可以构造出其它

一切物理量的跃迁元数据表。由于定态跃迁可以看成是一种谐振动，海

森堡知道所有这些跃迁元应该都具有[A]mne
iωmnt这样的形式。但是这里有

一个重要的问题，比方说动能T , 它在经典物理里面是这样的T = p2

2me
，这

里涉及到动量的平方。更一般地，假设物理量C等于两个物理量A和B的

乘积, 即C = AB。那么根据海森堡的跃迁元思想，就需要将C的跃迁

元[C]mne
iωmnt，用A的跃迁元[A]mne

iωmnt和B的跃迁元[B]mne
iωmnt的乘积的

形式表达出来。但现在A和B的所有跃迁元都分别构成了一张无穷行无穷列

的数据表，两张这样的数据表该怎么乘，就是海森堡需要解决的大难题。

正是在这里，里兹组合规则，或者等价地说玻尔的公式ωmn = (Em −
En)/~给了海森堡必要的指引。由于按照定义[C]mne

iωmnt = [AB]mne
iωmnt，

而按照里兹组合规则，ωmn总是可以分裂成两部分的组合，ωmn = ωml +
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ωln，所以海森堡想到可以令[AB]mne
iωmnt = [A]mle

iωmlt[B]lne
iωlnt，也就是

说，应该有[C]mn = [A]ml[B]ln, 看来问题就解决了。但是海森堡最天才的

地方就在这里，他注意到里兹组合规则对中间的l态没有任何限制，也就是

说l有无穷多种可能性，怎么对付这无穷多种可能性呢？海森堡的处理办法

很简单，他说，把所有的可能性都加起来！因此海森堡给出

[C]mn =
∑
l

[A]ml[B]ln. (2.135)

当然这就是我们熟悉的矩阵乘法，但是海森堡并没有学过矩阵乘法，对他

来说，之所以要这么乘，是因为有无穷多种中间可能性都满足要求，我们

需要把所有的中间可能性都加起来！今天看来，这是一个极其原创性的想

法，因为它把握住了量子力学相干叠加的本质！

这就是为什么在量子力学里面物理量要变成线性算符的根本原因，因

为线性算符的乘法是一种矩阵乘法，而只有矩阵乘法才蕴含着把中间的所

有可能性都加起来这一量子相干叠加的本质！当然，今天的量子力学书通

常是反过来处理这个问题的，我们是先引入量子态的线性叠加原理，然后

再要求物理量保持这一原理，从而只能是线性算符。但是正如我们已经阐

述过的，海森堡的革命性是双重的，他不只是想到了要把所有中间可能性

都加起来，他更引入了跃迁元的思想(我们今天常常称之为跃迁矩阵元)，

这一思想的好处就是它和观测联系很密切，非常有物理内涵，不像抽象的

线性算符。对于所有刚开始学习量子力学的人而言，最难以理解的事情之

一无疑就是，物理量怎么就变成算符了呢？从量子态跃迁以及跃迁元入手

无疑要好理解得多。当然，跃迁元思想也有其不便之处，人们最好是同时

掌握几种不同的思想。

下一小节我们将采用今天的现代观点来对海森堡的这两个原创性想法

进行更具一般性的阐述，从而将之与我们通常更熟悉的量子力学原理更密

切地联系起来。

但在我们进一步做这样的事情之前，我们首先得像海森堡一样说服自

己，跃迁元和矩阵相乘这两个想法的确是Work的。海森堡是怎么说服自己

的呢？他想到首先将他的思想用到线性谐振子上。也即是说，假设发出电

磁辐射的是一个带电线性谐振子(而不是更复杂的氢原子)，一个线性谐振

子从一个定态能级跃迁到另外一个定态能级从而辐射出电磁波。根据普朗

克对黑体辐射公式的推导，线性谐振子的能量应该是量子化的，而且其量

子化能级具有n~ω这样的形式。由于线性谐振子比氢原子简单得多，所以
海森堡可以用线性谐振子的结果来检验他的新思想。结合其他人对线性谐



第二章 量子力学的基本原理 68

振子的一些研究，海森堡可以用他的新理论推导出两个重要结论：1. 一维

线性谐振子的定态能级由(n + 1
2
)~ω给出，正吻合普朗克推导普朗克公式的

时候作出来的假设，而普朗克公式当然和黑体辐射的观测完全吻合，因此

海森堡知道他的跃迁矩阵和矩阵乘法应该是对的。2. 通过对一维线性谐振

子的研究，海森堡还导出了坐标跃迁矩阵X和动量跃迁矩阵P之间必定满

足

[X,P ] = XP − PX = i~. (2.136)

