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第零章 最大的尺度和最小的尺度

陈陈陈童童童

本章非常简短，是让读者先闻闻量子力学的味。
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你能想象的最大空间尺度是多少？你能想象的最小空间尺度又是多

少？由于学过微积分，你可能觉得答案很简单，分别是无穷大和无穷小。

但是，我们这个问题不是一个数学问题，而是一个物理问题。而物理是一

门经验科学，它所涉及的量最终应该是可以测量的。所以我们实际上问的

是，在物理上，我们所能测量到的最大空间距离是多少？所能测量到的最

小空间距离又是多少？

你可能会想，这问题和量子力学有什么关系呢？关系很密切！实际上

这问题和宇宙中两个最奇妙的东西密切相关，其一就是万有引力，其二就

是我们这本书的主题，量子力学。

0.1 最大的尺度

先让我们来看最大的尺度。你可能会说，最大的尺度就是整个宇宙。

但这个回答也是不准确的，宇宙到底有多大我们实际上是无法知道的。我

们所能观测到的宇宙称之为可观测宇宙，可观测宇宙只是宇宙的一部分。

之所以只能观测到宇宙的一部分，是因为信息的传播速度不能超过光速，

而宇宙的年龄却是有限的，大约为138亿年，这样我们能接收到的最远信号

就是来自138亿年前的光信号，它走过的距离就应该是我们能观测到的宇宙

的半径，也就是138亿光年，约合1.3 × 1026m。这个答案在量级上是对的，

但具体来说却可能还差了好几倍。宇宙学家告诉我们，可观测宇宙的半径

不是138亿光年，而是大约465亿光年。为什么会差这么多呢？

在回答这个问题之前，我们先要说说我们的宇宙。按照今天的看法，

我们的宇宙起源于大爆炸，爆炸以后整个宇宙就在不断膨胀。这就好像我

们吹气球，整个宇宙就好像是气球的表面。由于宇宙在膨胀，所以宇宙中

两点之间的距离实际上是在增加，也就是说，实际上远方的星系是在远离

我们，这称之为远方星系的退行，星系离我们越远则它退行的速度就越大。

当然这样的效应要在宇宙学的尺度上才能观测到，在太阳系这样的尺度上

是观测不到的。天文学观测也已经证实了这种远方星系的退行。而且值得

说明的是，这种退行是由于空间的膨胀而引起的，而不是因为远方星系本

身的运动而引起的，星系运动的速度当然不能超过光速，但退行的速度可

以超过光速。实际上，离我们138亿光年远的星系相对于我们退行的速度已

经大约是光速了。

另外，当我们说宇宙的年龄是138亿年的时候，这其实只是一个估算。

对于宇宙的年龄，不同的宇宙学模型估算出来的数值会有所区别，在天文
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学上也会利用各种不同的观测结果来对宇宙学年龄进行估算，具体的数值

依然是未定的，138亿年只是比较公认的结果。

我们今天能接收到的最古老的光信号来自于138亿年前，但是由于发出

这些信号的星系本身一直在离我们远去，即退行，而且它们退行的速度可

以超过光速。所以这些星系今天离我们的距离就不只是138亿光年了，宇宙

学家的估计是，这些星系今天距离我们大约为465亿光年。这就是我们今天

的可观测宇宙的半径，也是我们能观测到的最大空间尺度。实际上，可观

测宇宙是一个以我们为球心，直径约为930亿光年的球体。球体之外的宇宙

是我们观测不到的。

0.2 最小的尺度

更有意思的问题是，我们能测量到的最小空间距离是多少？答案当然

不是无穷小，实际上，按照量子力学的不确定关系，一个粒子的空间位置

和它的动量不能同时被确定，我们测量一个粒子的空间位置所能达到的精

度δx, 和这个粒子的动量的精度δp之间必须满足一个关系，即

δxδp ∼ ~, (1)

式中的~就是著名的普朗克常数(更准确地说是约化的普朗克常数)，它的量

纲是长度乘以动量(和角动量的量纲一样)，或者说是能量乘以时间的量纲，

它的值很小，为1.05457266(63)× 10−34J · s，因此在经典世界里人们可以忽
略它，但是在量子力学世界里~是不可忽略的，它的存在就标志着量子力学
效应的存在。不确定关系(1)中的δx就是我们能测量到的空间尺度，我们也

记为r，而δp就是为了测到这一尺度所需要的探测粒子的典型动量。因此为

了测量到更小的空间尺度，我们就需要提高探测粒子的动量。当探测粒子

的动量足够高时，相对论效应就会是主要的，我们就可以忽略探测粒子的

静止能量，这时候按照相对论，探测粒子的动量就是E/c，E就是探测粒子

的典型能量。这样一来，不确定关系(1)就告诉我们，探测粒子能够探测到

的空间尺度r和探测粒子的典型能量E之间就需要满足

rE ∼ ~c. (2)

也就是说，为了探测到更小的空间尺度，我们就需要用更高能的探测粒

子。
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那么我们可不可以不断提高探测粒子的能量，从而探测到越来越小的

空间距离呢？答案是不能。为了说清楚这个问题，让我们考虑用两个探测

粒子的对撞来探测空间距离，这时候r就是这两个探测粒子之间的最小距

离。正如下面的分析将要告诉我们的，这个距离不可能是无穷小，原因在

于这两个粒子之间必然会产生相互作用。

我们知道，自然界的基本相互作用有四种：电磁相互作用、强相互作

用、弱相互作用、还有万有引力相互作用。粒子物理学家普遍认为，当

能量足够高时，大约当粒子的能量超过1015GeV时(GeV表示109电子伏特)，

这四种相互作用中的前三种就会统一成一种相互作用，而且这种相互作用

有一个特点，即能量越高，相互作用的强度就越弱。

但是，万有引力相互作用恰恰相反，牛顿的万有引力公式告诉我们，

两个质量为M距离为r的粒子之间的万有引力势能为

−GM
2

r
. (3)

利用爱因斯坦质能关系M = E/c2，我们可以将这个万有引力势能重新表达

为

−GE
2

rc4
. (4)

可见，对于万有引力来说，能量越高万有引力就越强。在通常的能量之下，

两个探测粒子之间的万有引力是非常微弱的，可以忽略不计，但是当探测

粒子的能量超过1015GeV甚至更高时，万有引力相互作用就会变得很强。

而我们前面也说过，这时候另三种相互作用的强度会开始变弱。因此，只

要探测粒子的能量足够高，万有引力相互作用就会开始占主导地位。为了

探测到更小的空间尺度，我们的探测粒子的能量当然是越高越好，因此我

们只需要考虑探测粒子之间的万有引力相互作用。

但是，考虑到万有引力相互作用，我们的探测粒子的能量就不可能提

高到无穷高，原因如下。首先，因为两个探测粒子之间的万有引力势能是

负的，而相对论量子力学要求一个系统的总能量为正值，因此势能的绝对

值不能超过静止能量和动能之和E，最多和它相当。作为一个估算，这也

就是说GE2

rc4
∼ E, 换言之，当能量足够高时，两探测粒子之间的距离和探

测粒子的能量之间满足如下关系，

r ∼ G
E

c4
. (5)
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实际上，这个关系就是著名的施瓦西半径，也就是说，当探测粒子能量高

到一定的程度时，它们就会变成黑洞，施瓦西半径就是黑洞的半径。为了

探测空间尺度，两个相互碰撞的探测粒子之间的距离必须大于它们的施瓦

西半径，否则它们就合并成同一个黑洞了。因此，为了探测到更小的空间

距离，探测粒子的能量也不能过高，否则按照(5)式，它们的施瓦西半径就

会太大了。

现在，我们将公式(2)和公式(5)的左右两边对应地乘起来，就容易得到

r ∼
√
G~
c3

= lp. (6)

lp就是我们能测量到的最小空间尺度，称之为普朗克长度，代入这几个基

本物理常数的值可以算得，lp大约为10−35m。探测粒子的能量要多高才能

探测到普朗克长度呢？由公式(2)我们可以得到这个能量为√
~c5
G

= Ep. (7)