这当然是量子力学中最著名的结论之一，也是最重要的结论之一。

2.4.3 海森堡思想的现代版本

这一节我们将要给出海森堡思想的现代版本，值得说明的是，这个现

代版本当然是很多物理学家工作的结果，比如，其中有一些贡献要归功

于费曼，相关的阐述读者可以在费曼的经典论文《Space-time approach to

non-relativistic quantum mechanics》以及著作《费曼物理学讲义第三卷》

和《量子力学与路径积分》中找到。

首先，在量子力学的世界，一个系统有多种可能性，我们将系统的一

组可以相互确定地区分的可能性完备集记作S = {i, i = 1, 2, 3....}。所谓可
能性的完备集，我们是指，在确保能收集到这些可能性所列举的信息的同

时，你不可能再额外收集到系统更多的信息，只要你采用适当的方式观测

这个系统，你总会发现它一定处在这些可能性中的某一个，从某种意义上

来说，这一完备集穷尽了你的观测所能收集到的所有可能性。而所谓可以

确定地区分，是指你总是可以100%地将系统这些可能性中的任何两个区分

开来，也就是说，每次你看到系统处于这组可能性中的某一个，那怕只看

一次，你也能100%地将它和其它可能性区分开来。比方说一个束缚态的氢

原子，它的所有用n, l,m,ms这四个量子数标记的可能性集合就构成了这样

一组可能性完备集。比方说，当我们仅关心电子自旋的时候，它的向上向

下两种自旋可能性{↑, ↓}也构成了这样一组可能性完备集。当然，一个量子
比特的{0, 1}两种可能性也构成了这样的可确定区分可能性完备集。而n个
量子比特的所有从000....0到111...1的n位二进制数也是这样的可能性完备

集。但是，一个系统的可确定区分可能性完备集不是唯一的，而是有无穷

多组，比方说，你只关心电子的自旋，那么{↑, ↓}两种自旋可能性是这样的
一个可能性完备集，但是{→,←}同样是一个这样的可能性完备集。
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在我们的海森堡思想的现代版本中，这样的一组可能性完备集就相当

于海森堡原始思想中的定态。因为很显然，从现在的观点来看，对于氢原

子系统，海森堡思想中的定态就是一组用n, l,m,ms这四个量子数标记的不

同可能性，这当然属于我们这个可能性完备集的一个例子。

仿照海森堡的跃迁元思想，我们可以说，每个物理量都应该表示成两

种可能性之间的跃迁元，不过这两种可能性都必须是从一个预先选定的可

确定区分可能性完备集S中选出来的，我们可以将这两种可能性分别标示
在跃迁元的左边和右边，也即是说，对于某个物理量A, 我们可以将它的跃

迁元记为⟨j|A|i⟩，它就相应于我们之前的记号[A]ji。

请大家暂时忘掉算符，忘掉量子态的希尔伯特空间，忘记单位算符1的

分解定理，也不必把我们这里的|i⟩和⟨j|看成是量子态的狄拉克记号，甚至
你可以像海森堡一样不知道矩阵的概念，这些都不需要。我们下面也会

避免使用诸如希尔伯特空间内积的性质之类的东西。现在的这个跃迁元

记号⟨j|A|i⟩中的A就代表物理量A本身，左边的j和右边的i只是表示这个可
能性完备集中的两种可能性，之所以把j放在左边，而把i放在右边，仅仅

只是在强调这个跃迁元⟨j|A|i⟩代表的是，在物理量A的影响下系统从可能
性i跃迁到可能性j所对应的跃迁元。

同样，假设另有一个物理量B，那么它的跃迁元就可以记为⟨j|B|i⟩。
海森堡告诉我们，当我们将两个物理量A和B相乘得出物理量AB时，我

们是把B的从可能性i到可能性j的跃迁元⟨j|B|i⟩乘上A的从可能性j到可能
性k的跃迁元⟨k|A|j⟩，当然因为我们考虑的是AB，因此要把A的跃迁元放
到左边，B的跃迁元放到右边，进而得到⟨k|A|j⟩⟨j|B|i⟩，注意，A右边的可
能性必须要和B左边的可能性一样，只有这样我们才可以将这两个跃迁元