Ep称之为普朗克能量，它大约是1019GeV。

考虑到原子的能级为几个eV，化学反应的能量为零点几个eV，即使

是当前最先进的粒子加速器LHC也只能把粒子的能量加速到14TeV (TeV就

是103GeV )，离普朗克能量也还差得很远。实际上，在实验室中我们肯定

永远也无法把一个粒子的能量加速到普朗克能量。所以在实验室中我们可

能永远也无法探测到普朗克长度这样小的距离。但是，宇宙大爆炸肯定是

达到了普朗克能量的，并且它的效应可能在早期宇宙中有所余留，因此通

过宇宙学观测，我们也许能观测到普朗克尺度上的物理。通过宇宙学观测

探测普朗克尺度的物理本身是物理学家们正在研究的课题。在这里，最大

的尺度，宇宙学尺度，和最小的尺度，普朗克尺度，密切联系起来了。

0.2.1 习题

1. 请用量子力学不确定关系估算氢原子的大小以及氢原子的最低能

量。

2. 请讨论一下，如果普朗克常数变得非常大将会发生什么事情？



第一章 量子力学的建立

陈陈陈童童童

本章讲述量子力学理论建立过程的若干关键点。内容包括普朗克的黑

体辐射公式、玻尔的氢原子模型、波粒二象性以及波动力学简述。此外还

包含一个对电子自旋的简单介绍。当然，我们不是要还原量子力学发展史，

而是为了帮助读者更好地理解量子力学本身。因此我们这里关于量子力学

建立过程的介绍是不全面的，最重要的缺失也许是，我们没有回顾海森堡

建立矩阵力学的过程，在历史上，这实际上发生在薛定谔提出他的著名的

薛定谔方程之前。不过，这个内容我们放在下一章正式开始讲述量子力学

的基本原理中去了，因为我们觉得读者在对量子力学的基本原理有所了解

之后再来看海森堡的思想会理解得更深入一些。

7
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1.1 普朗克公式以及能量量子化

1.1.1 理想黑体模型

研究热辐射的物理学家发现，理想黑体的辐射本领是一个普适的函

数e(ν, T ), 它表示温度为T时，理想黑体单位表面积单位时间之内所辐射出

来的频率在ν附近的单位频率区间之内的电磁波的总能量，也叫理想黑体

的单色辐出度。19世纪末的实验物理学家通过测量画出了函数e(ν, T )的曲

线，如图(1.1)所示， 但是对于当时的物理学家来说，如何从理论上解释这

图 1.1: 黑体辐射谱的实验点，瑞利-金斯理论的拟合情况，以及普朗克公

式的拟合情况。注意，横坐标是波长而不是频率。

些曲线是一个很大的挑战。

由于e(ν, T )是普适的，它不依赖于理想黑体的实现方式，因此我们只

要就一种具体的理想黑体推导出e(ν, T )就可以了。一个这样的理想黑体

可以这样来实现(近似实现)，即取一个密闭的空腔，然后在这个空腔上

挖一个很小的小孔，很显然，从小孔处往里看是漆黑的，因此这就是一

个理想的黑体。将这样的空腔加热到温度T并让它达到热平衡，这时候测

量小孔处辐射出来的电磁波，我们就能够得到函数e(ν, T )。假设我们记

热平衡时空腔内单位频率区间上电磁波的能量密度为u(ν, T )，则由于小

孔处的电磁波都是从空腔内部辐射出来的，所以很显然e(ν, T )一定正比

于u(ν, T )，比例常数与频率ν和温度T都无关。因此要研究e(ν, T )，我们可

以等价地研究能量密度u(ν, T )。e(ν, T )的普适性意味着空腔内电磁波的能

量密度u(ν, T )也是普适的。
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研究u(ν, T )的方便之处在于，它和空腔的小孔无关，而仅仅是空腔达

到热平衡时电磁场能量按照频率的分布情况，因此我们完全可以考虑一个

完全密闭的空腔在热平衡时的能量分布情况。而且u(ν, T )的普适性告诉我

们，只需要考虑下面这样一种更特殊的密闭空腔。那就是，设想一个密闭

空腔，内壁是完全反射电磁波的镜子，空腔内充有热气体，它由一些带电

谐振子组成，这些谐振子会不断地辐射电磁波，从而损失能量，但这些辐

射出来的电磁波会在空腔内不停地反射，使得空腔内充满了电磁波，并最

终又反过来作用在这些谐振子上，进而补充这些谐振子损失的能量。在热

平衡时，空腔内的电磁波补充给谐振子的能量刚好等于谐振子辐射损失

的能量。空腔内的电磁波能够补充给谐振子的能量显然正比于其能量密

度u(ν, T )，而谐振子单位时间内辐射损失的能量则正比于谐振子本身的平

均能量E，因此我们有u(ν, T )正比于E。另一方面，电磁波每单位频率区

间上的能量密度显然也正比于单位频率区间上的波模数(即每单位频率区

间上有多少个单色波)，这个波模数我们记为N(ν)。实际上，能量均分定

理告诉我们，空腔内的电磁波与谐振子达到热平衡时，每一个单色波模的

平均能量应该刚好和谐振子的平均能量E相等。上面的分析就告诉我们，

u(ν, T )正比于N(ν)与E的乘积，我们简单地写成

u(ν, T ) = N(ν)E. (1.1)

1.1.2 瑞利-金斯公式

N(ν)其实是可以直接计算的，计算方法也并不难。但这样的计算并

不是我们关注的重点，因此我们将通过引用瑞利-金斯定律绕过这一计算。

1900年左右，瑞利和金斯提出了一个关于u(ν, T )的经典理论公式，

u(ν, T )RJ =
8πν2

c3
kBT, (1.2)

u(ν, T )RJ的下标表示瑞利-金斯的结果, kB是玻尔兹曼常数。注意这个公

式中不出现普朗克常数h，因此完全是一个经典的结果。但是人们发现，

瑞利-金斯的这个结果只在ν很小的长波区域才能与实验测量数据相拟合，

当ν比较大时就与实验数据相差很远。尤其是，瑞利-金斯的结果告诉我们，

在ν → ∞的紫外区域，能量密度将趋于无穷大，这当然是完全不可接受
的。当时的物理学家称瑞利-金斯的这一不可接受的结论为紫外灾难。它表

明对于黑体辐射问题，经典物理失效了！
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为了使用瑞利-金斯的结果，下面我们按照经典物理的办法来计算谐振

子的平均能量E。经典统计物理告诉我们，在温度为T的热平衡时，一个谐

振子能量取值为E的概率ρ(E)由玻尔兹曼分布给出，为

ρ(E) =
1

Z
e
− E

kBT , (1.3)

式中Z =
∫ +∞
0

dEe
− E

kBT为归一化因子。因此，经典谐振子的平均能量为

E =

∫ +∞

0

dEEρ(E) =

∫ +∞
0

dEEe
− E

kBT∫ +∞
0

dEe
− E

kBT

= kBT. (1.4)

将这个结果代入公式(1.1)并与瑞利-金斯公式进行比较，我们就可以得到

N(ν) =
8πν2

c3
. (1.5)

1.1.3 普朗克公式与能量量子化

瑞利-金斯公式只能部分地拟合黑体辐射的实验数据，能完全拟

合u(ν, T )的测量数据的公式是普朗克给出来的，它是

u(ν, T ) =
8πhν3

c3
1

e
hν

kBT − 1
. (1.6)

这就是著名的普朗克公式，普朗克最初是通过将瑞利-金斯的公式和维恩的

公式进行一个适当的内插而得到的，普朗克发现这一公式能够在所有的频

率上拟合u(ν, T )的测量数据。但问题是，理论上如何推导出这一公式呢？

当然，普朗克公式中出现了一个新的参数h，它就是后来著名的普朗克常

数。

通过研究，普朗克发现，下面的“奇怪”假设可以导出公式(1.6)。即

假设空腔内的谐振子辐射电磁波的时候不是连续的，而是一份一份的，我

们可以把每一份电磁波的能量记为ε。由于谐振子辐射也要满足能量守恒，

因此这一假设也就是说，谐振子的能量E不能取连续的值，而只能取ε的整

数倍nε, n = 0, 1, 2, ...,∞。按照这一假设，E就不能通过积分来计算，而应
该像下面这样计算，

E =

∑∞
n=0 nεe

−βnε∑∞
n=0 e

−βnε
. (1.7)
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这里β = 1/(kBT )。下面这个数学技巧可以让我们很容易地把结果计算出

来。很容易验证上面的计算公式可以重写成

E = − ∂

∂β
log

(
∞∑
n=0

e−βnε

)
. (1.8)

对数函数括号里的那个无穷求和是一个等比数列的和，利用等比数列的求

和公式我们容易计算出,

E =
ε

e
ε

kBT − 1
. (1.9)

将这个结果以及式(1.5)代入公式(1.1)我们就得到

u(ν, T ) =
8πν2ε

c3
1

e
ε

kBT − 1
. (1.10)

很显然，只要进一步假设

ε = hν, (1.11)

我们就可以得到普朗克公式(1.6)。

总之，普朗克发现，如果假设电磁波的辐射和吸收过程不是连续的，

而是一份一份的，并且每一份的能量ε = hν，那么就可以用统计物理的方

法推导出黑体辐射的普朗克公式。普朗克做出的这一假设就是能量量子化

假设，基本的能量单位hν称为能量子。这种能量量子化的现象当然完全超

出了经典物理的范围，因为在经典物理里面能量一定是连续变量。普朗克

的这一假设也许是为了推导出黑体辐射的正确公式而做出的无奈之举，但

它却开启了量子力学的大门。

1.1.4 普朗克遗留的问题

我们想强调一下，普朗克只是认为物质辐射或者吸收电磁波的时候是

一份一份的，或者等价的说，普朗克只是认为空腔里面辐射电磁波的振子

能量是量子化的，即这些振子能量只能取nhν这样的形式。至于电磁波本

身，那个时候由于麦克斯韦电磁场理论的巨大成功，关于光是一种电磁波

的观念已经深入人心，所以就连普朗克也根本不敢想象空腔里的电磁波本

身就是量子化的，相反，普朗克肯定地认为，空腔里的电磁场是连续的。

据说普朗克本人有一个比喻，用来理顺光辐射和吸收的时候不连续而以电
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磁场的形式存在的时候却连续这两者之间的矛盾。普朗克说，这就像水龙

头滴水，水滴下来的时候都是一滴一滴的，但滴到池子里以后，池子里的

水总是连续，黑体辐射的空腔就是那个水池，空腔里的电磁场总是连续的。

当然，没有人会对这样的比喻真正满意，处在当时的时代，人们最可能做

的事情就是，用电磁波的连续性来攻击普朗克能量量子化的假设。

观念的下一次突破来源于爱因斯坦，在1905年的《关于光的产生和转

化的一个启发性观点》(网上可以找到这篇论文，有中文翻译，大家可以找

来看一下)这篇革命性的论文中，爱因斯坦坚持从普朗克公式出发，而不是

从传统的电磁波理论出发，进而研究了空腔里的电磁波的熵，爱因斯坦发

现，在高频时，电磁波的熵公式和粒子气的熵公式很类似。进而爱因斯坦

提出了著名的光量子假设，即认为电磁波本身是量子化的，是由光量子组

成的，每一个光量子的能量由hν给出，并且他还用这个光量子假设解释了

光电效应。爱因斯坦本人非常看重他的这篇论文，他认为这是他1905年(所

谓的物理学奇迹年)所发表的5篇伟大论文中最具有革命性的一篇，注意，

爱因斯坦并不认为狭义相对论是最革命的。这当然是因为狭义相对论和麦

克斯韦方程依然属于同一个框架，而光量子的这篇论文突破了麦克斯韦的

理论，提出了全新的观念！正是爱因斯坦的这篇论文把人们引向了微观粒

子的波粒二象性。

然而无论是普朗克还是爱因斯坦，他们都没有解释空腔里振子的能量

或者电磁波的能量为什么量子化，尤其是为什么量子化为nhν的形式？而

且，一旦人们接受光量子的新观念，那么普朗克原来的振子和电磁波之间

的区别就没有那么大了，毕竟电磁波就是一种电磁场的振动，本身就可以

看成是许许多多的谐振子。所以人们需要解释的其实是，为什么一个谐振

子的能量会量子化为nhν？这个问题直到海森堡提出他的矩阵力学才得以

解决，其实，对谐振子的考虑和对氢原子能级问题的考虑本身就是促使海

森堡提出矩阵力学的原因。当然我们今天的量子力学教材上通常是用与矩

阵力学相等价的薛定谔方程来求解谐振子问题的。

不光电磁场是一个多自由度的谐振子系统，固体里面的声波当然也是

一种振动形式，也可以看成是多自由度的谐振子系统，所以类似的普朗克

公式和爱因斯坦的光量子观念应该也适用于声波。其实这就是爱因斯坦早

期的重要贡献之一，爱因斯坦首先把量子化的观念应用于固体物理，类比

于光波的光量子，他提出了声波的声子，并进而用一个类似于普朗克公式

的公式解释了固体在低温下的比热容问题。
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其实，从后来的观点看，电磁波和声波都是一种场，电磁波和声波的

量子化实际上是场的量子化。一维线性谐振子是单自由度的谐振子，而在

不考虑相互作用的时候，任何物理的场都可以看成是多自由度(无穷自由

度)的谐振子系统。因此理解单自由度的一维线性谐振子也是理解场量子化

的一个基础。

当然，我们还只谈了普朗克遗留的一些具体问题，而普朗克遗留的最

大问题，当然就是建立一个关于量子化的自恰理论，这就是我们今天所说

的量子力学。

1.1.5 习题

1. 斯特藩-玻尔兹曼定律（Stefan-Boltzmann law）告诉我们，黑体单

位表面积的辐射总功率正比于温度的四次方，请证明这个结果。

2. 维恩位移定律(Wien displacement law)告诉我们，理想黑体的温度

与其辐射本领最大值相对应的波长λm的乘积为一常数，即λmT = b。式

中，b = 0.002897m ·K为维恩常量。请证明这个结果。在宇宙中，不同恒
星随表面温度的不同会呈现出不同的颜色，温度较高的显蓝色，次之显白

色，而红巨星表面温度只有2000-3000K，显红色，试简单地解释这是什么

原因？

1.2 玻尔的氢原子模型

1.2.1 原子物理的难题

19世纪末20世纪初，物理学家对原子的发光行为进行了大量研究。他

们发现原子的光谱是分立的，也就是每个原子都只能发出和吸收一些特定

波长的光。从经典理论的角度看来，这是不可思议的，因为按照经典的电

磁学理论，核外电子围绕原子核运动就会发出电磁辐射，但是这些电磁辐

射的频率(或者等价地，波长)是可以连续取值的，而不是仅仅只能取一些

特定的分立值。因此，如何解释原子的光谱就成了当时的物理学家面临的

一大难题。

但在理论上，经典物理的问题还不仅仅是解释不了原子光谱，它在逻

辑上更大的问题是，按照经典物理，绕核运动的电子会不断地发出电磁辐

射，电磁辐射本身是有能量的，因此核外电子就会不断地损失能量，这样
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它就会一边绕核运动一边逐步往原子核上掉，很快所有的核外电子都会

完全掉落到原子核上。原子的大小是10−10m的量级，但是原子核的大小只

有10−15m左右，因此很快所有原子的尺寸都会坍缩5个数量级。我们的世

界是由原子构成的，因此这也就意味着整个世界都会坍缩。这当然是不对

的，可以说当时的物理学家面临的更大难题是，如何拯救世界。

这个拯救世界的人就是玻尔。但在讨论玻尔如何拯救了世界之前，我

们还是先回到当时关于原子光谱的观测。当时关于各种原子的光谱有大量

的观测数据，这些数据杂乱无章，没有人能理出头绪。但是不久之后，通

过巴尔末等人的工作，就最简单的原子，氢原子的光谱，人们逐渐理出了

头绪。人们发现，所有氢原子的光谱线都可以用两个整数来刻画，每一条

光谱线对应一个整数对(n,m), 对应规则是下面这个漂亮的数学公式

ν = Rc

(
1

n2
− 1

m2

)
, (1.12)

式中ν是光谱线的频率，c是光速，R是里德伯（Rydberg）常数，用氢原子

光谱的观测数据可以定出它的值是1.097373177× 107m−1。这么多光谱线竟

然可以归纳出如此简单漂亮的一个公式，简直就是一个奇迹。但是，如何

解释这个奇迹呢？

正因为氢原子是最简单的原子，而且它的光谱满足上面那个奇迹般的

公式。所以当时玻尔等物理学家想到，要从理论上解释原子光谱的数据，

首先就应该研究氢原子，并推导出公式(1.12)。这就是玻尔的氢原子模型解

决的问题。

1.2.2 氢原子的量纲分析

在讨论玻尔的氢原子模型之前，我们先用量纲分析的办法来估计一下

氢原子的一些相关物理量，比如说，氢原子的能量E，核外电子绕核运动

的轨道半径r，以及核外电子的速度v等等。我们先作两个假设，第一，我

们假设核外电子绕核运动的速度远小于光速(后面我们会验证这个假设)，

因此我们要处理的物理是非相对论物理，也就是说，我们的问题中将不涉

及光速c。第二，正如我们上面所讨论的，经典物理无法解决氢原子的问

题，因此我们假设氢原子的物理需要涉及到普朗克所引入的量子物理，也

就是说要涉及普朗克常数~。
由于原子核远比核外电子重，我们可以认为原子核是静止不动的，处

于坐标原点。因此，氢原子的拉格朗日量L就等于核外电子的动能减去库
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仑势能(注意这里的库仑势能是负的)，即L = 1
2
me

˙⃗x2 + e2

4πϵ0|x⃗|，这里me表示

电子质量，x⃗表示核外电子的位置矢量。从这个拉格朗日量中我们很容易看

到， e2

4πϵ0
总是作为一个整体出现的，因此我们将把这个量作为一个整体来

处理，库伦势能当然是能量量纲(用[E]来表示)，因此 e2

4πϵ0
就是[E][L]量纲，

这里[L]表示长度量纲。另外，普朗克常数是角动量的量纲，或者说能量乘

以时间的量纲，因此~c也是能量乘以长度的量纲，即[~c] = [E][L]。这样一

来我们就能构造一个无量纲的常数α,

α =
e2

4πϵ0~c
. (1.13)