乘起来。可以直观地将⟨k|A|j⟩⟨j|B|i⟩理解成，系统在物理量B的作用下先
从可能性i跃迁到了中间可能性j，然后再在物理量A的作用下接着从可能

性j跃迁到可能性k，因此总的来说⟨k|A|j⟩⟨j|B|i⟩相应于系统在AB的联合作
用下从可能性i到可能性k的一个跃迁。但它只是对AB的跃迁元⟨k|AB|i⟩的
贡献之一，海森堡告诉我们，为了得到完整的跃迁元⟨k|AB|i⟩，我们需要
把所有的中间可能性j都加起来，因此就有

⟨k|AB|i⟩ =
∑
j

⟨k|A|j⟩⟨j|B|i⟩. (2.137)

这就是海森堡告诉我们的一条量子力学基本原理，它有两个要点：第一，

物理量要用左右两种可能性之间的跃迁元来表示，物理量相乘就是将相应
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的跃迁元首尾相乘。第二，为了得到正确的联合作用物理量的跃迁元，我

们需要对所有的中间可能性进行求和。这就是海森堡给出来的跃迁元概念

及其乘法规则。

那么物理上可观测的是什么呢？一般来说，并不是跃迁元本身，而是

跃迁元的模方。因此，由于海森堡的跃迁元乘法规则(2.137)，如果你测量

的是|⟨k|AB|i⟩|2，那你就会发现不同的中间可能性之间会产生干涉，因此，
海森堡的对所有中间可能性进行求和，实际上就是在量子力学中处于最本

质地位的量子力学的相干叠加。

另外，仔细研究海森堡的跃迁元思想及其乘法规则，你会发现，实

际上跃迁元左右两边的可能性根本不必属于同一个可确定区分可能性

完备集。只需要注意在相乘的时候让它们首尾相乘(即乘积前面一个跃

迁元右边的可能性要和后一个跃迁元左边的可能性相对应) 就可以了。

比方说，我们完全可以设想有三个不同的可确定区分可能性完备集，

S = {i, i = 1, 2, 3...},S ′ = {j′, j′ = 1, 2, 3...},以及S ′′ = {k′′, k′′ = 1, 2, 3...},
我们同样可以写出类似于(2.137)的跃迁元乘法规则

⟨k′′|AB|i⟩ =
∑
j′∈S′
⟨k′′|A|j′⟩⟨j′|B|i⟩. (2.138)

上面这种推广虽然看起来很显然，但其实非常重要，因为它使得我们

可以定义不同时刻的可确定区分可能性完备集(而不是原来的相同时刻的可

确定区分可能性完备集)，比方说，我们可以让上面的S定义在某个初始时
刻t0，S ′定义在某个中间时刻t1，而S ′′则定义在某个末尾时刻t2。相应的，
我们可以设想物理量A和物理量B分别为某个实验装置，其中B只在初始

时刻t0和中间时刻t1的期间起作用，而实验装置A只在t1和t2的期间起作用。

这种推广以后的海森堡跃迁元乘法规则就不是在定义通常的物理量乘积，

而是将不同时刻的物理量乘起来。

当然，海森堡的跃迁元乘法规则并没有包含所有的量子力学基本原理。

除了还需要给出具体如何计算跃迁元的办法以外，至少还有一条重要的

原理我们还没有涉及到。那就是，当海森堡说到将所有的中间可能性加起

来的时候，是默认我们没有对这些中间可能性进行测量，我们不确定系统

经过B和A的连续作用从i最后跃迁到k′′时中间都经过了些什么，也就是说，

我们不确定在B起作用之后，A起作用之前，系统到底经过的是什么中间可

能性，这就是我们所谓的没有对中间可能性j′进行测量。如果我们在这中

间，对中间可能性j′进行了测量，那我们定义物理量乘积AB的时候就不能
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将所有的中间可能性都加起来了，因为我们已经知道了(假定我们的测量是

完全有效的)系统都经过了什么中间可能性了。相反，这时候我们需要对每

一种中间可能性j′分别定义一个(AB)j′ , 它简单地由下式给出

⟨k′′|(AB)j′ |i⟩ = ⟨k′′|A|j′⟩⟨j′|B|i⟩. (2.139)

这就是量子力学另一条最基本的原理，它说的就是，一旦我们可以确

定系统经过的中间可能性具体是什么，我们就不能再把所有的中间可能性

都加起来了。为了看清楚这一条原理的含义，假设我们计算跃迁元的模方

测量值|⟨k′′|(AB)j′ |i⟩|2, 我们就会发现，中间可能性的相干叠加消失了。事
实上这时候|⟨k′′|(AB)j′ |i⟩|2 = |⟨k′′|A|j′⟩|2|⟨j′|B|i⟩|2。由于我们可以对任意
的物理量A和B进行这样的考察，因此我们不妨记B|i⟩ = |ψ⟩, ⟨k′′|A = ⟨ϕ|，
那刚才的结果就变成了|⟨ϕ|j′⟩|2|⟨j′|ψ⟩|2, 这就是我们通常更熟悉的语言所谓
的测量导致量子态的塌缩，这一结果就可以解释成，已知系统初末两个时