但是，正如我们前面假设的，我们要处理的问题是非相对论的，不涉及c，

因此αc必然作为一个整体出现(由α的定义式显然可以看出αc与光速c无关)。

反而是单独的α或者单独的c由于都涉及到了光速c因此不能出现在我们的非

相对论分析中。

α就是著名的精细结构常数，可以算得它的值近似是1/137。按照我们

的假设，我们要处理的问题涉及~, 因此上一段的分析就告诉我们，所有涉
及物理量 e2

4πϵ0
的地方都可以用αc以及~的函数αc~来替换。

总结一下，上面的分析告诉我们，氢原子的物理只涉及三个物理

量，电子质量me, 以及αc和~。因此氢原子的能量E, 轨道半径r, 以及
电子速度v都必然能够表达成这三个物理量的函数，我们分别记为E =

E(me, αc, ~), r = r(me, αc, ~), v = v(me, αc, ~)。由于E、r、v分别是能量量
纲、长度量纲、以及长度除以时间量纲。因此，所谓的量纲分析就是用me、

αc、~这三个量分别构造一个能量量纲的物理量，一个长度量纲的物理量，
以及一个长度除以时间量纲(即速度的量纲)的物理量。注意到αc是速度量

纲，[meα
2c2]是能量量纲，[~]是能量乘以时间量纲，我们就很容易验证，

meα
2c2，αc~/(meα

2c2) = ~/(meαc)，以及αc这三个物理量正好满足我们的

要求。又由于me、αc、~这三个量无法构造出任何无量纲的量，因此我们
刚刚给出的构造就是唯一的。因此我们就必然有，

E ∼ meα
2c2, v ∼ αc, r ∼ ~

meαc
. (1.14)

此外还有一些物理量也值得我们讨论一下，按照我们的量纲分析，

αc是核外电子速度，因此meαc就是核外电子的动量p，而轨道半径r ∼
~

meαc
, 因此核外电子的角动量J = rp ∼ ~。其实更常见的是反过来分析，由

于[~]也是动量量纲乘以长度量纲，即是角动量的量纲，因此有J = rp ∼ ~,
又由于p ∼ meαc, 所以就有r = J/p ∼ ~

meαc
, 正是(1.14)中给出来的结果。
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当然，由于氢原子是一个束缚态，它的能量一定是负的，因此关于能

量的表达式我们最好写成E ∼ −meα
2c2, 用∼而不是用等于号的原因在于，

量纲分析所确定的物理量可以相差一个数值系数，当然这个数值系数纯粹

是一个数字，而不是任何物理量的表达式。要确定精确的数值系数那就需

要一个更具体的氢原子模型了。另外，由v ∼ αc以及精细结构常数的数值，

我们可以估计到核外电子的速度要比光速小两个数量级，这就验证了我

们的非相对论假设是自洽的。而将αc、~、me的数值代入量纲分析的表达

式(1.14)，我们就能估计出，氢原子的能量大概在−10eV的量级，电子的轨

道半径大致在10−10m的量级。这样估计出来的原子大小和人们用其他的办

法估计出来的原子大小是一致的，氢原子能量的估计也和电离能相当，这

就进一步说明了，我们这一节一开始所作的两个假设都是合理的。尤其是，

这一估计说明了，要解决氢原子的问题，我们必然需要用到量子物理！

读者可能想到，非相对论只不过是相对论在低速下的一种极限情况。

因此人们完全可以坚持一开始就使用完整的相对论性的分析，而不仅仅是

只分析非相对论极限。如果是这样，我们就应该在我们的量纲分析中多加

一个物理量c，以氢原子的能量为例，考虑到相对论，能量E就应该是四个

物理量me、αc、c、以及~的函数，可以写成E = E(me, αc, c, ~)。与非相对
论时的情形类似，我们可以由这四个量构造出一个能量量纲的量mec

2, 但

现在我们同时还可以由这四个量构造一个无量纲的量，即α = αc/c, 注意，

在之前的非相对论性的分析中α是不能单独出现的，它只能以αc的整体出

现。由于α无量纲，因此就可以引入它的任意函数f(α)，它当然也是无量

纲的，因此f(α)mec
2依然具有能量量纲，它才是由me、αc、c、以及~这四

个量构造出来的具有能量量纲的量的一般表达式。这也就是说，在相对论

性的分析中，氢原子能量必定有如下形式的表达式

E = f(α)mec
2. (1.15)

函数f(α)仅仅用量纲分析是无法具体确定的，必须用真正的相对论量

子力学的理论才能算出来。计算的办法大体是这样的，首先我们注意

到α = 1/137是一个很小的数，因此我们可以设想把f(α)进行级数展开，

即f(α) = f0 + f1α + f2α
2 + ...., 这里f0, f1, f2, f3, f4, ...是与α无关的展开系

数, 计算f(α)的关键技巧就在于用关于无量纲参数α的微扰展开的方式逐

级地将级数展开系数f0, f1, f2, ...计算出来。实际上，在相对论量子力学中，

f(α)其实是α的偶函数，因此f1, f3, ...这些系数必定都为零。f0对应的是我

们取α = 0(也就是假设没有原子核产生的库伦场)时的结果，这时候核外电
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子就是一个自由电子，它的能量当然就应该是爱因斯坦著名的mec
2, 因此

我们必定有f0 = 1，注意这一项的能量是自由电子的静止质量所贡献的能

量，在前面的非相对论性的分析中是没有的。与非相对论的分析相对应的

是f2这一项，至于f4以及更高阶的项，那就是对非相对论的结果的相对论

修正，其中f4α
4mec

2这一项通常被称之为氢原子能谱的精细结构。但是如

果进一步考虑到相对论量子场论，那情况就会变得更复杂，这时候由于量

子场论的重整化，f(α)里面甚至可能包含α5 logα这样的项。

1.2.3 玻尔氢原子模型

量纲分析的估计只能让我们确定量子物理有可能解决氢原子问题。但

要具体的解决本文第一节提到的两大难题，尤其是推导出巴尔末的神奇公

式(1.12)那就需要玻尔出马了。

由于当时还没有发现量子物理的基本原理和基本方程，玻尔提出了三

条假设，这三条假设就构成了玻尔的氢原子模型。首先，针对核外电子由

于辐射损失能量而不能稳定运动，要坍缩到原子核上的问题。玻尔提出了

定态假设，玻尔说，考虑到量子物理以后，核外电子绕核运动的轨道不能

是任意的，而是只能取某些特定的轨道，当电子在一个这样的特定轨道，

比方说第n个特定轨道上运动时，它是不辐射电磁波的，因此它的能量就

不会损失，而是会保持在一个确定的值En，核外电子在特定轨道上运动的

这种状态就称之为定态。

那么为什么我们能观测到氢原子的光谱呢？为此玻尔引入了第二条假

设，跃迁假设。玻尔说，核外电子处在定态上的时候虽然不辐射，但是，

它可能从一个定态跃迁到另一个定态，比方说从第m个定态跃迁到第n个

定态(假定m > n), 这时候电子就会辐射出特定频率ν的电磁波，按照爱因

斯坦的光量子假设，这个辐射出来的光子的能量就是hν, 因此由能量守恒，

玻尔写出了如下方程，

hν = Em − En. (1.16)

玻尔的这两条假设自然地解释了氢原子光谱的分立性，原因就在于定态是

分立的，而且公式(1.16)进一步告诉我们，每一条光谱线的确都对应两个整

数m,n, 这正是巴尔末发现的规律。

但是，如果想进一步推导出巴尔末公式(1.12)，玻尔就必须进一步找到

定态能量En的表达式。类比于行星绕太阳运动，玻尔知道决定核外电子轨
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道的是能量和角动量这两个守恒量，量纲分析又告诉他，考虑到量子效应，

必然有J ∼ ~。因此玻尔又引入了第三条假设，称之为轨道角动量量子化假
设，玻尔说，处在定态n上的电子的轨道角动量J是量子化的，它满足

J = rp = n~. (1.17)

有了这三条假设，玻尔就能导出定态能量En了。玻尔的推导大致如

下。首先为了简单起见，我们不妨假定核外电子绕核运动的轨道是圆轨道。

因此按照牛顿定律，我们有

me
v2

r
=

e2

4πϵ0r2
, (1.18)

很显然，这个公式也可以重写成，

mev
2 =

αc~
r
. (1.19)

另外，由角动量量子化假设我们有

rmev = n~. (1.20)