刻的状态|ψ⟩和|ϕ⟩，测量导致系统在中间时刻塌缩到j′可能性的概率。这当
然是一条关于测量的量子力学基本原理。

一般来说，两个物理量相乘，结果当然是一个新的物理量。但是，有

一种特别重要的物理量例外，那就是单位1，1和1相乘结果当然还是1。

这也就是说，1的跃迁元乘以1的跃迁元，结果还是1的跃迁元。注意，由

于跃迁元左右两边可以选择不同的可确定区分可能性完备集，所以1的

跃迁元一般来说并不是平凡的。假设我们有两个不同的可能性完备集，

S = {i, i = 1, 2, 3...}和S ′ = {j′, j′ = 1, 2, 3...}，那么⟨j′|i⟩ = ⟨j′|1|i⟩就是一
个1的跃迁元。通常我们会把1的跃迁元叫做跃迁幅，⟨j′|i⟩就是一个跃迁幅。
当然，我们也可以让1的跃迁元左右两边的可能性属于同一个可能性完备

集，那这时候的跃迁幅是什么呢？很显然，根据可确定区分的概念，属于

同一可能性完备集的两个不同可能性之间仅在1的作用下是不可能相互跃迁

的，因此即有⟨j|i⟩ = 0, j ̸= i。另外，很显然可能性i到其自身的跃迁幅应该

为1，因此我们即有

⟨j|i⟩ = δji, (2.140)

这就是通常人们所说的正交归一性。

由于单位1自乘结果还是1，所以跃迁幅乘以跃迁幅结果还是跃迁幅，

只不过要将所有中间可能性都加起来。这就是跃迁幅特有的美妙性质，费

曼的量子力学路径积分表述就是利用跃迁幅的这一美妙性质建立起来的。
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我们可以在前文的公式(2.138)中将物理量A和B都取作1，从而将这一性质

写成，

⟨k′′|i⟩ =
∑
j′∈S′
⟨k′′|j′⟩⟨j′|i⟩. (2.141)

另外，我们前面已经说过了，跃迁幅的模方，比如说|⟨j′|i⟩|2，就是测
量导致系统从可能性i塌缩到可能性j′的概率，由于所有不同的j′可能性都

可以确定地区分并且完备，因此总概率等于1的概率守恒就要求

1 =
∑
j′∈S′
|⟨j′|i⟩|2 =

∑
j′∈S′
⟨j′|i⟩∗⟨j′|i⟩. (2.142)

另外，利用正交归一性和(2.141), 我们又有

1 = ⟨i|i⟩ =
∑
j′∈S′
⟨i|j′⟩⟨j′|i⟩. (2.143)

比较这两个式子我们就有

⟨i|j′⟩ = ⟨j′|i⟩∗, (2.144)

这就是我们熟悉的希尔伯特空间内积的基本性质，因此终于我们知道了，

跃迁幅代表的是某种希尔伯特空间内积。

现在，我们来考虑另外一个有意思的情形，即任何物理量A与单位1相

乘，结果当然还是A，即A = A · 1。假设我们取两组不同的可确定区分可
能性完备集{i, i = 1, 2, 3....}和{m,m = 1, 2, 3...}，那这就告诉我们

⟨i|A|m⟩ =
∑
j

⟨i|A|j⟩⟨j|m⟩. (2.145)

其中⟨i|A|j⟩左右两边的可能性既然是属于同一可能性完备集，那它就是
通常的矩阵的矩阵元(因此这时候跃迁元的概念就变成了我们通常所说的

跃迁矩阵元)。上面这个式子就告诉我们，可以把|m⟩看成是某个线性空
间里的列矢量，其第j分量就是⟨j|m⟩，而物理量A就可以看成是线性算符，
其在|m⟩上的作用就是线性的矩阵相乘。算符A所对应的这个矩阵的第i行
第j列就是⟨i|A|j⟩(我们有时候也记作Âij)。因此我们就可以将跃迁元的语言

翻译成线性叠加的量子态和线性算符的语言。这也就是为什么我们会采用

狄拉克符号这样的记号来标记跃迁元的基本原因，因为最终我们会发现跃

迁元及其乘法规则和通常的量子态及线性算符，它们只不过是表述同一套

量子力学原理的不同语言。