由这两个结果我们容易推导出，定态的轨道半径r必然满足

r = n2 ~
meαc

. (1.21)

很显然关于轨道半径的这个结果和我们前面量纲分析的结果一致。特别的，

第1个定态的轨道半径为 ~
meαc

= a0, a0称之为玻尔半径，可以算得它的数值

是0.52917721067(12)× 10−10m。

另一方面，氢原子的能量是动能和势能的和，即E = 1
2
mev

2 − e2

4πϵ0r
=

1
2
mev

2 − αc~
r
，由式(1.19)就可以得到，E = −1

2
αc~
r
(当然它也等于−1

2
mev

2)。

将定态轨道半径的结果(1.21)代入这个能量的式子，我们就能得到第n个定

态能量En的表达式

En = −1

2
meα

2c2
1

n2
=
E1

n2
. (1.22)

显然这个能量的表达式和我们前面量纲分析的结果是一致的，式中E1 =

−1
2
meα

2c2就是氢原子第1个定态(称之为基态)的能量，它也是氢原子的最

低能量，代入相应物理量的值就可以算得E1 = −13.6eV。E1 = −1
2
meα

2c2的
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这个结果很好记，由于氢原子的总能量等于−1
2
mev

2，而在基态的时候电子

的速度v = αc, 因此就有E1 = −1
2
meα

2c2。

更令人高兴的是，将公式(1.22)代入跃迁假设的公式(1.16),玻尔就能导

出氢原子的光谱，

ν =
meα

2c2

4π~

(
1

n2
− 1

m2

)
, (1.23)

这和巴尔末的神奇公式(1.12)形式完全一样，将它和巴尔末公式比较我们就

可以得到，如果里德堡常数可以由下式给出

R =
meα

2c

4π~
, (1.24)

那么玻尔就正确地推导出了氢原子的光谱。代入物理常数的值人们容易算

出公式(1.24)给出的里德堡常数和由光谱数据定出来的里德堡常数吻合得

非常好，这充分说明了玻尔的模型的确解释了氢原子的光谱。

正如我们已经看到的，为了解决氢原子的难题，玻尔引入了一些革命

性的新概念，包括定态的概念，定态跃迁的概念，还有角动量量子化的概

念。玻尔完全是凭其物理直觉引入这些概念的，但后来完整的量子力学理

论表明，玻尔所引入的这些概念在完整的量子力学理论中也依然是核心概

念，这当然说明了玻尔的物理直觉有多么强大。但从这里也可以看出玻尔

理论的缺陷，比方说玻尔的定态概念完全是作为一个假设提出的，玻尔并

没有解释清楚定态的本质，也没有解释为什么定态上的电子不辐射。同样

玻尔也不能用一个基本原理来解释他的定态跃迁假设和角动量量子化假设。

更令人不满意的是，在玻尔推导定态能量En的表达式的过程中，他还需要

求助于经典力学的牛顿方程，而他也没有用一个新的基本原理将牛顿方程

和他新引入的三条假设统一起来。换言之，玻尔并没有证明牛顿方程和他

的三条假设是相容的，相反，正如本文一开始所说的，牛顿方程和经典的

电磁学理论结合起来会导致完全错误的结论，而玻尔的三条假设正是为了

挽救这样的错误而引入的，因此这些假设实际上天然地与牛顿方程不相容。

因此，玻尔的理论虽然取得了巨大的成功，但在理论结构上依然是不令人

满意的，它遗留的问题几乎和它解决的问题一样大。

玻尔之后，人们依然在寻找一个基本的量子理论，它将以牛顿的经

典理论为其极限，即当标志量子效应的普朗克常数可以忽略时(等价的就

是让~ → 0), 它要回到牛顿力学。并且它还要能正确地导出氢原子能级

的公式(1.22), 而无需求助于牛顿方程。首先取得这一成功的是海森堡，
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1925年海森堡沿着玻尔氢原子模型所开辟的道路提出了量子力学的正确方

程，通常叫做矩阵力学。但是当时海森堡没能用他的矩阵力学推导出公

式(1.22)(若干年以后泡利完成了这一工作)，首先用正确的量子力学方程推

导出氢原子能级的是薛定谔。但是薛定谔是沿着与玻尔模型不同的思路完

成这一工作的，下一节我们会简单地介绍薛定谔的思路。

1.2.4 量子力学如何解决氢原子问题

正如我们已经看到的，氢原子问题的一个核心特征就在于，光谱的分

立取值，或者等价地说，在于氢原子能量取值的分立性。但是频率取特定

的分立值并不是量子物理的独有现象。在经典物理中，比方说鼓声，它就

有一些特征的频率。这是由于鼓声来源于鼓膜的振动，或者说来源于鼓膜

上的机械波。由于鼓膜的边缘是固定的，鼓膜上的这些机械波在边缘上反

射以后最终就会在鼓膜上形成二维的驻波。驻波条件就要求了它们的频率

只能取一些特定的分立的频率，每一种驻波模式对应一个特征频率，这就

是鼓的特征频率。在数学上，这些特征频率由定义在鼓膜这样一个有限区

域上的两维拉普拉斯算符的本征值决定。这个例子给当时的物理学家两点

启发，第一，要得到氢原子能量的分立值，一个自然的办法是引入波动，

特别是引入驻波。正好，当时德布罗意已经对所有的微观粒子引入物质波

的概念了。第二，在数学上得到能量分立值的一个自然办法是，让这些分

立值对应某个算符的本征值。

什么算符的本征值可以取成E1/n
2这种形式呢？当时有很多数学家都

在猜，但没有人得到结果。最终解决这个问题的是物理学家薛定谔，薛定

谔给出的这个算符就是后来量子力学中的哈密顿算符。薛定谔提出量子力

学方程的那篇著名论文标题就叫作《Quantisation As A Problem of Proper

Value》，Proper Value就是本征值。薛定谔是如何想到哈密顿算符的呢？

经典力学中我们有哈密顿量，但是经典力学的哈密顿量是实数值的，它不

是一个算符，薛定谔是通过什么操作从经典的哈密顿量走向量子的哈密顿

算符的呢？这就是薛定谔的论文开篇就在讨论的问题，感兴趣的读者可以

在网上找到这篇论文读一下。当然，需要强调的是，量子力学是全新的物

理规律，哈密顿算符是无法通过严格的数学推导从经典物理的哈密顿量中

推导出来的，薛定谔所给出的讨论也只是他如何猜测的一个思考过程，而

不是一个严格的数学推导，在本质上，哈密顿算符还是猜出来的，只不过

薛定谔是有物理地猜，而不是像当时的数学家那样瞎猜。哈密顿算符猜得
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对不对，关键就看它能不能给出氢原子能级E1/n
2这样的本征值，薛定谔

的原始论文更大的篇幅就是在证明这件事情。

1.3 波粒二象性以及波动力学简介

1.3.1 光的波粒二象性

前面我们说过，1905年爱因斯坦提出，电磁场本身是量子化的，电磁

场由光量子组成，光量子也就是我们今天常说的光子，它是微观粒子。爱

因斯坦提出，频率为ν的电磁波，其能量是hν的整数倍，可以写成ε = nhν,

n就是组成这个电磁波的光子数目。也即是说，每一个光子的能量为hν。

爱因斯坦的这个概念是彻底革命性的，因为当时麦克斯韦的电磁场理

论已经深入人心了，按照麦克斯韦的理论，光就是一种电磁波，是一种波

动。现在爱因斯坦却提出光是粒子，是光子，这当然完全超越了麦克斯韦

的理论范围。但是，爱因斯坦指出光子的概念可以解释光电效应，用光子

的概念，爱因斯坦预言：除非入射光的频率超过某个最小值νmin, 否则当

光照射在金属表面上的时候将不会有光电子出射。而当入射光的频率超

过νmin时，金属里面的自由电子有一定的概率吸收一个光子从而变成光电

子出射，出射的光电子的动能将由hν − hνmin给出，hνmin相应于电子脱离

金属表面所需要的最小功，也叫逸出功。也就是说，根据光子的概念，爱

因斯坦预言光电效应中出射光电子的动能将和入射光的频率成线性关系，

这是经典的电磁波理论完全给不出的预言。但是实验很快证实了爱因斯坦

的这个预言，并且还据此测出了普朗克常数h, 人们发现它和由黑体辐射曲

线算出来的结果相当一致。因此爱因斯坦的光量子假设的确是有道理的。

即使如此，爱因斯坦的光量子概念也没有立即被当时的物理学家广为

接受，这种情况一直持续到1922年康普顿完成著名的康普顿散射实验为止。

康普顿散射实验即是用X射线和电子发生散射，实验结果表明，入射X射

线的行为表现得完全类似于一个粒子，而且定量的结果也与根据爱因斯坦

的光量子假说推导出来的结果完全一致。这就直接证实了光是微观粒子这

一假说。

当光子的概念被实验确立之后，问题就反过来变成，光子还有没有波

动性，还能不能发生干涉？因为根据经典物理，粒子和波是不相容的，一

个东西要么是粒子，要么是波，光子如果是粒子，那它就不应该干涉了。
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当然，人们也知道大量光子的总体必定是可以干涉的，因为经典的电磁波

就是由大量光子组成的，电磁波当然可以干涉。问题是，单光子能不能发

生干涉呢？

为了确定这一点，英国物理学家杰弗里·泰勒重做了光学里面的双缝

干涉实验。不过这一次，他设法让光源一次只发射一个光子，这一个光子

通过双缝打在屏幕上之后，下一个光子再接着发射。泰勒发现，当屏幕上

累积的光子数足够多以后，同样出现了干涉条纹，如图(1.2)所示。 由于一

图 1.2: 泰勒的单光子双缝干涉实验。

次只通过一个光子，所以这种干涉不可能发生在不同的光子之间，只可能

是单个光子和它自身产生了干涉。只不过干涉的结果要等到屏幕上累积了

大量的光子以后才能显现出来。如果只看一个光子的话，那它在屏幕上出

现的位置看起来就是随机的。也即是说，屏幕上的干涉条纹直接反映的是

单个光子在屏幕上各点出现的概率！

因此，光既是微观粒子，同时也是波，一个光子只会打在屏幕上的一

个点，这和粒子的行为一样，但是单个光子也会和它自身干涉，因此单个

光子同时也是波，这个波与经典的电磁波不同，它不是描写许多光子的总

体，而是描写单个光子。屏幕上的干涉条纹反映的就是单个光子通过双缝

以后在屏幕上的概率分布。当然，干涉条纹的这种概率解释最初人们并不

清楚，它最早是由玻恩提出来的。光的这种即是粒子又是波的性质通常被

称为波粒二象性。
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1.3.2 微观粒子的波粒二象性

1924年，德布罗意产生了一个大胆的关键性想法。他想到，对于光来

说，之前人们都认为是波(电磁波)，但是爱因斯坦却发现它也是粒子，是

光子。德布罗意想，那么反过来，对于电子这样的微观粒子而言，原来人

们都认为它们是粒子，那么有没有可能它们同时也是波呢？

基于这个猜测，德布罗意就把爱因斯坦对于光量子的关系式ε = hν推

广了，它认为一个能量为E的微观粒子，将同时也是一个角频率为ω的波，

ω和E之间满足关系式，

E = ~ω, (1.25)

式中~ = h/(2π)为约化的普朗克常数，也常常简称为普朗克常数。

不仅如此，德布罗意进一步想到，根据狭义相对论，一个平面波的角

频率ω和波矢量k共同构成了一个四维矢量(ω,k)。另一方面，一个粒子的能

量E和动量p也构成了一个四矢量(E,p)。因此如果ω和E之间满足(1.25)式，

那动量p和波矢量k之间也应该类似地满足

p = ~k. (1.26)

也即是说，一个动量为p的微观粒子将同时是一个波矢量为k的平面波。注

意到波矢量的模长和波长λ之间的关系式|k| = 2π
λ
，德布罗意又由(1.26)式得

到动量大小为p = |p|的微观粒子的波长(称之为德布罗意波长)，

λ = h/p. (1.27)

对于原子的核外电子而言，它的德布罗意波长大约在10−10m的量级。对于

我们日常的宏观尺寸而言，这个波长无疑太小了，德布罗意认为这就是电

子这样的微观粒子的波动性长期未被发现的原因。

德布罗意关于微观粒子同时也是波的这个猜想就叫做微观粒子的波粒

二象性。它是光的波粒二象性的大胆推广。德布罗意提出微观粒子的波粒

二象性时，关于光的波粒二象性基本上已经被实验所证实了。然而当时的

人们认为波粒二象性是光的特殊本性，因此人们并不能立即肯定德布罗意

的想法是对的(除了爱因斯坦，爱因斯坦当时对德布罗意工作的评价是说

它，“揭开了伟大序幕的一角”)。不过，德布罗意当时也从物理直观上表

明了他关于微观粒子的波粒二象性并非瞎想，因为它可以非常自然而又漂

亮地解释玻尔氢原子模型的第三条假设，即核外电子的轨道角动量量子化
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为L = n~的假设。当时人们普遍觉得玻尔的这第三条假设很神秘，然而却
不可或缺。

德布罗意的解释非常简单，根据波粒二象性，核外电子也是波，因此

当核外电子处在轨道半径为r的定态上时，它的波必定要绕着半径为r的圆

周首尾相连，形成一个驻波，如图(1.3)所示。 这也就是说，这个圆周的周

图 1.3: 德布罗意对玻尔的量子化条件的解释。

长2πr必定是核外电子德布罗意波长的整数倍，即满足驻波条件2πr = nλ。

利用德布罗意关系(1.27), 这个驻波条件就等价于玻尔的第三条假设，

L = rp = n~。
然而电子的德布罗意波长太短了，因此想用双缝干涉实验来检验它的

波动性实现起来会比较困难。但是晶体中原子之间的间距却可以和电子德

布罗意波长的量级相当。因此当时的人们想到可以用电子束在晶体上的衍

射实验来检验电子是否有波动性。1927年戴维孙和革末完成了这样的实验。

实验结果表明，电子的确有波动性，会在晶体上发生衍射，而且根据衍射

图案计算出来的入射电子波长也正好与德布罗意给出来的公式(1.27)吻合。

与光的波粒二象性一样，电子的波粒二象性也是适用于单个电子而不

是适用于大量电子之间的，波粒二象性的波描写的是单个电子，而不是大

量电子。也即是说，单电子就能发生衍射和干涉。电子的双缝干涉实验的

确不容易实现，但是随着技术的进展，后来人们的确实现了这样的实验，

不仅如此，和单光子的双缝干涉实验一样，人们后来也实现了单电子的双

缝干涉实验，证实了单个电子就有波粒二象性。不仅是电子，人们后来也

直接检验了诸如中子等等其它微观粒子的波粒二象性。到今天我们可以说，

微观粒子的波粒二象性已经是量子力学中被实验检验得最多的概念之一。
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当然，波的干涉来源于多个波的叠加，单个微观粒子可以和其自身干

涉当然就意味着描写单个粒子的波可以是多个波的叠加。因此，单粒子波

粒二象性的波是可以叠加的。当然，单个微观粒子和它自身干涉的干涉条

纹要等到屏幕上累积的粒子数足够多以后才能看得出来，仅仅看一个粒子

的话，它在屏幕上出现的位置看起来将是随机的。正是基于这个观察，玻

恩提出，屏幕上的干涉条纹分布反映的是单个粒子落在相应点的概率。

1.3.3 波动力学简介

根据德布罗意的波粒二象性，一个动量为p能量为E的自由粒子将同

时是一个频率为ω = E/~, 波矢量为k = p/~的平面波，因此相应的波函
数ψ(x, t)可以写成

ψ(x, t) ∝ e−iωt+ik·x = e−iEt/~+ip·x/~. (1.28)

当然在经典物理中，将一个平面波的波函数写成这种复数形式只是一个数

学技巧，真正物理的波函数可以通过取实部来得到。但是，量子力学后来

的发展表明，复数形式对于量子力学里的波函数是实质性的，人们通常不

能只取量子力学波函数的实部。当然，量子力学波函数是一个复数也意味

着波函数本身不可以直接测量。因此在量子力学发展的早期，物理学家们

对量子力学波函数在物理上代表什么争论不休，直到波恩提出波函数的统

计解释这样的争论才开始停息。

我们不妨先来看一下公式(1.28)给出的自由粒子平面波满足什么样的

波动方程。很容易看出，这样的波函数满足下面的关系式

i~
∂

∂t
ψ(x, t) = Eψ(x, t), −i~∇ψ(x, t) = pψ(x, t). (1.29)

由此又可以得到p2ψ(x, t) = −~2∇2ψ(x, t)，进一步注意到对于非相对论自

由粒子，我们有E = p2/(2m)，进而我们立即就可以得到如下方程

i~
∂

∂t
ψ(x, t) =

[
− ~2

2m
∇2

]
ψ(x, t). (1.30)

这就是公式(1.28)给出的自由粒子平面波所满足的波动方程。注意，这个

方程是一个线性方程，也即是说，不仅对于确定动量的自由粒子平面波这

个方程成立，而且对于多个不同动量的自由粒子平面波的叠加，这个方程

依然成立。当然，一般来说，由于波的相干叠加性，自由粒子的波函数不
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一定是(1.28)式这样的平面波，而更可能是多个不同波矢量(也就是不同动

量)的平面波的叠加，而方程(1.30)的线性性就意味着它对于任何自由粒子

波函数都成立。

考察微观粒子波函数所满足的波动方程是薛定谔的重要贡献。不仅如

此，薛定谔还把(1.30)式这样的自由粒子波动方程推广到一般性的非自由粒

子情形，也就是推广到粒子受一个势场V (x)作用的情形。推广的办法是注

意到根据(1.29)式，方程(1.30)右边可以理解为 p2

2m
ψ(x, t),而方程左边可以理

解为Eψ(x, t), 对于自由粒子E = p2/(2m)，因此有方程(1.30)。但是，当存

在势场V (x)时，粒子的能量将是动能与势能V (x)之和，因此这时候就需要

把方程(1.30)右边修正为
[
p2

2m
+ V (x)

]
ψ(x, t)。最后，依然按照(1.29)式(虽

然严格来说这个式子仅对自由粒子平面波才成立) 将动量和能量都分别替

换成对x和对t的导数，我们就会得到

i~
∂

∂t
ψ(x, t) =

[
− ~2

2m
∇2 + V (x)

]
ψ(x, t). (1.31)

这个波动方程就是著名的单粒子薛定谔方程。

由于波的叠加性，一个任意的波函数可以是多个不同角频率的波函数

的叠加，而根据德布罗意的关系，角频率ω = E/~，因此这也就是说，粒
子的一个任意波函数可以是多个具有不同能量值的波函数的叠加。这和经

典物理完全不同，在经典物理里面，任何时候粒子都有唯一确定的能量，

但是在量子力学里面，对于一个这种由多个有不同能量值的波函数叠加出

来的波函数，其相应粒子的能量将无法确定。

但是，如果我们考察的是一个具有确定能量E的粒子，那么它的波函

数将有确定的角频率E/~, 从而必定可以写成如下形式

ψ(x, t) = e−iEt/~ψ(x). (1.32)

对于这样的一个有确定能量的粒子，我们就说它处在定态。这里的定态其

实就是玻尔最早在其氢原子模型中所引入的定态概念的一般化，因为玻尔

的定态指的同样也是一个确定能级。将(1.32)式代入薛定谔方程(1.31), 我

们就可以得到定态波函数的时间无关部分ψ(x)必须满足的方程[
− ~2

2m
∇2 + V (x)

]
ψ(x) = Eψ(x), (1.33)

这个方程就是所谓的定态薛定谔方程，其中的− ~2
2m

∇2 + V (x)就是单粒子的

哈密顿算符，记作H。因此定态薛定谔方程也可以写成

Hψ(x) = Eψ(x), (1.34)
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这个方程也叫做算符H的本征方程，其中的E也叫H的本征值。也即是说，

定态能级其实是哈密顿算符的本征值。这也就是薛定谔的那篇著名论文

《Quantisation As A Problem of Proper Value》标题的来源。

很显然，薛定谔方程(1.31)和人们之前在物理学中见过的所有方程

都不一样，它包含了一个虚数单位i。因此由薛定谔方程解出来的波函

数ψ(x, t)也必然是一个复函数。这样的一个复函数当然不可以直接测量，

那么波函数在物理上代表什么呢？这个问题直到玻恩提出他的统计解释人

们才搞清楚。前面我们说过，基于对单粒子干涉实验结果的观察，玻恩提

出，屏幕上的干涉条纹分布反映的是单个微观粒子在相应点出现的概率。

另一方面，人们在经典物理中就已经知道，干涉条纹可以由波的强度分布

来计算，人们也知道，如果把波函数写成复数形式，那么波的强度将正比

于波函数的模方。基于此，玻恩又进一步提出，量子力学波函数的模方代

表的就是粒子在相应点出现的概率！当然，由于波函数的自变量x是一个连

续变量，所以更严格地说，波函数的模方|ψ(x, t)|2代表的是粒子出现在x点

的概率密度！如果将这个概率密度记为ρ(x, t)，那么玻恩对波函数的解释

即是

ρ(x, t) = |ψ(x, t)|2. (1.35)

很显然，将波函数乘上一个任意的非0复系数c不会改变粒子在空间

不同点的相对概率分布，因此在物理上，cψ(x, t)和ψ(x, t)其实是等价的。

但是，根据玻恩的解释，在体积元dτ = d3x内找到粒子的概率dP是dP =

|ψ(x, t)|2dτ，而在全空间找到粒子的总概率当然就是dP对全空间的积分。
由此人们就可以对波函数加一个自然的要求，即要求全空间的总概率等

于1，也即是 ∫
|ψ(x, t)|2dτ = 1. (1.36)

人们可以通过适当地调节波函数前面的复系数c来满足这样的要求，而这样

的过程就称为波函数的归一化。

以上即是对波动力学的简单概括。当然波动力学不仅仅适用于单个微

观粒子，它也可以推广到多个微观粒子相互作用的多粒子体系，这时候波

函数就应该推广成ψ(x1,x2, ...,xN , t), 这里xi表示第i个粒子的位置坐标。而

薛定谔方程(1.31)就应该推广成

i~
∂

∂t
ψ(x1, ...xN , t) =

[
−

N∑
i=1

~2

2mi

∇2
i + V (x1, ...,xN)

]
ψ(x1, ...xN , t). (1.37)
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式中V (x1, ...,xN)表示这N个粒子的相互作用势能。

1.3.4 双缝干涉实验再讨论

为了让读者初步看到量子力学的不可思议。我们不妨对单电子的双缝

干涉实验进行进一步的讨论。物理学家费曼最早在他著名的《费曼物理学

讲义》里强调了双缝干涉实验对于理解量子力学的重要性。不过，在费曼

讨论单电子的双缝干涉时，它还是一个想象中的实验，然而在今天，我们

将要讨论的一切都已经是在真实的实验中证实了的。

电子的双缝干涉实验本质很简单，就是设计一把“电子枪”，让它一

个接着一个地发射电子，发射出来的电子经过一个双缝，最后再打在远处

的屏幕上，如图(1.4)所示。 电子枪每次只发射一个电子，而且上一个电子

图 1.4: 费曼和电子双缝干涉实验。

已经打到屏幕上以后下一个电子才接着发射。等屏幕上累积了足够多的电

子时，我们观察电子数在屏幕上的分布状况。我们也已经知道，这个分布

曲线也可以解释为单个电子最终在屏幕上的概率分布曲线。

如果只打开第1个缝，而将缝2关闭，那当然不会有干涉，屏幕上的概

率分布曲线将如图(1.4)中所示的曲线P1，类似的，只开缝2时概率分布曲线

将是图(1.4)中所示的P2。但是，根据德布罗意的波粒二象性，电子也是波，

所以当缝1和缝2同时打开时，将会发生波的干涉现象，最终屏幕上电子的

概率分布曲线将是图(1.4)中所示的P12。很显然，由于存在干涉

P12 ̸= P1 + P2. (1.38)
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由于电子是波，假设我们记通过缝1到达屏幕的波为ϕ1，记通过缝2到

达屏幕的波为ϕ2。那么根据玻恩的波函数的统计解释，显然我们将有

P1 = |ϕ1|2, P2 = |ϕ2|2. (1.39)

而当两个缝同时打开时，ϕ1波和ϕ2波会相干叠加，屏幕上总的波将是ϕ =

ϕ1+ϕ2。根据玻恩的统计解释，这时候概率分布P12将为P12 = |ϕ|2，也即是

P12 = |ϕ1 + ϕ2|2 = |ϕ1|2 + |ϕ2|2 + (ϕ1ϕ
∗
2 + ϕ∗

1ϕ2)

= P1 + P2 + (ϕ1ϕ
∗
2 + ϕ∗

1ϕ2). (1.40)

最终的表达式中多出来的交叉项(ϕ1ϕ
∗
2 + ϕ∗

1ϕ2)正好可以用来解释干涉，称

之为干涉项。

但是，电子也是粒子。作为粒子它是怎么通过双缝的呢？作为基本粒

子，电子当然不可能分裂成两半，所以似乎它无法同时通过缝1和缝2。也

即是说，屏幕上的每一个电子似乎要么是通过缝1而到达屏幕的，要么就

是通过缝2到达屏幕的。但是，不可思议的是，这种看起来很显然的观点其

实是有问题的！因为如果真是这样的话，我们就可以把屏幕上的所有电子

分成两类，一类是通过缝1来的，我们称它们为第1类电子，另一类是通过

缝2来的，我们称它们为第2类电子。第1类电子由于只通过缝1，对于它们

来说，缝2存在或者不存在应该都一样，因此，第1类电子在屏幕上的分布

曲线将为P1曲线。类似的，第2类电子的分布曲线将为P2曲线。但是，屏幕

上的电子只有这两类，因此当双缝都打开时屏幕上所有电子的总分布曲线

就应该是P1 +P2，而不是P12，也就是说，应该根本就没有干涉！但这显然

与实验结果相矛盾，也与波动的观点相矛盾！

也即是说，当双缝都打开时，屏幕上的所有电子可以分成1、2两类的

观点必定是错的！这也即是说，当双缝都开屏幕上有干涉条纹时，我们其

实根本就无法确定电子是怎么经过两个缝的。我们认为每一个电子要么经

过缝1要么经过缝2的直观看法其实有问题！我们的日常生活经验误导了我

们。这很不可思议，但却并不违背科学原理，因为物理学是一门实验科学，

物理学是基于实验观测的。在日常生活中我们也许观察过子弹是如何经过

双缝的，我们发现每一颗子弹要么经过缝1要么经过缝2。但是，我们并没

有观察过微观世界的电子是如何经过双缝的，因此当我们说电子要么经过

缝1要么经过缝2时其实是想当然。

要想确定每一个电子是如何经过双缝的，最直接的方法就是用一个很

灵敏的仪器“盯着”它看，也就是观测。假设我们的确这样做了，我们的
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确盯着电子看并进而可以确定每一个电子经过哪条缝，那屏幕上的电子就

真能分成1、2两类了，按照我们刚才的逻辑推理，这时候屏幕上的干涉条

纹就应该消失，电子的分布就应该是P1 + P2。但这又是不可思议的，难道

我们看一下电子就会影响最终的实验结果吗？真实的实验是怎么样的呢？

真实的实验发现，的确如此，我们看一下电子真会影响最终的实验结果，

如果我们通过观测能确定每一个电子经过哪条缝，那最终屏幕上真的不会

出现干涉条纹。我们的日常生活经验又一次欺骗了我们，但好在这样的实

验结果和我们的逻辑推理倒是一致的。

我们常常这样来概括上面的实验结果。我们说：当双缝同时打开并且

我们没有看电子如何经过双缝时，电子的波函数由ϕ1 + ϕ2这样的叠加态来

描述，所以最终的概率由|ϕ1 + ϕ2|2来描述，有干涉。但是，一旦我们观测
到电子如何通过双缝，那电子的波函数就变了，它要么由ϕ1描述(当我们观

测到电子经过缝1时)，要么由ϕ2描述(当我们观测到电子经过缝2时)，最终

的概率就由这两种可能性的和|ϕ1|2 + |ϕ2|2给出，没有干涉。物理学家常常
这样来解释这个结果，他们说观测导致了波函数的塌缩，当我们观测到电

子经过缝1时，它的波函数就由原来的ϕ1 + ϕ2塌缩到了ϕ1，相反，如果观测

到电子经过缝2，那它的波函数就由ϕ1 + ϕ2塌缩到了ϕ2。

1.3.5 习题

1. 量子力学的波函数是复数，因此不可以直接测量，那么量子力学波

函数可不可以测量呢？请查文献资料讨论这个问题。

2. 在电子的晶体衍射实验中，如果增加入射电子的动能，衍射环将如

何变化？

1.4 电子自旋的发现

1922年施特恩和格拉赫(Stern and Gerlach)做了一个著名的实验，这

个实验最终表明电子有一个内禀的角动量，也就是电子自旋。在经典物

理中，当一个粒子围绕另一个粒子作轨道运动是，它就有一个轨道角动

量L = x × p。而且我们知道，对于一个带电量为q的带电粒子，它的轨道

角动量会产生一个磁矩，我们可以记作µL，电动力学的知识告诉我们

µL =
q

2m
L. (1.41)
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当然，我们也知道，磁矩会和磁场耦合，如果存在一个磁场B，那磁矩µ和

磁场相互作用的势能V将是

V = −µ ·B. (1.42)

但是电子的自旋角动量完全是内禀的，它和轨道运动没有任何关系。

人们可以粗略地将它想象成是电子围绕着自身的转轴自转，但是严格来说，

这幅经典物理的图像是错的，电子的自旋纯粹是一个相对论量子力学的效

应。实际上，由于电子有自旋，所以一个电子要转720度(而不是360度)才

能回到原来的状态。所以在我们经典世界的人看来，电子自旋的存在是不

可思议的，在理论上，要等到狄拉克提出著名的相对论量子力学方程，也

就是狄拉克方程，人们才算对电子自旋有了比较深入的理解。

施特恩和格拉赫的实验装置如图(1.5)a所示。 在这个实验中，施特

图 1.5: 施特恩-格拉赫实验。

恩和格拉赫让一束经过准直的银原子束通过一个非均匀磁场，然后再

打在一个屏幕上。这个磁场如图(1.5)b所示，它在竖直的z方向有一个梯

度∂Bz

∂z
。因此如果银原子有一个磁矩µ的话，它在z方向将受到一个力Fz,

Fz = −∂V
∂z

= µ · ∂B
∂z

≃ µz
∂Bz

∂z
。从图(1.5)b可以看到，在这里磁场的梯

度∂Bz

∂z
其实是负的(下方的磁场更强，上方的磁场更弱)，因此如果µz为负的

话，那银原子的受力将沿着z轴的正方向。

按照经典物理，µz = |µ| cos θ，θ是银原子的磁矩与z方向的夹角。在斯
特恩-格拉赫实验中，入射的银原子束是完全非极化的，也就是说，要么它

的磁矩为0，要么它磁矩的方向就是随机的，即经典物理告诉我们的θ将有

连续的不同取值。如果银原子束的磁矩为0，那银原子将不受磁场的作用，
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因此最终打在屏幕上的银原子将会是一束。如果银原子有磁矩，那按照经

典物理，θ连续可变，因此银原子的受力Fz ≃ µz
∂Bz

∂z
= ∂Bz

∂z
|µ| cos θ将在一个

范围内连续可变，磁矩取向不同的银原子将会受到不同的力，从而最终会

打在屏幕的不同位置，那最终打在屏幕上的银原子将展宽成连续的一片。

但是，实验发现，通过非均匀磁场以后，银原子束分裂了，但是仅仅

分裂成了上下两束！也就是说，银原子的确有磁矩，但是µz的取值不是连

续可变的，而是量子化的，µz只有两个不同的分立取值。

实际上，银原子有47个核外电子和一个很重的原子核。斯特恩-格拉赫

实验发现的银原子磁矩不可能来自于银原子核，因为磁矩的大小反比于

粒子的质量，银原子核很重，其磁矩将会很小从而可以忽略。另外，我们

知道带电粒子的磁矩总是来源于其角动量，而银原子核外的47个电子中，

46个电子的状态完全球对称，因此总角动量是0，因此银原子的磁矩必定

来源于额外的那第47个电子。但是最后的这个电子的空间波函数也是球对

称的，因此其轨道角动量也是0。因此，斯特恩-格拉赫的实验结果就意味

着，电子除了轨道角动量以外，必定还有一个内禀的角动量，也就是自旋！

它也是一种角动量，通常记作S。而µz的量子化就意味着，电子自旋的z分

量Sz必定是量子化的，而且只能有两个不同的分立取值。当然，z分量相对

于x分量和y分量来说并没有任何特殊的地方，因此Sx和Sy必定也都是量子

化的，也只能有两个不同的分立取值。

进一步的研究发现，电子自旋分量的这两个不同分立取值是±~/2。而
电子自旋所产生的磁矩为

µS = g
q

2m
S. (1.43)

式中q = −e是电子的电荷，而g = 2，也即是说与轨道磁矩(1.41)相比，自

旋磁矩的公式多了一个2倍因子。这个g = 2的因子是一个相对论效应，

它可以从狄拉克方程中很漂亮地得到。当然，更仔细的实验测量也发

现，电子自旋磁矩的这个g因子实际上和2有很细微的差别，实际上它近似

是g ≃ 2(1 + α/(2π)), 这里的α就是精细结构常数，当然，这个细微的差别

要用量子电动力学的计算才能解释。

其实，人们是事后才认识到斯特恩-格拉赫实验的正确物理解释的。

斯特恩和格拉赫是1922年做的实验，而直到1926年，乌伦贝克和古德斯密

特(Uhlenbeck and Goudsmit)才提出电子自旋的概念。而且一开始人们是

按照经典物理的图像将电子自旋理解为电子绕着自身的转轴自转。实际上，

当乌伦贝克和古德斯密特提出电子自旋的时候，他们的导师埃伦费斯特建
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议他们去和洛伦兹讨论。洛伦兹很快就告诉他们，电子自旋的概念肯定是

错的，因为如果将电子看成是一个小球，而自旋是这个小球绕着自身的转

轴转动，那人们不难论证，这个小球表面的转动速度将超过光速，而这就

违反了狭义相对论。尽管如此，洛伦兹还是帮助乌伦贝克和古德斯密特将

论文发表了，并且安慰他们说，“不要担心，年轻犯点错误非常正常”。


